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Abstract 

          In this paper, we present a novel 

algorithm for performing k-means clustering. 

It organizes all the patterns in a k-d tree 

structure such that one can find all the 

patterns which are closest to a given 

prototype efficiently. The main intuition 

behind our approach is as follows. All the 

prototypes are potential candidates for the 

closest prototype at the root level. However, 

for the children of the root node, we may be 

able to prune the candidate set by using 

simple geometrical constraints. This 

approach can be applied recursively until the 

size of the candidate set is one for each node.  

Our experimental results demonstrate that 

our scheme can improve the computational 

speed of the direct k-means algorithm by an 

order to two orders of magnitude in the total 

number of distance calculations and the 

overall time of computation. 

Keywords: Pattern recognition, machine 

learning, data mining, k-means clustering, 

nearest-neighbor searching, k-d tree,        

computational geometry, knowledge discovery. 

1. Introduction 

Clustering is the process of partitioning or 

grouping a given set of patterns into disjoint 

clusters. This is done such that patterns in the 

same cluster are alike and patterns belonging to  

 

 

 

 

 

two different clusters are different. Clustering 

has been a widely studied problem in a variety 

of application domains including neural 

networks, AI, and statistics. Several algorithms 

have been proposed in the literature for  

clustering: ISODATA [8, 3], CLARA [8], 

CLARANS [10], Focusing Techniques [5] P-

CLUSTER [7]. DBSCAN [4], Ejcluster [6], 

BIRCH [14] and GRIDCLUS [12]. 

              The k-means method has been shown to 

be effective in producing good clustering results 

for many practical applications. However, a 

direct algorithm of k-means method      requires 

time proportional to the product of number of 

patterns and number of clusters per iteration. 

This is computationally very expensive 

especially for large datasets. We propose a novel 

algorithm for implementing the kmeans method. 

Our algorithm produces the same or com-

parable (due to the round-off errors) clustering 

results to the direct k-means algorithm. It has 

significantly superior performance than the 

direct k-means algorithm in most cases. The rest 

of this paper is organized as follows. We review 

previously proposed approaches for improving 

the performance of the k-means algorithms in 

Section 2. We present   our algorithm in Section 

3. We describe the experimental results in 

Section 4 and we conclude with Section 5. 
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2 k-means Clustering 

    In this section, we briefly describe the direct 

k-means algorithm [9, 8, 3]. The number of 

clusters _ is assumed to be fixed in k-means 

clustering. Let the _k prototypes be initialized to 

one of the input patterns Therefore, 

 wj=i1,j €{,……K},l€{the direct kmeans 

clustering ,…n}algorithm. Cj is the nth cluster 

whose value is a disjoint subset of input patterns. 

The quality of the clustering is determined by 

the following error function: 

 

The appropriate choice of _ is problem and 

domain dependent and generally a user tries 

several values of _. Assuming that there are _ 

patterns, each of dimension @, the 

computational cost of a direct k-means 

algorithm per iteration (of the repeat loop) can 

be decomposed into three parts: 

1. The time required for the first for loop in 

Figure 1 is O(nkd) 

2. The time required for calculating the centroids 

(second for loop in Figure 1) is O(nd) 

3. The time required for calculating the error 

function is O(nd) 

        The number of iterations required can vary 

in a wide range from a few to several thousand 

depending on the number of patterns, number of 

clusters, and the input data distribution. Thus, a 

direct implementation of the k-means method 

can be computationally very intensive. This is 

especially true for typical data mining 

applications with large number of pattern 

vectors 

 

Figure 1. Direct kmeans clustering algorithm 

There are two main approaches described in the 

literature which can be used to reduce the 

overall computational requirements of the k-

means clustering method especially for the 

distance calculations: 

1. Use the information from the previous 

iteration to reduce the number of distance 

calculations. PCLUSTER is a k-means-based 

clustering algorithm which exploits the fact that 

the change of the assignment of patterns to 

clusters is relatively few after the first little 

iteration [7]. It uses a heuristic which determines 

if the closest prototype of a pattern E has been 

changed or not by using a simple check. If the 

assignment has not changed, no further distance 
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calculations are required. It also uses the fact 

that the movement of the cluster cancroids is 

small for consecutive iterations (especially after 

a few iterations). 

2. Organize the prototype vectors in a suitable 

data structure so that finding the closest 

prototype for a given pattern becomes more 

efficient [11, 13]. This problem reduces to 

finding the nearest neighbor problem for a given 

pattern in the prototype space. The number of 

distance calculations using this approach is 

proportional to iteration. For many applications 

such as vector quantization, the prototype 

vectors are fixed. This allows for construction of 

optimal data structures to find the closest vector 

for a given input test pattern [11]. However, 

these optimizations are not applicable to the k-

means algorithm as the prototype vectors will 

change dynamically. Further, it is not clear how 

these optimizations can be used to reduce the 

time for calculation of the error function (which 

becomes a substantial component after reduction 

in the number of distance calculations). 

