
 
 

 
 

 
 

  
 

 
 

 
 

  
 

 
 
 
 

Abstract— The hardest problem to be tackled in the field of Synthetic 
Aperture Radar (SAR) image processing is speckle. In the SAR 
imagery, multiplicative speckle noise generally reduces the 
performance of automatic scene segmentation and classification 
algorithms. To tackle such an issue, an anisotropic diffusion filter  
that manages to   simultaneously   fulfill competing requirements : 
reduce  noise  on homogeneous   regions , preserve weak  edges, and  
keeping  corners  and   hard targets intact is proposed. Moreover 
since this efficient detail preserving diffusion filter is a partial 
difference equation based filter, no noise model was presupposed, so 
that in principle it can be applied to any noise type. 
 
Index Terms—Anisotropic filters, image denoising, nonlinear filters, 
speckle, synthetic aperture radar (SAR) images. 

 

I. INTRODUCTION  
       Many imaging  technologies operate coherently to acquire 
images and as such are subject to speckling effects that greatly 
reduce observable details. For example, in synthetic aperture 
radar (SAR) imagery, speckle generally reduces the 
performance of automatic scene segmentation and 
classification algorithms. Presupposing the multiplicative 
speckle model, many despeckling filters have been designed to 
remove this kind of noise. Classic filters, such as Lee, Kuan, 
Frostand Gamma maximum a posteriori (MAP) [1], exploit 
the pixel values inside a small window centered at a given 
pixel to make inference and reconstruct its true value. In 
particular, in addition to multiplicative noise assumption, such 
filters presuppose the image to be as an ergodic process where 
statistical means can be substituted by spatial means. Even 
though these classic filters manage to reduce speckle on 
homogeneous areas, they completely fail to reconstruct the 
scene whenever an edge is in the local sliding window. In 
order to avoid such a behavior, a sharp transition inside the 
local window has to be treated in a different way. 
Nevertheless, edge detectors relying on a classical gradient 
operator produce signal-dependent results, and finer statistical 
edge detectors have to be used for this scope [1]. 

 More recently, denoising filters based on the nonlocal 
means paradigm [3] have been designed to remove 
multiplicative speckle noise in SAR images [4]. In the design 
of the probabilistic patch based (PPB) filter in [4], Nakagami 
distribution of the SAR image amplitude is presupposed. 
Furthermore, a Bayesian framework is used to compute both a 

similarity measure among patches and the weighted mean 
used for pixel reconstruction. Due to its impressive visual 
results and since its performance outperforms even more 
sophisticated wavelet-based methods [5], PPB presents itself 
as a state-of-the-art reference for despeckling algorithms. 
Although effort has been dedicated to adapting the filters in 
[4] and [5] from the additive to the multiplicative noise model, 
denoising filters in [6] do not require this adaptation. In fact, 
contrarily to the afore-mentioned despeckling filters, these are 
nonlinear diffusion (NLD) filters that do not need any prior 
assumption, i.e., they can be directly applied to any type of 
noise-corrupted image. In addition, since the final result is a 
solution of a partial differential equation (PDE), many 
theorems and properties hold for such a solution (e.g., 
invariance to gray level shift, invariance to reverse contrast, 
invariance to image translation and rotation, preservation of 
average gray level, it respects the maximum-minimum 
principle, etc.) [7]. Nevertheless, even though several 
contributions and improvements (see [8]–[11]) have been 
made, little is known about the use of such filters for speckle 
removal. Furthermore, none of the filters described so far 
considers the edge and target preservation as a primary goal. 

In this paper, a novel NLD denoising filter aimed at edge 
and target preservation is devised. Moreover, to validate this 
approach, a comparison with other state-of-art despeckling 
filters has been performed on a real 1-look CSK image. 

 
II. NLD FILTERS 

A. Theoretical Background 
     Some very powerful classes of despeckling filters are those 
that compute the solution of a PDE applied to the image. As 
an example, filtering an image with a Gaussian kernel Gσ , 
where σ indicates the Gaussian standard deviation, it is 
equivalent to considering each gray level in the original image 
as a temperature measurement. Formally, each value of the 
gray level image I, I ⊂ R2 → R, is considered a physical 
variable such as temperature so that the existence of the 
concentration gradient ∇I creates a flux J = D · ∇I    to 
equilibrate the concentration differences in the diffusing 
medium (Fick’s first law), with D the diffusion tensor (a 2 × 2 
matrix) that characterizes diffusing medium. Since the mass 
conservation hypothesis has to be respected, the temporal 
variation of I inside medium is equal to the flux J across the 
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boundary of medium (Fick’s second law) 
dI 

= div(D · ∇I) (1)
 

dt   
with div the divergence operator. In fact, in principle, the 
application of an NLD filter is equivalent to solving the PDE 
in (1) superimposing the noisy image as the initial condition at 
time t = 0. where I0 is the initial noisy image. 
 

