
An Efficient Parallel Association Rule Mining

Algorithm based on Map Reduce Framework

Brijendra Singh1

1M.Tech Scholar, CSE

Dr. C. V. Raman University,

Kota, Bilaspur, Chhattisgarh, India

Rohit Miri2
2Assistant Professor, CSE

Dr. C. V. Raman University,

Kota, Bilaspur, Chhattisgarh, India

Abstract— Data mining is an important field in Technology

world. Association rules are a must and important step to discuss

the data mining and inside findings of the relation between data

variables of the database. In this Paper we have discussed an

efficient parallel algorithm for association rules mining based on

MapReduce framework. This can make performance of

algorithm better and also reduce processing time.

Keywords— Apriori, MapReduce, Data Mining, Hadoop, Parallel

Association rule.
I. INTRODUCTION

Data mining is hot topic in Internet world. It is also known

as knowledge discovery in database [1]. To understand the

data, we have to perform various steps in mining techniques [2]

[18] like clustering, classification [19] and association rule

mining in datasets from database. In this paper we focuses on

association rule mining. Association rule mining [3] is one of

the main techniques. It discovers the relation between data and

projects the hidden information. These can be found by the

finding valuable rules that are called the association rules [3,4].

 With this valuable information, data mining attracts every

area like researchers, managers, industries, healthcare,

scientists etc. it may helps in decision making, prediction,

pattern learning. Association rule mining covers various areas

but since its inception it is used in the market basket [5]

analysis to find the products that were sold together frequently.

This gives an idea to companies to arrangement of their

products and making the decisions based on that.

Here are some of the examples of benefits of association rules

mining.

 Crime detection and prediction: frequent pattern analysis

in the criminal database helps in finding the city areas and

crimes that has been repeatedly happens [6,7].

 Cyber security: frequent pattern analysis of log files of

networks and tracking details, patterns of suspicious IP

address and ports to prevent the attacks [8].

 Crowd mining: finding information from social data to

achieve better behavior of the residents [9,10].

And many fields can be benefitted by the association rule

mining.

Apriori [11], Eclat [12] and FP-Growth [13] are some

important association rule mining algorithms. Most of

algorithms scans the datasets and find frequent pattern, latter

generate the association rules. The Apriori algorithm given by

R. Agrawal [11] works on the concept if an itemset is frequent

then its non-empty subsets must be frequent. It performs the

iteration in which result of previous step will become input of

the next step to find the frequent itemsets. First step is to find

the singleton frequent itemset that occur more times than

minimum user defined value (minimum support). Now k-

frequent itemsets found by k-1 frequent itemsets based on

Apriori. So on for k+1 frequent itemsets we have to perform

kth iteration and this iteration performs until all frequent

itemsets not found.

Apriori algorithm scans the whole database at each pass,

this will results in higher I/O cost to system. But with rapid

growth of the Internet and IOT, data is expanding. Database

becomes larger and larger to manage by the traditional Apriori

algorithm.

Parallel association rule mining algorithms are needed to

solve above problem. R. Agrawal and John C. Shafer [14]

presented three algorithms for parallel association mining

rules. These rules were based on the Apriori algorithm. We

can say it was algorithms to run Apriori algorithm in parallel

computing environment. These are CD (Count Distribution),

DD (Data Distribution), CaD (Candidate Distribution).

However due to weakness of synchronization and

communication, these algorithms are not capable of solving

the parallel association rule mining. MapReduce [15] is a

framework that easily implements programming task in large

data. In the context of MapReduce this large data is called as

Big Data or large Data cluster. Using this framework it is

become easy to implement parallel association rule mining.

This framework is presented by the Google [16]. MapReduce

[17] programming framework has fault tolerance, handles

failures and provides good working environment to the

programmers. It is an open source framework. Programmers

easily implement their work in MapReduce Framework.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS060374
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 06, June-2016

www.ijert.org 236

II. BACKGROUND

Association Rules

Let I = {I1, I2, I3,…..,Im} are the set of items and m is number

of items. Transaction database is DB = {T1, T2, T3,…..,Tn}

and Ti ⊆I. We can say itemset X contained in Ti only if X⊆Ti.

Association rule X=>Y says that X⊆I, Y⊆I and X∩Y=ø.

Two main key points that tells association rule are support

and confidence [20].

Sup(X) = frequency of X in the database and

 Conf(X=>Y) = sup(X U Y)/sup(X).

Association rules [4, 20] mining algorithms finds frequent

itemsets by setting minimum support and confidence for

itemsets. These values set by the users and may vary for

different applications.

Apriori Algorithm

Apriori [11] is an important algorithm for selecting frequent

itemsets using candidate generation. This is also known as

fasted algorithm proposed.

