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   Abstract---Multiplication is an important fundamental function 

in arithmetic operations. It can be performed with the help of 

different multipliers using different techniques. In this paper we 

focus on an efficient implementation of an IEEE 754 single 

precision floating point multiplier with signed and unsigned 

numbers. The multiplier implementation in floating point 

multiplication is done by Modified Booth Encoding (MBE) 

multiplier to reduce the partial products by half. The multiplier 

takes care of overflow and underflow cases. Rounding is not 

implemented to give more precision when using the multiplier in 

a Multiply and Accumulate (MAC) unit. By using MBE 

multiplier we increases the speed of multiplication, reduces the 

power dissipation and cost of a system. The proposed multiplier 

will be designed and verified using Modelsim with Verilog HDL. 

Xilinx is used for synthesis. 

    Keywords-floating point multiplication, Array Multiplier, 

MBE, Partial Products, overflow and underflow 

I. INTRODUCTION 

Today the main applications of floating point numbers  
are in the field of medical imaging, biometrics, motion 
capture and audio applications. Since multiplication 
dominates the execution time of most DSP algorithms,  there 
is a need of high speed multiplier with more accuracy. 
Reducing the time delay and power consumption are very 
essential requirements for many applications. Floating Point 
Numbers: The term floating point is derived from the fact that 
there is no fixed number of digits before and after the decimal 
point, that is, the decimal point can float.  

The Institute of Electrical and Electronics Engineers 
(IEEE) sponsored a standard format for 32-bit and larger 
floating point numbers, known as IEEE 754 standard [1]. 

This paper presents a new floating point multiplier which 
operates on single-precision floating point. The conventional 
floating point multipliers use Array multiplier for Mantissa 
multiplication [2]. In this paper we presents a Modified Booth 
Encoder (MBE) multiplier [3][4] for Significand or Mantissa 
multiplication, which reduces the partial products by half, to 
achieve speed of operation and reduces the time 
delay[6].Normal MBE multiplier having Carry Save 
Adder(CSA) for partial product addition[5], here in this 
floating point multiplier we proposed Ripple Carry 
Adder(RCA) to reduce the complexity of the circuit and 
complicated more number of bit addition. This paper is 
organized as follows: In section I (B) mainly concentrated on 
Single Precision floating point numbers, section II focuses on 

floating point algorithm, section III concentrate on different 
multiplication methods[7][8], section IV looking for hardware 
of  floating point multiplier(Block diagram), section V 
contains the exponent result on overflow or underflow and 
final sectional explains synthesis results and conclusions of 
this project 

 

A.  Floating Point Arithmetic 

The IEEE 754 [1] standard is the most widely used 
standard for floating point computation, and is followed by 
many CPU implementation. The standard defines formats for 
representing floating point number (including + zero and 
denormals) and special values (infinities and NaNs) together 
with a set of floating point operations. IEEE 754[1] specifies 
four formats for representing floating point values: single-
precision (32-bit), double-precision (64-bit), single-extended 
precision (≥ 43-bit, not commonly used) and double extended 
precision (≥ 79-bit, usually implemented with 80 bits). 
 

B. Single Precision Floating point Numbers 

Thus, a total of 32 bits is needed for single-precision 
number representation. To achieve a bias equal to 2

n-1
 -1 is 

added to the actual exponent in order to obtain the stored 
exponent. This equal 127 for an 8-bit exponent of the single 
precision format. The addition of bias allows the use of an 
exponent in the range from -126 to +127. The single precision 
format offers a range from 2

-126 
to2

+127
.  Fig. 1 shows the 

IEEE 754 single precision binary format representation; it 
consists of a one bit sign (S), an eight bit exponent (E), and a 
twenty three bit fraction (M or Mantissa). An extra bit is 
added to the fraction to form what is called the significand

1
. If 

the exponent is greater than 0 and smaller than 255, and there 
is 1 in the MSB of the significand then the number is said to 
be a normalized number; in this case the real number is 
represented by (1) 

 

 
Fig. 1. IEEE single precision floating point format 
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Z = (-1
S
)*2

(E-Bias)
*(1.M) (1) 

 

Where M = m22 2
-1

 + m21 2
-2

 + m20 2
-3

+…+ m1 2
-22

+ m0 2
-23

; 

Bias = 127. 

1
Significand is the mantissa with an extra MSB bit. 

C. Floating Point Multiplication  

Multiplication of two numbers in floating point format is 
done by following steps: 1. adding the exponent of the two 
numbers then subtracting the bias from their result, 2. 
multiplying the significand of the two numbers, and 
3.calculating the sign by XORing the sign of the two numbers. 
In order to represent the multiplication result as a normalized 
number there should be 1 in the MSB of the result (leading 
one), detailed explanation is given in next section. 
 