B. Related Works 
     Clearly, without any modification to (1), the natural 
evolution of the system leads to a completely blurred image. 
To solve this problem, Oliver and Quegan [1] propose the 
matrix D with a scalar function g(∇I) that is reversely 
proportional to the image gradient module. It should be noted 
that inverse proportionality between g(∇I) and |∇I| enables the 
filter to stop diffusion (smoothing) on edges (i.e., points with 
high value of |∇I|). The Perona–Malik (PM) article [1] has 
been the basis of many proposed evolutions, and an interested 
reader can find a detailed overview in [10]. Nevertheless, even 
though these filters are often referred to as anisotropic 
diffusion techniques, the first real anisotropic diffusion 
approach was proposed in [7], where the coherence enhancing 
diffusion (CED) was devised. Practically speaking, in CED, 
the diffusion matrix D is not substituted by a scalar function; 
instead, its elements are etrieved from the image structure 
tensor S(∇Iσ) . Once S(∇Iσ) is smoothed element-wise by Gρ 
to reduce the noise, the resultant matrix Sρ (symmetric and 
positive semi-definite) can be decomposed to find the image 
principal components. The diffusion matrix can be derived as: 

    

ܦ   = ൤	[	ଶݒ	ଵݒ]
݃ఒଵ	(ߣଵ,ߣଶ) 0

0 ݃ఒଶ	(ߣଵ,ߣଶ)൨                (2) 
 
with ݃ఒଵ	(ߣଵ,ߣଶ)	= α and  

																	݃ఒଶ	(ߣଵ,ߣଶ) = α + (1 − α)݁
ష಴೘

(ೖ/(ഊభషഊమ)మ)೘             (3) 
 

where α permits a small diffusivity (usually α = 0.05) 
even when no preferential direction exists and k acts as a 
threshold to (λ1  − λ2)2   value. Moreover, the positive 
constant Cm   is introduced to correct the bias in the 
original Perona–Malik diffusivity function [7]. Since the aim 
of [7] was not to devise a denoise filter, applying CED on a 
speckle-corrupted image yields results with completely 
distorted details. However, as suggested in [10], an edge 
enhancing diffusion requires modifications to diffusivity 
functions according to following relation : 

|∇I| → ∞,   ݃ఒଵ	(ߣଵ,ߣଶ)/	݃ఒଶ	(ߣଵ,ߣଶ) = 0.                      (4)   
                    

III. DETAIL PRESERVING DIFFUSION (DPD) FILTER 
    We propose the following modifications to the CED schema 
to keep the real anisotropic behavior of CED while respecting 
the relation in (5) 

൝1− ݁
ష಴೘భ

(ೖభ/ഊభ)೘

1− ݁
ష಴೘మ

(ೖమ/ഊమ)೘
                        (5) 

The choice in (6) can be better appreciated exploiting a 
convenient decomposition of the flux J. With indicating the 
eigen values of   diffusion matrix  D  as μ1 =	gλଵ (λଵ) ,          
μ2 =		gλଶ (λଶ) and the image derivatives along		ݒଵ	,ݒଶ	, 
respectively, with Iν1 and Iν2, the flux J can be decomposed 
as: 
                                      J = μ1Iν1 vଵ	 + μ2Iν2 vଶ	            (6) 
  Therefore, using the diffusivities in (6), three different filter 
behaviors are highlighted by the novel IEED filter. 

1)   On homogeneous areas both λ1 and λ2 are low. 
Therefore, μ1 and μ2 are near 1, i.e., an 
isotropic diffusion case (speckle removal). 

2)   On edges λ1 is high and λ2 is low. Consequently, μ1  
is near 0 and  μ2 is near 1, i.e., an anisotropic 
diffusion case with smoothing along ݒଶ	 (edge 
preservation). 

3) On   corners both λ1 and λ2 are high. As a 
consequence,   μ1 and μ2 are near 0, i.e., a no 
diffusion case (corner preservation).  

 
It should be noted that the last behavior avoids shape 

distortion of objects and hard targets smoothing. In fact, not 
only corners and singularities, but also small objects with high 
radar cross section (RCS), are characterized by a high value of 
both λ1 and λ2, thus causing diffusion stop. Summarizing, with 
the diffusivity in (2), we manage to effectively combine the 
respective advantages of the PM and CED filter. In the PM 
schema, the speckle on homogeneous regions is removed but 
there is no diffusion along edges, so they remain noisy in the 
final result. Conversely, the CED filter provides little speckle 
removal on homogeneous areas, but edges are correctly recon-
structed. 

