
An Efficient Implementation of Floating Point Multiplier

 ASIYA THAPASWIN PATTAN

 M. Tech Student, Dept of ECE ,

 Vaagdevi Institute of Technology & Science,

 Proddatur, Kadapa (DT), AP-516361

 C.Md. ASLAM

 HOD, Dept. of ECE,

 Vaagdevi Institute of Technology & Science,

 Proddatur, Kadapa (DT), AP-516361

Abstract—Thispaper describes an efficient

implementation of an IEEE 754 single

precision floating point multiplier targeted

for Xilinx Virtex-5 FPGA. VHDL is used to

implement a technology-independent

pipelined design. The multiplier

implementation handles the overflow and

underflow cases. Rounding is not

implemented to give more precision when

using the multiplier in a multiply and

Accumulate (MAC) unit. With latency of

three clock cycles the design achieves 301

MFLOPs.The multiplier was verified against

Xilinx floating point multiplier core.

Keywords -floating point; multiplication;

FPGA; CAD design flow.

I. INTRODUCTION

Floating point numbers are one possible

way of representing real numbers in binary

format; the IEEE 754 standard presents two

different floating point formats, Binary

interchange format and Decimal interchange

format. Multiplying floating point numbers is a

critical requirement for DSP applications

involving large dynamic range. This paper

focuses only on single precision normalized

binary interchange format. Fig. 1 shows the

IEEE 754 single precision binary format

representation; it consists of a one bit sign (S),

an eight bit exponent (E), and a twenty three bit

fraction (M or Mantissa). An extra bit is added

to the fraction to form what is called the

significand1. If the exponent is greater than 0

and smaller than 255, and there is 1 in the MSB

of the significand then the number is said to be a

normalized number; in this case the real number

is represented by (1)

V.RAMESH

Assistant Professor, Dept. of ECE,

Vaagdevi Institute of Technology & Science,

Kadapa, Proddatur, Kadapa Dt. A.P.-516361

Figure1. IEEE single precision floating point format

Z = (-1S) * 2(E - Bias)* (1.M)

Where

M = m22 2-1+ m21 2-2+ m20 2-3+…+ m1 2-22+ m0 2-23;

Bias = 127.

Multiplying two numbers in floating

point format is done by 1- adding the exponent

of the two numbers then subtracting the bias

from their result, 2- multiplying the significand

of the two numbers, and 3- calculating the sign

by XORing the sign of the two numbers. In

order to represent the multiplication result as a

normalized number there should be 1 in the

MSB of the result (leading one). Floating-point

implementation on FPGAs has been the interest

of many researchers.

II. FLOATING POINT MULTIPLICATION

ALGORITHM

As stated in the introduction, normalized

floating point numbers have the form of

Z= (-1
S
) * 2

(E - Bias)
* (1.M). To multiply two

floating point numbers the following is done:

1. Multiplying the significand; i.e. (1.M1*1.M2)

2. Placing the decimal point in the result

3. Adding the exponents; i.e. (E1 + E2 – Bias)

4. Obtaining the sign; i.e. s1 xor s2

5. Normalizing the result; i.e. obtaining 1 at the

MSB of the results‟ significand

6. Rounding the result to fit in the available bits

7. Checking for underflow/overflow occurrence

Consider a floating point

representation similar to the IEEE 754 single

precision floating point format, but with a

reduced number of mantissabits (only 4) while

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

1www.ijert.org

still retaining the hidden „1‟ bit for normalized

numbers:

 A = 0 10000100 0100 = 40,

 B = 1 10000001 1110 = -7.5

To multiply A and B

1. Multiply significand: 1.0100
 × 1.1110

 00000

 10100

 10100

 10100

 10100____

1001011000

2. Place the decimal point:

10.01011000

3. Add exponents: 10000100

+ 10000001

 100000101

The exponent representing the two

numbers is already shifted/biased by the bias

value (127) and is not the true exponent; i.e. EA

= EA-true + bias and EB = EB-true + bias

And

 EA + EB = EA-true + EB-true + 2 bias

 So we should subtract the bias from

the resultant exponent otherwise the bias will be

added twice.

 100000101

 - 01111111

 10000110

 4. Obtain the sign bit and put the result

together:
1 10000110 10.01011000

 5.Normalize the result so that there is a 1 just

before the radix point (decimal point). Moving

the radix point one place to the left increments

the exponent by 1; moving one place to the right

decrements the

Exponent by 1.