II. FLOATING POINT MULTIPLICATION ALGORITHM 

Floating point multiplication algorithm is shown in fig (2) 
in the below flowchart. 

 

 
 

Fig  2. IEEE single precision floating point format 
 
As stated in the introduction, normalized floating point 

numbers have the form of Z= (-1
S
) * 2 

(E -
 
Bias)

 * (1.M). To 
multiply two floating point numbers the following is done: 
  
1. Multiplying the significand; i.e. (1.M1*1.M2)  

2. Placing the decimal point in the result  

3. Adding the exponents; i.e. (E1 + E2 – Bias)  

4. Obtaining the sign; i.e. s1 xor s2  

5. Normalizing the result; i.e. obtaining 1 at the MSB of the 

results’ significand  

6. Rounding the result to fit in the available bits  

7. Checking for underflow/overflow occurrence 

 

   Consider a floating point representation similar to the 

IEEE 754 single precision floating point format, but with a 

reduced number of mantissa bits (only 4) while still retaining 

the hidden ‘1’ bit for normalized numbers: 

 
 

A = 0 10000100 0100 = 40,  

B = 1 10000001 1110 = - 7.5 

 

To multiply A and B  

1.  Multiply significand: 1.0100 

  ×  1.1110 

  00000 

  10100 

  10100 

  10100 

  _10100____ 

  1001011000 

2. Place the decimal point:  10.01011000 

3. Add exponents: 10000100 

 +  10000001 

 100000101  
The exponent representing the two numbers is already 

shifted/biased by the bias value (127) and is not the true 
exponent; i.e. EA = EA-true + bias and EB = EB-true + bias and 

E
A 

+ E
B 

= E
A-true 

+ E
B-true 

+ 2 bias
 

 
So we should subtract the bias from the resultant exponent 

otherwise the bias will be added twice. 
 

100000101 
- 01111111  

10000110  

 

1. Obtain the sign bit and put the result together:  
 

1. 10000110  10.01011000  
 

2. Normalize the result so that there is a 1 just before the 

radix point (decimal point). Moving the radix point one 

place to the left increments the exponent by 1; moving 

one place to the right decrements the exponent by 1. 

 

a. 10000110 10.01011000  (before normalizing)  

b. 10000111  1.001011000  (normalized)  

 

The result is (without the hidden bit): 
 

1 10000111 00101100 

 

3. The mantissa bits are more than 4 bits (mantissa available 

bits); rounding is needed. If we applied the truncation 

rounding mode then the stored value is: 
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1 10000111 0010 

 
In this paper we present a floating point multiplier in 

which rounding support isn’t implemented. Rounding support 
can be added as a separate unit that can be accessed by the 
multiplier or by a floating point adder, thus accommodating 
for more precision if the multiplier is connected directly to an 
adder in a MAC unit. Fig. 3 shows the multiplier structure; 
Exponents addition, Significand multiplication, and Result’s 
sign calculation are independent and are done in parallel. The 
significand multiplication is done on two 24 bit numbers and 
results in a 48 bit product, which we will call the intermediate 
product (IP). The IP is represented as (47 downto 0) and the 
decimal point is located between bits 46 and 45 in the IP.  

 
 

Fig. 3 Floating point multiplier block diagram 

 

III. METHODS FOR MULTIPLICATION 

There are number of techniques that can be used to 

perform multiplication. In general, the choice is based upon 

factors such as latency, throughput, area, and design 

complexity. 

a) Array Multiplier b) Booth Multiplier  

 

a) Array Multiplier 

Array multiplier is an efficient layout of a combinational 

multiplier. Multiplication of two binary number can be 

obtained with one micro-operation by using a combinational 

circuit that forms the product bit all at once thus making it a 

fast way of multiplying two numbers since only delay is the 

time for the signals to propagate through the gates that forms 

the multiplication array. In array multiplier, consider tow 

binary numbers A and B, of m and n bits. There are mn 

summands that are produced in parallel by a set of mn AND 

gates. n x n multiplier requires n (n-2) full adders, n half-

adders and n2 AND gates. Also, in array multiplier worst case 

delay would be (2n+1) td. 

 

b) Booth Multiplier 

Booth’s multiplication algorithm is a multiplication 

algorithm that multiplies two signed binary numbers in two’s 

complement notation. The algorithm was invented by Andrew 

Donald Booth [4]. 

       Conventional array multipliers, like the Braun multiplier 

and Baugh Woolley multiplier achieve comparatively good 
performance but they require large area of silicon, unlike the 
add-shift algorithms, which require less hardware and exhibit 

poorer performance. The Booth multiplier makes use of Booth 
encoding algorithm in order to reduce the number of partial 
products by considering two bits of the multiplier at a time, 
there by achieving a speed advantage over other multiplier 

architectures. This algorithm is valid for both signed and 
unsigned numbers. It accepts the number in 2’s complement 
form. The Modified Booth encoder Floating point multiplier 
architecture is identified with the following blocks as shown 

in fig (3). The following sections detail each block of the 
floating point multiplier. 