 
 

A. Algorithm Description 
     Usually, the edge detection problem in noisy images is 
tackled by directly or indirectly using information related to 
the image gradient. Nevertheless, in the SAR community, the 
image coefficient of variation CI is more commonly used to 
face the same issue in despeckling filter implementation [8]. 
Even though the multiplicative speckle assumption justifies 
this choice [2], a simple logarithmic transformation solves the 
previous problem, allowing a gradient operator to be used for 
edge detection in SAR images. As an example, the SRAD 
filter in [8] and its anisotropic extension in [11] use CI to 
avoid biased gradient operations. However, they both use 
numerical implementation where differences between near 
values are computed, thus nullifying the advantages. For these 
reasons, in our filter implementation, a logarithmic 
transformation is applied to the input image, and a reverse 
exponential function is operated to the end. Furthermore, the 
structure tensor matrix in (4), which relies on the gradient 
information, is utilized as an edge detector. 

With regards to unknown variables, both diffusivities in (8) 
depend on two parameters, namely, the threshold ki and the 
exponent mi, with i = 1, 2. In order to have the same behavior 
in both directions, the exponent mi has been set equal for both 
diffusivities (m1 = m2 = m), and a value of m = 16 has been 
selected to have a fast transition of the diffusivity function 
from 0 to 1 around the threshold k. Instead, exploiting a 
homogeneous area of the processing image, each threshold ki  
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is estimated by the corresponding quantile Qi—set by the user 
as an input parameter—of the experimental cumulative density 
function (ecdf) of the respective eigenvalue λi. In this way, the 
thresholds ki are automatically adjusted at each step by the 
degree of despeckling reached at that point. It should be noted 
that to avoid user selection of a homogeneous area, the CI 
index of the original noisy image can be com-puted and 
thresholded to yield a binary mask. In this way, only the pixels 
belonging to this mask are used in the ecdf computation. 
  Another improvement of the detail preserving diffusion filter 
performance with respect to the filters presented in [1]–[9] and 
[11] is the use of an appropriate numerical schema [12] to 
compute the solution of the PDE . In fact, the schema was 
optimized for rotational in variance, which is a fundamental 
property when the gradient computed along the main axes is 
used for di-rectional derivatives. Moreover, the explicit 
numerical schema proposed in [12] combines the advantages 
of classical (Euler forward) explicit schemas of yielding a 
small error in final solution computation, with a higher 
efficiency (up to four times) typical of implicit or semi-
implicit techniques. Indeed, a time step up to t = 1 can be used 
without compromising the numerical stability. Finally, the 
numerical computation in [12] can be directly implemented by 
simple convolution operations. In fact, in [12], all derivatives 
are computed by means of a simple Sobel-like 3 × 3 derivative 
mask at the place of the classical stencil-like schemas [10]. 
 

IV. EXPERIMENTAL RESULTS AND ANALYSIS  
    This section describes the despeckling experiments per-
formed on an actual SAR image [see Fig. 1(a)] to illustrate the 
effectiveness of the proposed method. The DPD filter was  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

compared to NLD filters such as PM [1] and SRAD [8]. 
Furthermore, the promising PPB filter [4] (with and without 
iterations) was considered state-of-the-art reference. The 
SRAD filter was implemented with the classical Euler-forward 
schema. Moreover, a time step t = 0.5 and n = 200 iterations 
were selected to obtain stable results. Finally, a homogeneous 
region of the image was passed as input to enable the filter to 
compute the instantaneous coefficient of variation [8]. The 
same homogeneous region was also passed in input to PM and 
DPD to estimate the respective thresholds. PM was 
implemented with the same numerical schema as DPD and the 
threshold k was estimated by the quantile Q = 0.95 of the 
gradient module ecdf. For the DPD filter, the edge-controlling 
quantile was set to Q1 = 0.95 and the corner-controlling 
quantile was set to Q2 = 1. Note that having the ecdf computed 
on a homogeneous area, the  value 1−Qi is an estimate of the 
false alarm probability of the respective edge (i = 1) and corner 
(i = 1) on it. In fact, the previous values of Q1 indicate that on a 
noisy homogeneous area, 5% of the λ1 occurrences have values 
comparable to the ones obtained on edges. The same applies 
for corners where Q2 has been set to 1, presupposing no corners 
or singularities within the homogeneous region in input. 
Therefore, the quantile Q2 may be lowered for a stronger corner 
(target) preservation and the quantile Q1 can be raised if only 
strong edges are concerned. Moreover, a Gaussian kernel with 
standard deviation σ1 was applied before filtering (in order to 
make the initial image differentiable), and we selected σ1 = 0.5 
to minimize the loss in resolution. Then, at each step, a 
Gaussian kernel with σ2 = 1 was applied as regularization [9]. 

