
An Efficient Implementation of High Speed Modified

Booth Encoder for Floating Point Signed & Unsigned

Numbers
P.V.Krishna Mohan Gupta1 , Ch.S.V.Maruthi Rao2, G.R. Padmini3,

1M.Tech (DSCE), Sreyas Institutite of Engineering & Technology, Hyderabad,

2Associate Professor, Sreyas Institutite of Engineering & Technology, Hyderabad,

3Associate Professor, Vasavi College of Engineering, Hyderabad,

 Abstract---Multiplication is an important fundamental function

in arithmetic operations. It can be performed with the help of

different multipliers using different techniques. In this paper we

focus on an efficient implementation of an IEEE 754 single

precision floating point multiplier with signed and unsigned

numbers. The multiplier implementation in floating point

multiplication is done by Modified Booth Encoding (MBE)

multiplier to reduce the partial products by half. The multiplier

takes care of overflow and underflow cases. Rounding is not

implemented to give more precision when using the multiplier in

a Multiply and Accumulate (MAC) unit. By using MBE

multiplier we increases the speed of multiplication, reduces the

power dissipation and cost of a system. The proposed multiplier

will be designed and verified using Modelsim with Verilog HDL.

Xilinx is used for synthesis.

 Keywords-floating point multiplication, Array Multiplier,

MBE, Partial Products, overflow and underflow

I. INTRODUCTION

Today the main applications of floating point numbers
are in the field of medical imaging, biometrics, motion
capture and audio applications. Since multiplication
dominates the execution time of most DSP algorithms, there
is a need of high speed multiplier with more accuracy.
Reducing the time delay and power consumption are very
essential requirements for many applications. Floating Point
Numbers: The term floating point is derived from the fact that
there is no fixed number of digits before and after the decimal
point, that is, the decimal point can float.

The Institute of Electrical and Electronics Engineers
(IEEE) sponsored a standard format for 32-bit and larger
floating point numbers, known as IEEE 754 standard [1].

This paper presents a new floating point multiplier which
operates on single-precision floating point. The conventional
floating point multipliers use Array multiplier for Mantissa
multiplication [2]. In this paper we presents a Modified Booth
Encoder (MBE) multiplier [3][4] for Significand or Mantissa
multiplication, which reduces the partial products by half, to
achieve speed of operation and reduces the time
delay[6].Normal MBE multiplier having Carry Save
Adder(CSA) for partial product addition[5], here in this
floating point multiplier we proposed Ripple Carry
Adder(RCA) to reduce the complexity of the circuit and
complicated more number of bit addition. This paper is
organized as follows: In section I (B) mainly concentrated on
Single Precision floating point numbers, section II focuses on

floating point algorithm, section III concentrate on different
multiplication methods[7][8], section IV looking for hardware
of floating point multiplier(Block diagram), section V
contains the exponent result on overflow or underflow and
final sectional explains synthesis results and conclusions of
this project

A. Floating Point Arithmetic

The IEEE 754 [1] standard is the most widely used
standard for floating point computation, and is followed by
many CPU implementation. The standard defines formats for
representing floating point number (including + zero and
denormals) and special values (infinities and NaNs) together
with a set of floating point operations. IEEE 754[1] specifies
four formats for representing floating point values: single-
precision (32-bit), double-precision (64-bit), single-extended
precision (≥ 43-bit, not commonly used) and double extended
precision (≥ 79-bit, usually implemented with 80 bits).

B. Single Precision Floating point Numbers

Thus, a total of 32 bits is needed for single-precision
number representation. To achieve a bias equal to 2

n-1
 -1 is

added to the actual exponent in order to obtain the stored
exponent. This equal 127 for an 8-bit exponent of the single
precision format. The addition of bias allows the use of an
exponent in the range from -126 to +127. The single precision
format offers a range from 2

-126
to2

+127
. Fig. 1 shows the

IEEE 754 single precision binary format representation; it
consists of a one bit sign (S), an eight bit exponent (E), and a
twenty three bit fraction (M or Mantissa). An extra bit is
added to the fraction to form what is called the significand

1
. If

the exponent is greater than 0 and smaller than 255, and there
is 1 in the MSB of the significand then the number is said to
be a normalized number; in this case the real number is
represented by (1)

Fig. 1. IEEE single precision floating point format

1867

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80531

Z = (-1
S
)*2

(E-Bias)
*(1.M) (1)

Where M = m22 2
-1

 + m21 2
-2

 + m20 2
-3

+…+ m1 2
-22

+ m0 2
-23

;

Bias = 127.