1. Search all elements (1-element itemsets) one by one,

so that they have minimum support. Here we denote

support by s.

2. Repeat

a. By the previous result of i-itemsets, search

for the i+1 itemsets which have minimum

support.

b. Now this will be i+1 itemsets that are

frequent.

3. Do till, itemsets size reached to maximum.

MapReduce

MapReduce is introduced by the Google [16] and under the

MapReduce framework we can easily implements parallel,

distributed algorithms. Google given it to Apache Software

Foundation [22], now it is open source and developed under

Apache Software Foundation. It is part of Hadoop [23,24] that

can handle BIG Data [21] and large Applications. MapReduce

[25,26] contains two components. One is map(), its work is

filtering and sorting and other is reduce(), its work is summary

operation like counting work. Input data is divided into

different portion and then it send to mapper, will do the

filtering and sorting arrange data in (key, value) pair then it

send to reducer. Reducer runs reduce function and calculate

the output. Both map and reduce function written by the

programmer as per their task.

Figure 2.1 MapReduce Working Explanations

These functions will be represented in this way:

Map: (key1, value1) => list (key2, value2)

Reduce: (key2, list (value2)) => (key3, value3)

III. RELATED WORK

Apriori algorithm cannot handle large amount of data. As

the size of data increases I/O cost in Apriori algorithm

increases. So Apriori algorithm was implemented in parallel

way by R. Agrawal [14], but due to synchronization and

communication problem performance is not good in case of

large amount of data or when we talk of BIG DATA. Then

Apriori Algorithm is implemented in MapReduce Framework

[27]. There are two steps in Apriori algorithm, one is

candidate generation that finds the frequent itemsets and add

them to candidate sets. Second is count step, in this step all

candidate itemset compared with minimum support then

subsets which fulfil the criteria (minimum support) can be

selected as frequent itemsets. Mapper performed at first step

by dividing datasets into key value pair, find the potential

candidate set. Then reducer do the reducing part here which

set qualify minimum support such candidate will be selected

as frequent item sets.

In traditional Apriori algorithm there are two step in

which association rule mining is performed. First step is

candidate generation step; in this step all frequent itemsets

will be generated from previous pass generated itemsets. This

process performed in iterative manner in k-pass that gives k-

frequent itemsets. Second step is count step, in this step all

candidate itemsets prune to frequent itemsets which have

minimum support defined by the user.

In implementation of parallel Apriori algorithm in mapreduce

framework [28,29] author follows two steps and implemented

it. This shows good performance as compared to the

traditional Apriori. But various implementation of Apriori

algorithm in serial or in parallel shows that for 2nd iteration,

time taken by the algorithm is much higher than any other

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS060374
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 06, June-2016

www.ijert.org 237

pass. Another paper [30] we studied that implements different

data structures in the mapreduce framework for Apriori

algorithm. In our implementation we try to reduce the time

taken by 2nd iteration so that our proposed algorithm enhanced

the performance of Parallel Apriori Algorithm in MapReduce

Framework.

IV. PROPOSED PARALLEL APRIORI ALGORITHM

BASED ON MAPREDUCE

Our proposed algorithm consists of three phases.

A. Phase 1:

The transactional database from system loaded to HDFS

file system. This database of HDFS file system divided into

blocks, by default of 64MB and putted at data nodes. Data

nodes range from one to many. Now Map() function takes

input of data in key / value pair form, where key is the offset

in bytes of this record to the start point of the data file and

value is a string of the content of this record. Map() function

perform on this data pair and convert into (item, 1) key / value

pairs. Now from different mapper output will merge and

sorted in fashion such that similar item comes in one area.

This is done by framework itself we need not to worry about

that. Now Reduce() function is invoked to find out the

frequency of item and prune which item having less frequency

than minimum support defined by user. Remaining items

stored in singleton-frequent itemset.

Pseudo code for Phase 1:

a. Foreach transaction T in Ri

b. Map(line offset, T)

c. Foreach item in T

d. Yield(I,1)

e. End Foreach

f. End Map()

g. ReduceByKey(I,count)

h. Sum=0

i. While(item I in participation)

j. Sum+= count

k. End while

l. If(sum >= min_sup)

m. Yield(I,sum)

n. End if

o. End ReduceByKey

Figure 4.1 Graphical Diagram for Phase-1

B. Phase 2:

In the second phase we store the singleton-itemset in a

bloom filter. Bloom filter [31] works on item of length 1. It

can easily store and determine the membership of item.

Mappers take every transaction and prune it so that it contains

items which presented in bloom filter and produce all possible

pruned transaction. Reducer does same task and calculate total

count of each pair. Which pairs having total count more than

minimum support will be selected as frequent itemsets. The

result of mapper and reducer are similar as mapreduce classic

implementation but this approach takes less time.