3 Our Algorithm 

 

            The main intuition behind our approach 

is as follows. All the prototypes are potential 

candidates for the closest prototype at the root 

level. However, for the children of the root node, 

we may be able to prune the candidate set by 

using simple geometrical constraints. Clearly, 

each child node will potentially have different 

candidate sets. Further, a given prototype may 

belong to the candidate set of several child 

nodes. This approach can be applied recursively 

till the size of the candidate set is one for each 

node. At this stage, all the patterns in the 

subspace represented by the subtree have the 

Using this approach, we expect that the number 

of distance calculation for the first loop (in 

Figure 1) will be proportional to where K –d 

Tree is much smaller than H-k Means This is 

because the distance calculation has to be 

performed only with internal nodes (representing 

many patterns)and not the patterns themselves in 

most cases. sole candidate as their closest 

prototype. 

 

Example of pruning achieved by our 
algorithm. X represents the candidate set. D 
is the MinMax distance. All the candidates@ 

which are circled get pruned. The candidate 
with a square around it is not pruned by our 

algorithm 

This approach can also be used to significantly 

reduce the time requirements for calculating the 

prototypes for the next iteration We also expect 

the time requirement for the second for loop to 

be proportional to The improvements obtained 

using our approach are crucially dependent on 

obtaining good pruning methods for obtaining 

candidate sets for the next level. We propose to 

use the following strategy’s For each candidate _ 

4, find the minimum and maximum distances to 

any point in the subspace Find the minimum of 

maximum distances, call out all candidates with 

minimum distance greater 

4 Experimental Results 

 
We have evaluated our algorithm on several 

datasets. We have compared our results with 

direct k-means algorithm interns of the number 

of performed distance calculations and the total 

execution time. A direct comparison with other 

algorithms(such as the P-Cluster [7] and [13] ) is 
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not feasible due to availability of their datasets 

and software. However, 

we present some qualitative comparisons. All 

the experimental results reported are on a IBM 

RS/6000 runningAIX version 4. The clock speed 

of the processor is 66 MHz and the memory size 

is 128 MByte.For each dataset and the number 

of clusters, we compute the factors K _means 

and HK means of reduction in distance 

calculations and overall execution time over the 

direct algorithm respectively as well as the 

average number of distance calculations per 

pattern The number of distance calculations for 

the direct algorithm All time measurements are 

in seconds. 

Our main aim in this paper is to study the 

computational aspects of the k-means method. 

We used several datasets all of which have been 

generated synthetically. This was done to study 

the scaling properties of our algorithm for 

different values of k and c  respectively. For 

most of our datasets, we found that choosing a 

leaf size of 64 resulted in optimal or near 

optimal performance. Further, the overall 

performance was not sensitive to the leaf 

size except when the leaf size was very small. 

 
 

 

 

 

Table  present the performance of our algorithms 

for different number of clusters and iterations 

assuming a leaf size of 64. For each combination 

used, we present the factor reduction in overall 

time (FRT) and the time of the direct k-means 

algorithm. We also present the factor reduction 

in distance calculations (FRD) and the average 

number of distance calculations per pattern 

(ADC). These 

Results show that our algorithm can improve the 

overall performance of k-means clustering by an 

order to two orders of magnitude. The average 

number of distance calculations required is very 

small and can vary anywhere from 0.17 to11.17 

depending on the dataset and the number of 

clustersrequired.The results presented in [7] 

show that their methods result 

in factor of 4 to 5 improvements in overall 

computational time. Our improvements are 

substantially better. However, we note that the 

datasets used are different and a direct 

comparison may not be accurate. 

The overall results for 10 iterations 

 

 

5 Conclusions 

 
In this paper, we presented a novel algorithm for 

performing-means clustering. Our experimental 

results demonstrated that our scheme can 

improve the direct k means algorithm by an 

order to two orders of magnitude in the total 
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number of distance calculations and the overall 

time of computation. There are several 

improvements possible to the basic strategy 

presented in this paper. One approach will be to 

restructure the tree every few iterations to 

further reduce the value of The intuition here is 

that the earlier iterations provide some partial 

clustering information. This information can 

potentially be used to construct the tree such that 

the pruning is more effective. Another 

possibility is to add the optimizations related to 

incremental approaches presented in [7]. These 

optimizations seem to be orthogonal and can be 

used to further reduce the number of distance 

Calculations with using of C-Means  Clustering 
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