1
Significand is the mantissa with an extra MSB bit.

C. Floating Point Multiplication

Multiplication of two numbers in floating point format is
done by following steps: 1. adding the exponent of the two
numbers then subtracting the bias from their result, 2.
multiplying the significand of the two numbers, and
3.calculating the sign by XORing the sign of the two numbers.
In order to represent the multiplication result as a normalized
number there should be 1 in the MSB of the result (leading
one), detailed explanation is given in next section.

II. FLOATING POINT MULTIPLICATION ALGORITHM

Floating point multiplication algorithm is shown in fig (2)
in the below flowchart.

Fig 2. IEEE single precision floating point format

As stated in the introduction, normalized floating point

numbers have the form of Z= (-1
S
) * 2

(E -

Bias)

 * (1.M). To
multiply two floating point numbers the following is done:

1. Multiplying the significand; i.e. (1.M1*1.M2)

2. Placing the decimal point in the result

3. Adding the exponents; i.e. (E1 + E2 – Bias)

4. Obtaining the sign; i.e. s1 xor s2

5. Normalizing the result; i.e. obtaining 1 at the MSB of the

results’ significand

6. Rounding the result to fit in the available bits

7. Checking for underflow/overflow occurrence

 Consider a floating point representation similar to the

IEEE 754 single precision floating point format, but with a

reduced number of mantissa bits (only 4) while still retaining

the hidden ‘1’ bit for normalized numbers:

A = 0 10000100 0100 = 40,

B = 1 10000001 1110 = - 7.5

To multiply A and B

1. Multiply significand: 1.0100

 × 1.1110

 00000

 10100

 10100

 10100

 _10100____

 1001011000

2. Place the decimal point: 10.01011000

3. Add exponents: 10000100

 + 10000001

 100000101
The exponent representing the two numbers is already

shifted/biased by the bias value (127) and is not the true
exponent; i.e. EA = EA-true + bias and EB = EB-true + bias and

E
A

+ E
B

= E
A-true

+ E
B-true

+ 2 bias

So we should subtract the bias from the resultant exponent

otherwise the bias will be added twice.

100000101
- 01111111

10000110

1. Obtain the sign bit and put the result together:

1. 10000110 10.01011000

2. Normalize the result so that there is a 1 just before the

radix point (decimal point). Moving the radix point one

place to the left increments the exponent by 1; moving

one place to the right decrements the exponent by 1.

a. 10000110 10.01011000 (before normalizing)

b. 10000111 1.001011000 (normalized)

The result is (without the hidden bit):

1 10000111 00101100

3. The mantissa bits are more than 4 bits (mantissa available

bits); rounding is needed. If we applied the truncation

rounding mode then the stored value is:

1868

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80531

1 10000111 0010

In this paper we present a floating point multiplier in

which rounding support isn’t implemented. Rounding support
can be added as a separate unit that can be accessed by the
multiplier or by a floating point adder, thus accommodating
for more precision if the multiplier is connected directly to an
adder in a MAC unit. Fig. 3 shows the multiplier structure;
Exponents addition, Significand multiplication, and Result’s
sign calculation are independent and are done in parallel. The
significand multiplication is done on two 24 bit numbers and
results in a 48 bit product, which we will call the intermediate
product (IP). The IP is represented as (47 downto 0) and the
decimal point is located between bits 46 and 45 in the IP.

