
An Efficient K-Means and C-Means Clustering Algorithm for Image

Segmentation

Abstract

 In this paper, we present a novel

algorithm for performing k-means clustering.

It organizes all the patterns in a k-d tree

structure such that one can find all the

patterns which are closest to a given

prototype efficiently. The main intuition

behind our approach is as follows. All the

prototypes are potential candidates for the

closest prototype at the root level. However,

for the children of the root node, we may be

able to prune the candidate set by using

simple geometrical constraints. This

approach can be applied recursively until the

size of the candidate set is one for each node.

Our experimental results demonstrate that

our scheme can improve the computational

speed of the direct k-means algorithm by an

order to two orders of magnitude in the total

number of distance calculations and the

overall time of computation.

Keywords: Pattern recognition, machine

learning, data mining, k-means clustering,

nearest-neighbor searching, k-d tree,

computational geometry, knowledge discovery.

1. Introduction

Clustering is the process of partitioning or

grouping a given set of patterns into disjoint

clusters. This is done such that patterns in the

same cluster are alike and patterns belonging to

two different clusters are different. Clustering

has been a widely studied problem in a variety

of application domains including neural

networks, AI, and statistics. Several algorithms

have been proposed in the literature for

clustering: ISODATA [8, 3], CLARA [8],

CLARANS [10], Focusing Techniques [5] P-

CLUSTER [7]. DBSCAN [4], Ejcluster [6],

BIRCH [14] and GRIDCLUS [12].

 The k-means method has been shown to

be effective in producing good clustering results

for many practical applications. However, a

direct algorithm of k-means method requires

time proportional to the product of number of

patterns and number of clusters per iteration.

This is computationally very expensive

especially for large datasets. We propose a novel

algorithm for implementing the kmeans method.

Our algorithm produces the same or com-

parable (due to the round-off errors) clustering

results to the direct k-means algorithm. It has

significantly superior performance than the

direct k-means algorithm in most cases. The rest

of this paper is organized as follows. We review

previously proposed approaches for improving

the performance of the k-means algorithms in

Section 2. We present our algorithm in Section

3. We describe the experimental results in

Section 4 and we conclude with Section 5.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

1www.ijert.org

2 k-means Clustering

 In this section, we briefly describe the direct

k-means algorithm [9, 8, 3]. The number of

clusters _ is assumed to be fixed in k-means

clustering. Let the _k prototypes be initialized to

one of the input patterns Therefore,

 wj=i1,j €{,……K},l€{the direct kmeans

clustering ,…n}algorithm. Cj is the nth cluster

whose value is a disjoint subset of input patterns.

The quality of the clustering is determined by

the following error function:

The appropriate choice of _ is problem and

domain dependent and generally a user tries

several values of _. Assuming that there are _

patterns, each of dimension @, the

computational cost of a direct k-means

algorithm per iteration (of the repeat loop) can

be decomposed into three parts:

1. The time required for the first for loop in

Figure 1 is O(nkd)

2. The time required for calculating the centroids

(second for loop in Figure 1) is O(nd)

3. The time required for calculating the error

function is O(nd)

 The number of iterations required can vary

in a wide range from a few to several thousand

depending on the number of patterns, number of

clusters, and the input data distribution. Thus, a

direct implementation of the k-means method

can be computationally very intensive. This is

especially true for typical data mining

applications with large number of pattern

vectors

Figure 1. Direct kmeans clustering algorithm

There are two main approaches described in the

literature which can be used to reduce the

overall computational requirements of the k-

means clustering method especially for the

distance calculations:

1. Use the information from the previous

iteration to reduce the number of distance

calculations. PCLUSTER is a k-means-based

clustering algorithm which exploits the fact that

the change of the assignment of patterns to

clusters is relatively few after the first little

iteration [7]. It uses a heuristic which determines

if the closest prototype of a pattern E has been

changed or not by using a simple check. If the

assignment has not changed, no further distance

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

2www.ijert.org

calculations are required. It also uses the fact

that the movement of the cluster cancroids is

small for consecutive iterations (especially after

a few iterations).

2. Organize the prototype vectors in a suitable

data structure so that finding the closest

prototype for a given pattern becomes more

efficient [11, 13]. This problem reduces to

finding the nearest neighbor problem for a given

pattern in the prototype space. The number of

distance calculations using this approach is

proportional to iteration. For many applications

such as vector quantization, the prototype

vectors are fixed. This allows for construction of

optimal data structures to find the closest vector

for a given input test pattern [11]. However,

these optimizations are not applicable to the k-

means algorithm as the prototype vectors will

change dynamically. Further, it is not clear how

these optimizations can be used to reduce the

time for calculation of the error function (which

becomes a substantial component after reduction

in the number of distance calculations).

3 Our Algorithm

 The main intuition behind our approach

is as follows. All the prototypes are potential

candidates for the closest prototype at the root

level. However, for the children of the root node,

we may be able to prune the candidate set by

using simple geometrical constraints. Clearly,

each child node will potentially have different

candidate sets. Further, a given prototype may

belong to the candidate set of several child

nodes. This approach can be applied recursively

till the size of the candidate set is one for each

node. At this stage, all the patterns in the

subspace represented by the subtree have the

Using this approach, we expect that the number

of distance calculation for the first loop (in

Figure 1) will be proportional to where K –d

Tree is much smaller than H-k Means This is

because the distance calculation has to be

performed only with internal nodes (representing

many patterns)and not the patterns themselves in

most cases. sole candidate as their closest

prototype.