 1 10000110 10.01011000 (before

normalizing)

 1 10000111 1.001011000

(normalized)

The result is (without the hidden bit):
 1 10000111 00101100

6. The mantissa bits are more than 4 bits

(mantissa available bits); rounding is needed.

If we applied the

Truncation rounding mode then the stored value

is:

1 10000111 0010.

In this paper we present a floating point

multiplier in which rounding support isn‟t

implemented. Rounding support can be added

as a separate unit that can be accessed by the

multiplier or by a floating point adder, thus

accommodating for more precision if the

multiplier is connected directly to an adder in a

MAC unit. Fig.2 shows the multiplier structure;

Exponents addition, Significand multiplication,

and Result‟s sign calculation areindependent

and are done in parallel. The significand

multiplication is done on two 24 bit numbers

and results in a 48 bit product, which we will

call the intermediate product (IP). The IP is

represented as (47 downto 0) and the decimal

point is located between bits 46 and 45 in the

IP. The following sections detail each block of

the floating point multiplier.

Figure 2. Floating point multiplier block diagram

III. HARDWARE OF FLOATING POINT MULTIPLIER

A. Sign bit calculation

Multiplying two numbers results in a

negative sign number if one of the multiplied

numbers is of a negative value. By the aid of a

truth table we find that this can be obtained by

XORing the sign of two inputs.

B. Unsigned Adder (for exponent addition)

This unsigned adder is responsible for

adding the exponent of the first input to the

exponent of the second input and subtracting the

Bias (127) from the addition result (i.e.

A_exponent + B_exponent - Bias). The result of

this stage is called the intermediate exponent.

The add operation is done on 8 bits, and there is

no need for a quick result because most of the

calculation time is spent in the significand

multiplication process (multiplying 24 bits by

24 bits); thus we need a moderate exponent

adder and a fast significand multiplier. An 8-bit

ripple carry adder is used to add the two input

exponents. As shown in Fig. 3 a ripple carry

adder is a chain of cascaded full adders and one

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

2www.ijert.org

half adder; each full adder has three inputs (A,

B, Ci) and two outputs (S, Co). The carry out

(Co) of each adder is fed to the next full adder

(i.e. each carry bit "ripples" to the next full

adder).

Figure 3.Ripple Carry Adder
The addition process produces an 8 bit

sum (S7 to S0) and acarry bit (Co, 7). These bits

are concatenated to form a 9 bit addition result

(S8 to S0) from which the Bias is subtracted.

The Bias is subtracted using an array of ripple

borrow subtractors.

A normal subtractor has three inputs

(minuend (S), subtrahend (T), Borrow in (Bi))

and two outputs (Difference (R), Borrow out

(Bo)).

The subtractor logic can be optimized

if one of its inputs is a constant value which is

our case, where the Bias is constant (127|10 =

001111111|2).

Table I shows the truth table for a 1-bit

subtractor with the input T equal to 1 which we

will call “one subtractor (OS)”

TABLE I. 1-BIT SUBTRACTOR WITH THE INUT T=1

The Boolean Equation (2) and (3) represent this

subtractor:

Difference(R) = (2)

Borrowout (Bo) = (3)

Figure 4. 1-bit subtractor with the input T = 1

Table II shows the truth table for a 1-

bit subtractor with the input T equal to 0 which

we will call “zero subtractor (ZS)”

TABLEII.1-BIT SUBTRACTOR WITH THE INUT T=0

The Boolean Equation (4) and (5) represent this

subtractor:

Difference(R) = (4)

Borrowout (Bo) = (5)

Figure 5. 1-bit subtractor with the input T = 0

Fig. 6 shows the Bias Subtractor which

is a chain of 7 one subtractors (OS) followed by

2 zero subtractors (ZS); the borrow output of

each Subtractor is fed to the next Subtractor. If

an underflow occurs then Eresult < 0 and the

number is out of the IEEE 754 single precision

normalized numbers range; in this case the

output is signaled to 0 and an underflow flag is

asserted.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

3www.ijert.org

Figure6. Ripple Borrow Subtractor

C. Unsigned Multiplier (for significand

multiplication)

This unit is responsible for multiplying

the unsigned significand and placing the

decimal point in the multiplication product. The

result of significand multiplication will be

called the intermediate product (IP).