Fig. 3 Floating point multiplier block diagram

III. METHODS FOR MULTIPLICATION

There are number of techniques that can be used to

perform multiplication. In general, the choice is based upon

factors such as latency, throughput, area, and design

complexity.

a) Array Multiplier b) Booth Multiplier

a) Array Multiplier

Array multiplier is an efficient layout of a combinational

multiplier. Multiplication of two binary number can be

obtained with one micro-operation by using a combinational

circuit that forms the product bit all at once thus making it a

fast way of multiplying two numbers since only delay is the

time for the signals to propagate through the gates that forms

the multiplication array. In array multiplier, consider tow

binary numbers A and B, of m and n bits. There are mn

summands that are produced in parallel by a set of mn AND

gates. n x n multiplier requires n (n-2) full adders, n half-

adders and n2 AND gates. Also, in array multiplier worst case

delay would be (2n+1) td.

b) Booth Multiplier

Booth’s multiplication algorithm is a multiplication

algorithm that multiplies two signed binary numbers in two’s

complement notation. The algorithm was invented by Andrew

Donald Booth [4].

 Conventional array multipliers, like the Braun multiplier

and Baugh Woolley multiplier achieve comparatively good
performance but they require large area of silicon, unlike the
add-shift algorithms, which require less hardware and exhibit

poorer performance. The Booth multiplier makes use of Booth
encoding algorithm in order to reduce the number of partial
products by considering two bits of the multiplier at a time,
there by achieving a speed advantage over other multiplier

architectures. This algorithm is valid for both signed and
unsigned numbers. It accepts the number in 2’s complement
form. The Modified Booth encoder Floating point multiplier
architecture is identified with the following blocks as shown

in fig (3). The following sections detail each block of the
floating point multiplier.

IV. HARDWARE OF FLOATING POINT MULTIPLIER

The hardware of floating point multiplier is mainly

divided into a) sign bit calculation, b) exponent addition, c)

significand multiplication and d) normalize unit.

A. Sign bit calculation

Multiplying two numbers results in a negative sign number
if one of the multiplied numbers is of a negative value. By the

aid of a truth table we find that this can be obtained by

XORing the sign of two inputs.

B. Unsigned Adder (for exponent addition)

This unsigned adder is responsible for adding the exponent

of the first input to the exponent of the second input and

subtracting the Bias (127) from the addition result (i.e.

A_exponent + B_exponent - Bias). The result of this stage is

called the intermediate exponent. The add operation is done

on 8 bits, and there is no need for a quick result because most

of the calculation time is spent in the significand

multiplication process (multiplying 24 bits by 24 bits); thus

we need a moderate exponent adder and a fast significand

multiplier.

An 8-bit ripple carry adder is used to add the two input

exponents. As shown in Fig. 3 a ripple carry adder is a chain

of cascaded full adders and one half adder; each full adder has

three inputs (A, B, Ci) and two outputs (S, Co). The carry out

(Co) of each adder is fed to the next full adder (i.e. each carry

bit "ripples" to the next full adder).

Fig.4. Ripple Carry Adder

The addition process produces an 8 bit sum (S7 to S0) and

1869

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80531

a carry bit (Co,7). These bits are concatenated to form a 9 bit

addition result (S8 to S0) from which the Bias is subtracted.

The Bias is subtracted using an array of ripple borrow

subtractors.

Fig.5 shows the Bias subtractor which is a chain of 7 one

subtractors (OS) followed by 2 zero subtractors (ZS); the
borrow output of each subtractor is fed to the next subtractor.
If an underflow occurs then Eresult < 0 and the number is out of
the IEEE 754 single precision normalized numbers range; in
this case the output is signaled to 0 and an underflow flag is

asserted.

Fig 5. Ripple Borrow Subtractor

C. Unsigned Multiplier (for significand multiplication)

This unit is responsible for multiplying the unsigned

significand and placing the decimal point in the multiplication

product. The result of significand multiplication will be called

the intermediate product (IP). The unsigned significand

multiplication is done on 24 bit. Multiplier performance

should be taken into consideration so as not to affect the

whole multiplier’s performance. The modified-Booth

algorithm is extensively used for high-speed multiplier

circuits. The multiplier here we are design and implement

multiplier for signed and unsigned numbers using MBE

technique. Table 1 shows the truth table of MBE scheme.