Pseudo code for Phase 2:

a. If number of singleton frequent itemsets are large

b. Foreach transaction T in Ri

c. FT = intersect(T,LK-1)

d. CT = pair FT

e. Foreach candidate C in CT

f. Yield(C,1)

g. End Foreach

h. End Foreach

i. ReduceByKey(I, count)

j. Sum=0

k. While(item I in partition)

l. Sum+= count

m. End while

n. If(sum>=min_sup)

o. Yield(I,sum)

p. End if

q. End ReduceByKey

r. Else

s. Iterate phase 3 for n= 2 to m

t. End else

Figure 4.2 Graphical Diagram for phase-2

C. Phase 3:

Here we use same approach as phase 1. We take k-

frequent itemset and by them generate (k+1) frequent itemsets.

Both map() function and reduce() function works same like

phase 1. At the first iteration input will be 2-frequent itemsets

output of phase 2. We perform this iteration till Cki>1 where

Cki is candidate set of k size and ith iteration.

Pseudo code for Phase 3:

a. Read Lk-1 from HDFS

b. Cank = ap_gen(Lk-1)

c. Foreach Transaction T in Ri

d. Map(line offset, T)

e. CT = subset(Cank,T)

f. Foreach candidate c in CT

g. Yield(C,1)

h. End Foreach

i. End Map()

j. End Foreach

k. ReduceByKey(I,count)

l. Sum=0

m. While(item I in participation)

n. Sum+= count

o. End while

p. If(sum >= min_sup)

q. Yield(I,sum)

r. End if

s. End ReduceByKey

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS060374
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 06, June-2016

www.ijert.org 238

Figure 4.3 Graphical Diagram for phase-3

V. EXPERIMENTAL RESULTS

In this section, we evaluate performance of our proposed

algorithm. Here we are using ARtool [32] to generate

synthetic data. ARtool is an open source tool package. This

tool is developed by university of Massachusetts and it is

provided to dataset generation and other tasks.

We used Hadoop version 1.2.1, one machine for name

node and 2 machines for data nodes. Each machine is having

core i5 intel processor, 2 GB of RAM and 500 GB of storage.

Every machine is having ubuntu 12.04 LTS 64 bit installed

and setup with jdk 1.7.0_79 and jre 1.7.0_79.

A. Datasets:

Experiments were done with datasets generated by ARtool,

this open source tool can generate synthetic data. We used

dataset T1000_AT10_I100_P50_AP5, this database contains

106 transactions and 870 number of items in it. We choose this

tool because mostly studies used IBM data Generator and

which is obsolete now.

B. Performance Analysis:

Performance of our proposed algorithm is evaluated with

the datasets. Its result may be somewhat differ from other

authors because here we used machine, which are really low

end in terms of specification. But it is perform very well in

large data. Our algorithm outer perform for the 2nd iteration

which hugely reduces the time of 2nd iteration. Our result can

be understood by performance graph given below in Figure

5.1.

Figure 5.1 T1000_AT10_I100_P50_AP5 with min_sup 0.15%

We can also compare algorithm based on Apriori Algorithm

with different implementation. It is plotted below in Figure 5.2.

Figure 5.2 Comparison between MR-Apriori and proposed-Apriori

VI. CONCLUSIONS

In our Paper, we have proposed an algorithm based on Apriori

algorithm in parallel implementation based on MapReduce

Framework that can improve processing time for the second

iteration in frequent itemsets mining. Our algorithm easily

handles large amount of data for mining with less processing

time. We can also make improvement in algorithm by clean

code or changes in count step. Other programming

framework also now developed that can work faster than

MapReduce Framework. In future we try to implement it with

more efficient Framework. For that we have further study on

the subject.

ACKNOWLEDGMENT

I would like to express our sincere thankfulness to my guide

for their helpful support and valuable advice during our

research work.

REFERENCES
[1] https://en.wikipedia.org/wiki/Knowledge_Discovery_in_Datab

ases.

[2] J. han, M. Kamber and J. Pei, “Data Mining: Concept and

Techniques” 3rd ed. San Francisco, 2011.

[3] Agrawal R, Imielinski T and Swami A., “Mining association

rules between sets of items in large database”. In Proc. Of the

ACM SIGMOD conference on Management of Data, pp. 207-

216, Washington, D.C., May 1993.

[4] Osmar R. Zaiane, Mohammad El-Hajj, Paul Lu. Fast

ParallelAssociation Rule Mining Without Candidacy

Generation, Technique Report.

[5] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen & A.I.

Verkamo, 1996. Fast discovery of association rules. Advances

in Knowledge Discovery and Data Mining (U. Fayyad, G.