The unsigned significand

multiplication is done on 24 bit. Multiplier

performance should be taken into consideration

so as not to affect the whole multiplier‟s

performance. A 24x24 bit carry save multiplier

architecture is used as it has a moderate speed

with a simple architecture. In the carry save

multiplier, the carry bits are passed diagonally

downwards (i.e. the carry bit is propagated to

the next stage). Partial products are made by

ANDing the inputs together and passing them to

the appropriate adder.

Carry save multiplier has three main stages:

 1- The first stage is an array of half

adders.

 2- The middle stages are arrays of full

adders.

 The number of middle stages is equal to

the significand size minus two.

 3- The last stage is an array of ripple carry

adders. This stage is called the vector merging

stage.

 The number of adders (Half adders

and Full adders) in each stage is equal to the

significand size minus one. For example, a 4x4

carry save multiplier is shown in Fig. 7 and it

has the following stages:

 1- The first stage consists of three half

adders.

 2- Two middle stages; each consists of

three full adders.

 3- The vector merging stage consists of

one half adder and two full adders.

The decimal point is between bits 45

and 46 in the significand multiplier result. The

multiplication time taken by the carry save

multiplier is determined by its critical path. The

critical path starts at the AND gate of the first

partial products (i.e. a1b0 and a0b1), passes

through the carry logic of the first half adder

and the carry logic of the first full adder of the

middle stages, then passes through all the vector

merging adders. The critical path is marked in

bold in Fig. 7

Figure7. 4x4 bit Carry Save multiplier

In Fig. 7:

1- Partial product: aibj = ai and bj

2- HA: half adder

3- FA: full adder

D. Normalizer

The result of the significand

multiplication (intermediate product) must be

normalized to have a leading „1‟ just to the left

of the decimal point (i.e. in the bit 46 in the

intermediate product). Since the inputs are

normalized numbers then the intermediate

product has the leading one at bit 46 or 47

1- If the leading one is at bit 46 (i.e. to the

left of the decimal point) then the

intermediate product is already a

normalized number and no shift is

needed.

2- If the leading one is at bit 47 then the

intermediate product is shifted to the

right and the exponent isIncremented

by 1.

The shift operation is done using

combinational shift logic made by multiplexers.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

4www.ijert.org

Fig. 8 shows a simplified logic of a Normalizer

that has an 8 bit intermediate product input and

a 6 bit intermediate exponent input.

Figure8. Simplified Normalizer logic

IV. UNDERFLOW/OVERFLOW DETECTION

Overflow/underflow means that the

result‟s exponent is too large/small to be

represented in the exponent field. The Exponent

of the result must be 8 bits in size, and must be

between 1 and 254 otherwise the value is not a

normalized one. Between 1 and 254 otherwise

the value is not a normalized one.

An overflow may occur while adding

the two exponents or during normalization.

Overflow due to exponent addition may be

compensated during subtraction of the bias;

resulting in a normal output value (normal

operation). An underflow may occur while

subtracting the bias to form the intermediate

exponent. If the intermediate exponent < 0 then

it‟s an underflow that can never be

compensated; if the intermediate exponent = 0

then it‟s an underflow that may be compensated

during normalization by adding 1 to it.

Assume that E1 and E2 are the

exponents of the two numbers A and B

respectively;

The result‟s exponent is calculated by (6)

Eresult= E1 + E2 – 127 (6)

E1 and E2 can have the values from 1

to 254; resulting in Eresult having values from -

125 (2-127) to 381 (508-127); but for

normalized numbers, Eresult can only have the

values from 1 to 254. Table III summarizes the

Eresult different values and the effect of

normalization on it.

TABLE III. NORMALIZATION EFFECT ON RESULT‟S

EXPONENT AND OVERFLOW/UNDERFLOW DETECTION

V. PIPELINING THE MULTIPLIER

In order to enhance the performance of

the multiplier, three pipelining stages are used

to divide the critical path thus increasing the

maximum operating frequency of the multiplier.

The pipelining stages are imbedded at the

following locations:

1. In the middle of the significand multiplier,

and in the middle of the exponent adder (before

the bias subtraction).

2. after the significand multiplier, and after the

exponent adder.

3. At the floating point multiplier outputs (sign,

exponent and mantissa bits).

Fig. 9 shows the pipelining stages as dotted

lines.

Figure 9. Floating point multiplier with pipelined stages

Three pipelining stages mean that there

is latency in the output by three clocks. The

synthesis tool “retiming” option was used so

that the synthesizer uses its optimization logic

to better place the pipelining registers across the

critical path

VI. RESULT

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

5www.ijert.org

Fig.10 shows the simulation result of

top multiplier.