From table 1 the MBE logic diagram is implemented as shown

in Fig.5. Using the MBE logic and considering other

conditions the Boolean expression for one bit partial product

generator is given by the equation 2.

TABLE 1: Truth Table of MBE Scheme.

bi+1 bi bi-1 value X1_a X2_a Z Neg

0 0 0 0 1 0 1 0

0 0 1 1 0 1 1 0

0 1 0 1 0 1 0 0

0 1 1 2 1 0 0 0

1 0 0 -2 1 0 0 1

1 0 1 -1 0 1 0 1

1 1 0 -1 0 1 1 1

1 1 1 0 1 0 1 0

Equation 3 is implemented as shown in Fig.5. The

SUMBE multiplier does not separately consider the encoder

and the decoder logic, but instead implemented as a single unit

called partial product generator as shown Fig 6.

Fig. 6. Logic diagram of MBE.

TABLE 2: Shows the SUMBE multiplier operation.

Sign-unsign Type of operation

0 Unsigned multiplication

1 Signed multiplication

Fig. shows the partial products generated by partial

product generator circuit which is shown in Fig. 5. There are
5-partial products with sign extension and negate bit Ni. All
the 5-partial products are generated in parallel.

 a7 a6 a5 a4 a3 a2 a1 a0

 b7 b6 b5 b4 b3 b2 b1 b0

 p08p08 p08 p07 p06 p05 p04 p03 p02 p01 p00 X1

 1 p18p17 p16 p15 p14 p13 p12 p11 p10 N0 X2

 1 p28p27 p26p25 p24p23 p22p21 p20 N1 X3

1 p38 p37p36p35 p34 p33 p32 p31 p30 N2 X4

P47p46 p45 p44 p43 p42 p41p40 N3 X5

p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

Fig. 7. Logic diagram of 1-bit partial product generator

1870

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80531

D. Normalizer

The result of the significand multiplication (intermediate
product) must be normalized to have a leading ‘1’ just to the
left of the decimal point (i.e. in the bit 46 in the intermediate
product). Since the inputs are normalized numbers then the

intermediate product has the leading one at bit 46 or 47.
1. If the leading one is at bit 46 (i.e. to the left of the decimal

point) then the intermediate product is already a
normalized number and no shift is needed.

2. If the leading one is at bit 47 then the intermediate

product is shifted to the right and the exponent is

incremented by 1.

The shift operation is done using combinational shift

logic made by multiplexers. Fig. 8 shows a simplified logic of

a Normalizer that has an 8 bit intermediate product input and a

6 bit intermediate exponent input.

Fig 8. Simplified Normalizer logic

V. UNDERFLOW/OVERFLOW DETECTION

Overflow/underflow means that the result’s exponent is

too large/small to be represented in the exponent field. The

exponent of the result must be 8 bits in size, and must be

between 1 and 254 otherwise the value is not a normalized

one. An overflow may occur while adding the two exponents

or during normalization. Overflow due to exponent addition

may be compensated during subtraction of the bias; resulting

in a normal output value (normal operation). An underflow

may occur while subtracting the bias to form the intermediate

exponent. If the intermediate exponent < 0 then it’s an

underflow that can never be compensated; if the intermediate

exponent = 0 then it’s an underflow that may be

compensated during normalization by adding 1 to it.

When an overflow occurs an overflow flag signal goes

high and the result turns to ±Infinity (sign determined

according to the sign of the floating point multiplier inputs).

When an underflow occurs an underflow flag signal goes

high and the result turns to ±Zero (sign determined according

to the sign of the floating point multiplier inputs).

Denormalized numbers are signaled to Zero with the

appropriate sign calculated from the inputs and an underflow

flag is raised. Assume that E1 and E2 are the exponents of the

two numbers A and B respectively; the result’s exponent is

calculated by (6)

Eresult = E1 + E2 - 127 (2)

E1 and E2 can have the values from 1 to 254; resulting in Eresult

having values from -125 (2-127) to 381 (508-127); but for

normalized numbers, Eresult can only have the values from 1 to

254. Table III summarizes the Eresult different values and the

effect of normalization on it.