 

IV. HARDWARE OF FLOATING POINT MULTIPLIER 

 

The hardware of floating point multiplier is mainly 

divided into a) sign bit calculation, b) exponent addition, c) 

significand multiplication and d) normalize unit. 

 

A. Sign bit calculation  

Multiplying two numbers results in a negative sign number   
if one of the multiplied numbers is of a negative value. By the 

aid of a truth table we find that this can be obtained by 

XORing the sign of two inputs. 

 

B. Unsigned Adder (for exponent addition) 

This unsigned adder is responsible for adding the exponent 

of the first input to the exponent of the second input and 

subtracting the Bias (127) from the addition result (i.e. 

A_exponent + B_exponent - Bias). The result of this stage is 

called the intermediate exponent. The add operation is done 

on 8 bits, and there is no need for a quick result because most 

of the calculation time is spent in the significand 

multiplication process (multiplying 24 bits by 24 bits); thus 

we need a moderate exponent adder and a fast significand 

multiplier. 
 

An 8-bit ripple carry adder is used to add the two input 

exponents. As shown in Fig. 3 a ripple carry adder is a chain 

of cascaded full adders and one half adder; each full adder has 

three inputs (A, B, Ci) and two outputs (S, Co). The carry out 

(Co) of each adder is fed to the next full adder (i.e. each carry 

bit "ripples" to the next full adder). 
 

 
Fig.4. Ripple Carry Adder 

 
The addition process produces an 8 bit sum (S7 to S0) and 
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a carry bit (Co,7). These bits are concatenated to form a 9 bit 

addition result (S8 to S0) from which the Bias is subtracted. 

The Bias is subtracted using an array of ripple borrow 

subtractors. 

Fig.5 shows the Bias subtractor which is a chain of 7 one 

subtractors (OS) followed by 2 zero subtractors (ZS); the 
borrow output of each subtractor is fed to the next subtractor. 
If an underflow occurs then Eresult < 0 and the number is out of 
the IEEE 754 single precision normalized numbers range; in 
this case the output is signaled to 0 and an underflow flag is 

asserted. 
 

 
Fig 5. Ripple Borrow Subtractor 

 

C. Unsigned Multiplier (for significand multiplication) 

This unit is responsible for multiplying the unsigned 

significand and placing the decimal point in the multiplication 

product. The result of significand multiplication will be called 

the intermediate product (IP). The unsigned significand 

multiplication is done on 24 bit. Multiplier performance 

should be taken into consideration so as not to affect the 

whole multiplier’s performance. The modified-Booth 

algorithm is extensively used for high-speed multiplier 

circuits. The multiplier here we are design and implement 

multiplier for signed and unsigned numbers using MBE 

technique. Table 1 shows the truth table of MBE scheme. 

From table 1 the MBE logic diagram is implemented as shown 

in Fig.5. Using the MBE logic and considering other 

conditions the Boolean expression for one bit partial product 

generator is given by the equation 2.  

  

TABLE 1: Truth Table of MBE Scheme. 

bi+1 bi bi-1 value X1_a X2_a Z Neg 

0 0 0 0 1 0 1 0 

0 0 1 1 0 1 1 0 

0 1 0 1 0 1 0 0 

0 1 1 2 1 0 0 0 

1 0 0 -2 1 0 0 1 

1 0 1 -1 0 1 0 1 

1 1 0 -1 0 1 1 1 

1 1 1 0 1 0 1 0 

 

Equation 3 is implemented as shown in Fig.5. The 

SUMBE multiplier does not separately consider the encoder 

and the decoder logic, but instead implemented as a single unit 

called partial product generator as shown Fig 6. 

 

 
Fig. 6. Logic diagram of MBE. 

 

TABLE 2: Shows the SUMBE multiplier operation. 

Sign-unsign Type of operation 

0 Unsigned multiplication 

1 Signed multiplication 

 
Fig. shows the partial products generated by partial 

product generator circuit which is shown in Fig. 5. There are 
5-partial products with sign extension and negate bit Ni. All 
the 5-partial products are generated in parallel. 