Figure10. Simulation result of top multiplier

 Fig.11 shows the RTL

diagram of top multiplier which is having inputs

A, B of 32 bit and output of 56bit.

Figure11.RTL diagram of top multiplier

VII. IMPLEMENTATION AND TESTING

The whole multiplier (top unit) was

tested against the Xilinx floating point

multiplier core generated by Xilinx coregen.

Xilinx core was customized to have two flags to

indicate overflow and underflow, and to have a

maximum latency of three cycles. Xilinx core

implements the “round to nearest” rounding

mode.

The area of Xilinx core is less than the

implemented floating point multiplier because

the latter doesn‟t truncate/round the 48 bits

result of the mantissa multiplier which is

reflected in the amount of function generators

and registers used to perform operations on the

extra bits; also the speed of Xilinx core is

affected by the fact that it implements the round

to nearest rounding mode.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presents an implementation

of a floating point multiplier that supports the

IEEE 754-2008 binary interchange format; the

multiplier doesn‟t implement rounding and just

presents the significand multiplication result as

is (48 bits); this gives better precision if the

whole 48 bits are utilized in another unit; i.e. a

floating point adder to form a MAC unit. The

design has three pipelining stages and after

implementation on a Xilinx Virtex5 FPGA it

achieves 301 MFLOPs.

REFERENCES

[1] IEEE 754-2008, IEEE Standard for

Floating-Point Arithmetic, 2008.

[2] B. Fagin and C. Renard, “Field

Programmable Gate Arrays and Floating Point

Arithmetic,” IEEE Transactions on VLSI, vol.

2, no. 3, pp. 365–367, 1994.

[3] N. Shirazi, A. Walters, and P. Athanas,

“Quantitative Analysis of Floating Point

Arithmetic on FPGA Based Custom Computing

Machines,” Proceedings of the IEEE

Symposium on FPGAs for Custom Computing

Machines (FCCM‟95), pp.155–162, 1995.

[4] L. Louca, T. A. Cook, and W. H. Johnson,

“Implementation of IEEE Single Precision

Floating Point Addition and Multiplication on

FPGAs,”

Proceedings of 83 the IEEE Symposium on

FPGAs for Custom Computing Machines

(FCCM‟96), pp. 107–116, 1996.

[5] A. Jaenicke and W. Luk, "Parameterized

Floating-Point Arithmetic on FPGAs", Proc. of

IEEE ICASSP, 2001, vol. 2, pp. 897-900.

[6] B. Lee and N. Burgess, “Parameterisable

Floating-point Operations on FPGA,”

Conference Record of the Thirty-Sixth

Asilomar Conference on

Signals, Systems, and Computers, 2002

[7] “DesignChecker User Guide”, HDL

Designer Series 2010.2a, Mentor Graphics,

2010

[8] “PrecisionR Synthesis User‟s Manual”,

Precision RTL plus 2010a update 2, Mentor

Graphics, 2010.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

6www.ijert.org

Mrs.Asiya Thapaswin Pattan, is

currently doing post graduation in

Vaagdevi institute of Tech & Science,

Proddatur, Kadapa (Dt), A.P with the

specialization of VLSI

Mr.V.Ramesh,is an Assistant

Professor in ECE dept. at Vaagdevi

institute of Tech & Science, Proddatur.

He obtained his B.Tech degree in ECE

from MeRITS,JNTUA, Udayagiri in

2007, M.Tech degree in Electronic

Instrumentation and Communication

Systems from S.V.University, Tirupati

in 2009. He has 4years of teaching

experience and his area of interest

includes Electronics instrumentation

and Antennas. He has published 5

papers in referred international journals

and also 3 papers at national level

conferences.

Mr.C.Mahammed Aslam is the

HOD,Dept.of ECE at Vagdevi institute

of Tech & Science, Proddatur.He

obtained his B.Tech degree in ECE

from Dr.Babasaheb Ambedkar

Maratwada University,Aurangabad in

1997,M.Tech degree in Digital

Electronics and Computer Science from

JNTU,Hyderabad in 2007.He ahs 11

years of teaching experience.He

registered his Ph.D from

JNTU,Anantapur in digital Image

Processing. His area of interest is

Microprocessor and EDC circuits. He

has published 3 papers in international

journals.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

7www.ijert.org