TABLE III. Normalization Effect On Result’s Exponent And

Overflow/Underflow Detection

Eresult Category Comments

-125 ≤ Eresult < 0 Underflow Can’t be compensated during

 normalization
Eresult = 0 Zero May turn to normalized number

during

 normalization (by adding 1 to it)

1 < Eresult < 254 Normalized May result in overflow during

 number normalization

255 ≤ Eresult Overflow Can’t be compensated

VI. SYNTHESIS RESULTS

This design has been implemented using Modelsim and

synthesized for Verilog HDL. The Verilog code is used for

coding. Simulation based verification is one of the methods

for functional verification of a design. Simulation based

verification ensures that the design is functionally correct

when tested with a given set of inputs. Though it is not fully

complete, by picking a random set of inputs as well as corner

cases, simulation based verification can still yield reasonably

good results.

Fig 9. Floating point Multiplier RTL top module

1871

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80531

Fig 10. Floating point Multiplier output

Fig 11. Floating point Multiplier synthesis results using Xilinx

Design Number

of

slices

Adders/

Subtractors

4 input

LUTs

Bonded

IOBs

Delay

Array

Multiplier

630 32 1147 96 96.08ns

Booth

Multiplier

1582 26 2781 97 36.97ns

TABLE IV: Comparison of Multipliers.

 From the above table, it is clearly found that the delay

associated with MBE multiplier is almost 60% less than the

delay of Array Multiplier.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents an implementation of a floating point

multiplier that supports the IEEE 754 binary interchange

format; one of the important aspects of the presented design

method is that it can be applicable to all kinds of floating-

point multipliers. The present design is compared with an

ordinary floating point array multiplier and modified Booth

encoder multiplier via synthesis. It shows that Booth’s floating

point multiplier is faster than the array multiplier, by seeing

the delay value we can known this factor and power

dissipation is also less compare to array multiplier. The future

work shows it can be implemented for double precision

floating point multiplier also.

VIII. REFERENCES

[1] IEEE 754-2008, IEEE Standard for Floating-Point Arithmetic, 2008
[2] Mohamed Al-Ashrafy, Ashraf Salem, Wagdy Anis“An Efficient

Implementation Floating Point Multiplier”, IEEE 2011

[3] Ravindra P Rajput & M.N.Shanmukha Swamy “High speed Modified
Booth multiplier for signed and unsigned numbers”IEEE 2012, 649-653

[4] A. D. Booth, “A signed binary multiplication technique,” Quart.

J.Math., vol. IV, pp. 236–240, 1952.
[5] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Trans.

Electron Comput., vol. EC-13, no. 1, pp. 14–17, Feb. 1964.

[6] Puneet Paruthi, Tanvi Kumar,Himanshu Singh, “Simulation of IEEE754
standard Double precision Multiplier using Booth Techniques”

IJERAVol.2, Issue 5, Septmenber2012.

[7] A. R. Cooper, “Parallel architecture modified Booth multiplier,” Proc.
Inst. Electrnoic. Eng. G, vol. 135, pp. 125–128, 1988.

[8] F. Elguibaly, “A fast parallel multiplier–accumulator using the modified

Booth algorithm,” IEEE Trans. Circuits Syst., vol. 27, no. 9, pp.902–
908, Sep. 2000.

[9] J. Fadavi-Ardekani, “MxN Booth encoded multiplier generator using

Optimized Wallace trees,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 1,

[10] Cho, J.Hong, and G Choi, “54x54-bit Radix-4 multiplier based on

Modified Booth Algorithm”,13th ACM Symp.VLSI,pp233-
236,Apr.2003.

[11] A.Goldovsky and et al., “Design and implementation of 16 by 16 Low-

power Two’s complement Multiplier”. In design and Implementation of
Adder/Subtractor and Multiplication units for Floating-Point Arithmetic

IEEE International Symposium on Circuits and Systems,5,pp 345-

348,2000.

1872

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80531