 

   a7   a6   a5   a4    a3   a2   a1   a0  

   b7   b6   b5   b4     b3   b2   b1   b0 
    

  p08p08  p08 p07  p06 p05 p04 p03 p02 p01 p00 X1 

 1 p18p17 p16 p15 p14 p13  p12 p11 p10 N0 X2 

 1  p28p27  p26p25  p24p23  p22p21 p20 N1  X3 

1 p38 p37p36p35 p34 p33 p32 p31 p30 N2   X4 

P47p46 p45 p44 p43 p42 p41p40 N3    X5 
  

p15  p14 p13 p12 p11  p10  p9   p8   p7   p6    p5   p4   p3   p2    p1  p0  
 

 

 
Fig. 7. Logic diagram of 1-bit partial product generator 
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D.  Normalizer 

The result of the significand multiplication (intermediate 
product) must be normalized to have a leading ‘1’ just to the 
left of the decimal point (i.e. in the bit 46 in the intermediate 
product). Since the inputs are normalized numbers then the 

intermediate product has the leading one at bit 46 or 47. 
1. If the leading one is at bit 46 (i.e. to the left of the decimal 

point) then the intermediate product is already a 
normalized number and no shift is needed. 

2. If the leading one is at bit 47 then the intermediate 

product is shifted to the right and the exponent is 

incremented by 1. 
 

The shift operation is done using combinational shift 

logic made by multiplexers. Fig. 8 shows a simplified logic of 

a Normalizer that has an 8 bit intermediate product input and a 

6 bit intermediate exponent input. 

 
Fig  8. Simplified Normalizer logic 

 

V. UNDERFLOW/OVERFLOW DETECTION 

Overflow/underflow means that the result’s exponent is 

too large/small to be represented in the exponent field. The 

exponent of the result must be 8 bits in size, and must be 

between 1 and 254 otherwise the value is not a normalized 

one. An overflow may occur while adding the two exponents 

or during normalization. Overflow due to exponent addition 

may be compensated during subtraction of the bias; resulting 

in a normal output value (normal operation). An underflow 

may occur while subtracting the bias to form the intermediate 

exponent. If the intermediate exponent < 0 then it’s an 

underflow that can never be compensated; if the intermediate 

exponent = 0 then it’s an underflow that may be 

compensated during normalization by adding 1 to it. 

When an overflow occurs an overflow flag signal goes 

high and the result turns to ±Infinity (sign determined 

according to the sign of the floating point multiplier inputs). 

When an underflow occurs an underflow flag signal goes 

high and the result turns to ±Zero (sign determined according 

to the sign of the floating point multiplier inputs). 

Denormalized numbers are signaled to Zero with the 

appropriate sign calculated from the inputs and an underflow 

flag is raised. Assume that E1 and E2 are the exponents of the 

two numbers A and B respectively; the result’s exponent is 

calculated by (6) 

Eresult = E1 + E2 - 127 (2) 

 

E1 and E2 can have the values from 1 to 254; resulting in Eresult 

having values from -125 (2-127) to 381 (508-127); but for 

normalized numbers, Eresult can only have the values from 1 to 

254. Table III summarizes the Eresult different values and the 

effect of normalization on it. 
 

TABLE III. Normalization Effect On Result’s Exponent And 

Overflow/Underflow Detection 

Eresult Category Comments 

-125 ≤ Eresult < 0 Underflow Can’t be compensated during 

  normalization 
Eresult = 0 Zero May turn to normalized number 

during 

  normalization (by adding 1 to it) 

1 < Eresult < 254 Normalized May result in overflow during 

 number normalization 

255 ≤ Eresult Overflow Can’t be compensated 

 

VI.   SYNTHESIS RESULTS 

This design has been implemented using Modelsim and 

synthesized for Verilog HDL. The Verilog code is used for 

coding. Simulation based verification is one of the methods 

for functional verification of a design. Simulation based 

verification ensures that the design is functionally correct 

when tested with a given set of inputs. Though it is not fully 

complete, by picking a random set of inputs as well as corner 

cases, simulation based verification can still yield reasonably 

good results. 

 

 
 

Fig 9.  Floating point Multiplier RTL top module 
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Fig 10.  Floating point Multiplier output 
 

 

Fig 11.  Floating point Multiplier synthesis results using Xilinx 

 
Design Number 

of 

slices 

Adders/ 

Subtractors 

4 input 

LUTs 

Bonded 

IOBs 

Delay 

Array 

Multiplier 

630 32 1147 96 96.08ns 

Booth 

Multiplier 

1582 26 2781 97 36.97ns 

 

TABLE IV: Comparison of Multipliers. 

      From the above table, it is clearly found that the delay 

associated with MBE multiplier is almost 60% less than the 

delay of Array Multiplier. 

 

VII.   CONCLUSIONS AND FUTURE WORK 

This paper presents an implementation of a floating point 

multiplier that supports the IEEE 754 binary interchange 

format; one of the important aspects of the presented design 

method is that it can be applicable to all kinds of floating-

point multipliers. The present design is compared with an 

ordinary floating point array multiplier and modified Booth 

encoder multiplier via synthesis. It shows that Booth’s floating 

point multiplier is faster than the array multiplier, by seeing 

the delay value we can known this factor and power 

dissipation is also less compare to array multiplier. The future 

work shows it can be implemented for double precision 

floating point multiplier also. 
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