Example of pruning achieved by our
algorithm. X represents the candidate set. D
is the MinMax distance. All the candidates@

which are circled get pruned. The candidate
with a square around it is not pruned by our

algorithm

This approach can also be used to significantly

reduce the time requirements for calculating the

prototypes for the next iteration We also expect

the time requirement for the second for loop to

be proportional to The improvements obtained

using our approach are crucially dependent on

obtaining good pruning methods for obtaining

candidate sets for the next level. We propose to

use the following strategy’s For each candidate _

4, find the minimum and maximum distances to

any point in the subspace Find the minimum of

maximum distances, call out all candidates with

minimum distance greater

4 Experimental Results

We have evaluated our algorithm on several

datasets. We have compared our results with

direct k-means algorithm interns of the number

of performed distance calculations and the total

execution time. A direct comparison with other

algorithms(such as the P-Cluster [7] and [13]) is

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

3www.ijert.org

not feasible due to availability of their datasets

and software. However,

we present some qualitative comparisons. All

the experimental results reported are on a IBM

RS/6000 runningAIX version 4. The clock speed

of the processor is 66 MHz and the memory size

is 128 MByte.For each dataset and the number

of clusters, we compute the factors K _means

and HK means of reduction in distance

calculations and overall execution time over the

direct algorithm respectively as well as the

average number of distance calculations per

pattern The number of distance calculations for

the direct algorithm All time measurements are

in seconds.

Our main aim in this paper is to study the

computational aspects of the k-means method.

We used several datasets all of which have been

generated synthetically. This was done to study

the scaling properties of our algorithm for

different values of k and c respectively. For

most of our datasets, we found that choosing a

leaf size of 64 resulted in optimal or near

optimal performance. Further, the overall

performance was not sensitive to the leaf

size except when the leaf size was very small.

Table present the performance of our algorithms

for different number of clusters and iterations

assuming a leaf size of 64. For each combination

used, we present the factor reduction in overall

time (FRT) and the time of the direct k-means

algorithm. We also present the factor reduction

in distance calculations (FRD) and the average

number of distance calculations per pattern

(ADC). These

Results show that our algorithm can improve the

overall performance of k-means clustering by an

order to two orders of magnitude. The average

number of distance calculations required is very

small and can vary anywhere from 0.17 to11.17

depending on the dataset and the number of

clustersrequired.The results presented in [7]

show that their methods result

in factor of 4 to 5 improvements in overall

computational time. Our improvements are

substantially better. However, we note that the

datasets used are different and a direct

comparison may not be accurate.

The overall results for 10 iterations

5 Conclusions

In this paper, we presented a novel algorithm for

performing-means clustering. Our experimental

results demonstrated that our scheme can

improve the direct k means algorithm by an

order to two orders of magnitude in the total

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

4www.ijert.org

number of distance calculations and the overall

time of computation. There are several

improvements possible to the basic strategy

presented in this paper. One approach will be to

restructure the tree every few iterations to

further reduce the value of The intuition here is

that the earlier iterations provide some partial

clustering information. This information can

potentially be used to construct the tree such that

the pruning is more effective. Another

possibility is to add the optimizations related to

incremental approaches presented in [7]. These

optimizations seem to be orthogonal and can be

used to further reduce the number of distance

Calculations with using of C-Means Clustering

References

[1] K. Alsabti, S. Ranka, and V. Singh. An

Efficient K-Means Clustering Algorithm.

http://www.cise.ufl.edu1997.

[2] T. H. Cormen, C. E. Leiserson, and R. L.

Rivest. Introduction to Algorithms. McGraw-

Hill Book Company, 1990.

[3] R. C. Dubes and A. K. Jain. Algorithms for

Clustering Data.Prentice Hall, 1988.

[4] M. Ester, H. Kriegel, J. Sander, and X. Xu. A

Density-Based Algorithm for Discovering

Clusters in Large Spatial Databases with Noise.

Proc. of the 2nd Int’l Conf. on Knowledge

Discovery and Data Mining, August 1996.

[5] M. Ester, H. Kriegel, and X. Xu. Knowledge

Discovery inLarge Spatial Databases: Focusing

Techniques for Efficient

[6] J. Garcia, J. Fdez-Valdivia, F. Cortijo, and R.

Molina. Dynamic Approach for Clustering Data.

Signal rocessing,44:(2), 1994.

[7] D. Judd, P. McKinley, and A. Jain. Large-

Scale Parallel Data Clustering. Proc. Int’l

Conference on Pattern Recognition,

August 1996.

[8] L. Kaufman and P. J. Rousseeuw. Finding

Groups in Data:an Introduction to Cluster

Analysis. John Wiley & Sons,1990.

[9] K. Mehrotra, C. Mohan, and S. Ranka.

Elements of ArtificialNeural Networks. MIT

Press, 1996.[10] R. T. Ng and J. Han. Efficient

and Effective Clustering Methodsfor Spatial

Data Mining. Proc. of the 20th Int’l Conf.

on Very Large Databases, Santiago, Chile,

pages 144–1551994.

[11] V. Ramasubramanian and K. Paliwal. Fast

K-Dimensional Tree Algorithms for Nearest

Neighbor Search with Application to Vector

Quantization Encoding. IEEE Transactions

on Signal Processing, 40:(3), March 1992.

[12] E. Schikuta. Grid Clustering: An Efficient

Hierarchical Clustering Method for Very Large

Data Sets. Proc. 13thInt’l. Conference on

Pattern Recognition, 2, 1996.

[13] J. White, V. Faber, and J. Saltzman. United

States Patent No.5,467,110. Nov. 1995.

[14] T. Zhang, R. Ramakrishnan, and M. Livny.

BIRCH: An Efficient Data Clustering Method

for Very Large Databases.Proc. of the 1996

ACM SIGMOD Int’l Conf. on Management of

Data, Montreal, Canada, pages 103–114, June

1996.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

5www.ijert.org