 

 

 

Fig. 1. Despeckling results on a CSK image acquired over Tucson, AZ—Courtesy of Agenzia Spaziale Italiana (ASI). (a) Original. 
(b) CED. (c) SRAD.(d) PPB. (e) Iterative PPB. (f) PM. (g) DPD 
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The non iterative PPB filter parameters were set according to 
author suggestions [4], i.e., number of looks L = 1, search 
windows 21 × 21, similarity window 7 × 7, h-parameter 
quantile α = 0.88. The same applies for the iterative PPB filter, 
where the variable window size optimization was used [4] with 
α = 0.92, T = 0.2, and 25 iterations. The results of the evaluated 
despeckling algorithms are shown in Fig. 2 for a CSK image 
acquired over Tucson, AZ, USA, with the following 
characteristics: product L1A, Spotlight 2 acquisition mode, 
polarization HH, incidence angle 24°, and number of looks L = 
1. The images are 16-bit deep and they are shown after a 
logarithmic transformation l2 = log2(l + 1). 

  Then, the same linear mapping of dynamic range between 0 
and 2ଵ଺ − 1 was applied to each result to further improve 
visualization and comparison. It should be pointed out that the 
result yielded by CED is reported only for the sake of visual 
comparison, since CED does not deal with noise removal but it 
aims to complete interrupted lines and enhance flow-like 
structures (e.g., enhancement of fingerprint images). As can be 
seen from the results, application of the SRAD filter loses even 
some large details. Moreover, targets are distorted and 
observed as bright blobs. The PM filter reveals small RCS 
variations, however, the region boundaries remain noisy. The 
PPB filter introduces some artificial texture on homogeneous 
areas and some edges and targets are blurred. Instead, the 
iterative PPB filter retrieves target sharpness, but some edges 
and fine details are not retrieved by iterations. Furthermore, the 
PPB filter increases the dynamic range at each iteration, i.e., 
low values are lowered and high values are increased. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Clearly, this behavior tends to generate some artifacts, such as 
dark spots besides brighter areas. Differently, the DPD filter 
preserves even small details and weak edges. In addition,   the 
dynamic range extension is theoretically avoided since the 
maximum–minimum principle has to be respected by the PDE 
solution. The considerations can be further appreciated for PM 
,iterative PPB, and detail preserving diffusion filters by the 
magnifications in Figs. 2 and 3. As can be clearly seen from 
these figures, only the diffusion filter manages to fully remove 
speckle without smoothing the finest details. 
 

V. CONCLUSION  
    In this paper, we presented a new anisotropic diffusion filter  
that managed to combine normally contrasting requirements: 
reducing noise on homogeneous regions, preserving weak 
edges, and keeping corners and targets intact (maintaining 
them as seen in the original image). Moreover, since DPD 
filter  is a PDE-based filter, no noise model was presupposed 
so that, in principle, it can be applied to any noise type. This 
last property had a strong impact on its possible application. In 
fact, no mathematical modeling effort was required (e.g., 
statistical modeling of both noise and radar reflectivity) to 
change sensor or data type (e.g., intensity or amplitude). In 
addition, since the filtered image was a solution of a PDE, 
many theorems and properties hold for such a solution. 
Finally, visual impressions and performance indexes 
confirmed that DPD filter outperformed state-of-the-art filters 
for SAR image despeckling. 

 
 
 
 

Fig. 2. Despeckling results on a heterogeneous area with buildings. (a) Original. (b) PM. (c) Iterative PPB. (d) DPD. Fig. 2. Despeckling results on a heterogeneous area with buildings. (a) Original. (b) PM. (c) Iterative PPB. (d) DPD. Fig. 2. Despeckling results on a heterogeneous area with buildings. (a) Original. (b) PM. (c) Iterative PPB. (d) DPD. Fig. 2. Despeckling results on a heterogeneous area with buildings. (a) Original. (b) PM. (c) Iterative PPB. (d) DPD. 

Fig. 3 . Despeckling results on an area with hard targets and small roads. (a) Original. (b) PM. (c) Iterative PPB. (d) DPD. 
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