Piatetsky-Shapiro, P. Smyth & R. Uthurusamy, ed.), American

Association for Artificial Intelligence.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS060374
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 06, June-2016

www.ijert.org 239

[6] Anna L. Buczak and Christopher M. Gifford. Fuzzy ssociation

Rule Mining for Community Crime Pattern Discovery. In ISI-

KDD 2010, ACM, USA, 2010.

[7] Tong Wang , Cynthia Rudin, Daniel Wagner and Rich Sevieri.

Learning to Detect Patterns of Crime. In Springer, MIT, USA,

2013.

[8] Latifur Khan, Mamoun Awad and Bhavani Thuraisingham. A

new intrusion detection system using support vector machines

and hierarchical clustering. In VLDB Journal2007, pp: 507-

521, 2007.

[9] Yeal Amsterdamer, Yeal Grossman, Tova Milo and Pierre

Senellart. Crowd Mining. In SIGMOD'13, USA, 2013.

[10] Yeal Amsterdamer, Yeal Grossman, Tova Milo and Pierre

Senellart. CrowdMiner: Mining association Rules from the

crowd.In Proceedings of VLDB Endowment, 2013.

[11] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules. In Proc. 1994 Int. Conf. VeryLarge Data

Bases, pages 487-499, Santiago, Chile, September 1994.

[12] Mohammed J. Zaki, Srinivasan Parthasarathy, Mitsunori

Ogihara and Wei Li. New algorithms for fast discovery of

association rules. Technical Report 651, Computer Science

Department, University of Rochester, Rochester, NY 14627.

1997.

[13] J. Han, H. Pei and Y. Yin. Mining Frequent Patterns without

Candidate Generation. In Proc. Conf. on the Management of

Data (SIGMOD’00, Dallas, TX), ACM Press, New York, NY,

USA 2000.

[14] Agrawal, R., & Shafer, J. C. (1996).” Parallel mining of

association rules”. Knowledge and Data Engineering, IEEE

Transactions on, 8(6), pp. 962- 969.

[15] https://en.wikipedia.org/wiki/MapReduce

[16] Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data

processing on large clusters. Communications of the ACM,

51(1), pp. 107-113.

[17] Yang, X. Y., Liu, Z., & Fu, Y. (2010, June). MapReduce as a

programming model for association rules algorithm on

Hadoop. In Information Sciences and Interaction Sciences

(ICIS), 2010 3rd International Conference on (pp. 99-102).

IEEE.

[18] S Pandey, R Miri, SR Tandan (2013) “Diagnosis And

Classification Of Hypothyroid Disease Using Data Mining

Techniques ” International Journal of Engineering Research

and Technology (IJERT).

[19] MK Shrivastava, P Chouksey, R Miri (2013) “Exploring Data

Mining Classification Techniques“International Journal of

Engineering Research and Technology (IJERT).

[20] https://en.wikipedia.org/wiki/Association_rule_learning

[21] Gordon, K. (2013). What is Big Data?. ITNOW, 55(3), pp. 12-

13.

[22] https://en.wikipedia.org/wiki/Apache_Software_Foundation

[23] Apache hadoop. http://hadoop.apache.org/2013.

[24] https://developer.yahoo.com/hadoop/tutorial/

[25] Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data

processing on large clusters. Communications of the ACM,

51(1), pp.107-113.

[26] Zaharia, M., Konwinski, A., Joseph, A. D., Katz, R. H., &

Stoica, I. (2008, December). Improving MapReduce

Performance in Heterogeneous Environments. In OSDI (Vol. 8,

No. 4, p. 7).

[27] Li N., Zeng L., He Q. & Shi Z. Parallel Implementation of

Apriori Algorithm Based on MapReduce. In Proc. of the 13th

ACIS International Conference on Software Engineering,

Artificial Intelligence, Networking and Parallel & Distributed

Computing (SNPD ‘12), Kyoto,IEEE: 236 – 241, 2012.

[28] J. Dean and S. Ghemawat. MapReduce: Simplified

dataprocessing on large clusters. In Proc. OSDI. USENIX

Association, 2004.

[29] Lin M., Lee P. & Hsueh S. Apriori-based Frequent Itemset

Mining Algorithms on MapReduce. In Proc. of the 16th

International Conference on Ubiquitous Information

Management and Communication (ICUIMC ‘12), New York,

NY, USA, ACM: Article No. 76, 2012.

[30] Sudhakar S, Rakhi G, P.K. Mishra “Performance analysis of

Apriori algorithm with different data structures on hadoop

cludter” October 2015, International Journal of computer

applications (IJCA).

[31] https://en.wikipedia.org/wiki/Bloom_filter

[32] http://www.cs.umb.edu/~laur/ARtool/index.html

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS060374
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 06, June-2016

www.ijert.org 240

