
An Efficient Point Data Indexing Structure for

Multidimensional Range Queries

P. Z. Piah
Department of Computer Science

Kenule Benson Saro-Wiwa Polytechnic

Bori-Rivers State, Nigeria

V. Ejiofor

Department of Computer Science

Nnamdi Azikiwe University

Awka, Nigeria

 P. O. Asagba

Department of Computer Science

University of Port Harcourt

Port Harcourt, Nigeria

K.T. Igulu
Department of Computer Science

Kenule Benson Saro-Wiwa Polytechnic

Bori-Rivers State, Nigeria

Abstract— Since the main memory is expensive and volatile

persistence data cannot be kept in main memory. Most

databases utilize the secondary/tertiary storage. The main

overhead of using a secondary storage is access time. This is

usually high in multi-dimensional databases like OLTP that are

characterized by recurrent updates and queries. The use of

secondary/tertiary storage inherently suggests indexing.

Indexing helps to retrieve/store the required data/ data segments

faster than iterating through the table. Indexing enhances speed

of querying. In multi-dimensional databases (like OLAP

databases) the essential tool for accessing data is the range

query (or window query). In extant databases, B-Trees and its

variants are the convention for indexing. But the major setback

of B-trees is that they are single attribute index structures.

Which implies that the record of such database are ordered by a

particular attribute usually but not necessarily the primary key.

This limits range query restriction on one particular attribute of

the table. The use of multiple B-trees indexing for various

attributes of a table is the convention for achieving range query

for other attributes. The use of multi-indexing is additive and

poses so many drawbacks (additional space required and speed

is hampered). With the exponential burst of data, there is need

for a better data structure with efficient query algorithm that

has high storage capacity and also considerably fast (algorithm)

for multidimensional range queries. This paper discusses a

multidimensional indexing structure that is fast and also

consumes virtually equivalent space as though is a single

attribute structure. Experiment show that the structure has

multiplicative complexities and is immune to the curse of

dimensionality.

Keywords— Range query, Indexing, multidimensional,

database, B-tree, UB-Tree.

I. INTRODUCTION

Complex enterprise applications for instance SAP HANA [1],

data mining (DM), data warehousing (DW) and non-standard

DBMS applications such as geographical information

systems (GIS) and statistical databases have spawned a strong

demand for efficiency in the processing of extremely

complex queries on large databases. These complex queries

of course set new requirements on the query processing and

indexing method algorithms for DBMSs. The main purpose

of indexing a table of a database is to expedite query

execution. This is achieved by utilizing the constraints

imposed by a query in order to condense the number of disk

accesses. In multi-dimensional databases (like OLAP

databases) the essential tool for accessing data is the range

query (or window query). In extant databases, Bitmap, B-

Trees and its variant are the convention for indexing. But the

major setback of B-trees is that they are single attribute index

structure. Which implies that the record of such database are

ordered by a particular attribute usually but not necessarily

the primary key. This limits range query restriction on one

particular attribute of the table. The use of multiple B-trees

indexing for various attributes of a table is the convention for

achieving range query for other attributes.

This paper discusses an access method (indexing structure)

for efficient manipulation of range queries called the UB-

Tree. It organizes and clusters any table of a database by a

certain computation that depends on some or all the attributes

of the table. By this, data points that are close by this

computation are stored closely in the storage. In other words,

spatial proximity is maintained based on all the attributes or

some of the attributes of the table.

II. QUERIES

Relational queries are primarily expressed by operators of the

relational algebra and they operate either with a single table

or span multiple tables [2]. Single table queries restrict, re-

arrange or aggregate the tuples of one relation [3]. A query is

a predicate (x) over the tuples of a relation R. The result set

(RS) of a query is the subset of tuples of R sufficiently satisfy

the query predicate in (1). The result set size is the cardinality

of the result set as given in (2).

RS(R,) = {xR |(x)} (1)

 |RS(R,)| (2)

A restriction query is a predicate (x) on the tuples ‘x’ of a

relation R. A restriction query can be to a point-exact match

query or on some dimension-partial match or partial range

query. A range query is a special case of query with

restrictions on all the dimensions. Reference [4] categorizes

queries into single table queries and multiple table queries.

Multiple table queries specifically join single table queries of

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS010586

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 01, January-2016

699

different tables. Single table queries are further categorized

into restriction queries and queries of re-arrangement which

can be sorting, projection , grouping and aggregation. Partial

range query is a type that gives restriction on some

dimensions of the query and some unrestricted. This can be

further categorized as exact-match query or range query.

A. Range Queries

Range queries give restriction on all dimensions (attributes)

of the query. From the geometric perspective, let P be a set of

n points in Ðk (i.e. k dimensional- Ðk= {d1, d2, d3, …, dk }) and

let D be a family of subsets of Ðk
 (i.e.D Ðk). Let ri represent

a range of the ith dimension (ri  di). We call ri an interval

represented by its lower and upper bound (ri =(l,h)). Elements

of D are called ranges (i.e. D ={r1 , r2, …, rk}). Let Δ be

points subsumed by the range set D. Given the above, the

requirement is to build appropriate data structure that

supports range reporting, range count (number of points in

the result set or the cardinality of the result set), emptiness

query (determining if the result set size is not zero) given in

(3), (4) and (5) respectively.
 Δ∩P (3)

 |Δ∩P | (4)

 Δ∩P=Φ or |Δ∩P|=0 (5)

An exact point query shall be regarded as a special case of

range query whose intervals are equal values on the various

dimensions. i.e. l=h for all the k dimensions. No two points

on the plane have the same address (no two points have the

same x-and y-coordinates for 2-d space). Range queries are a

fundamental problem for all database systems. A range query

is specified by an interval for each dimension. If no

restriction for a dimension it formally means that the interval

is (-, +) i.e. unbounded. The query is the Cartesian

product of the intervals for all dimensions, called the query

box (QB) or Query Volume of Q with the lower and upper

bounds ql and qh. The answer to Q is the set of data points-

objects in Q. Subsequently, this set will be called Result Set

or simply RS of Q.

III. THE UB-TREE

The UB-tree is due to Markl [2] in their work on Mistral [3].

The UB-tree as described in [2] is a structure to index multi-

dimensional data with linear complexities i.e. using a

structure that has linear complexities. The UB-Tree exploits

the capabilities of B-tree and Z-curve [7]. Each multi-

dimensional data tuple is transformed into an integer (Z-

address), which is inserted into the B-tree. Each node is a pair

of integer ([:]) denoting the lower bound () and the upper

bound () of a region on the plane respectively. It suffices to

note at this point that the entire plane is regarded as a Z-

region (Super-Z-region). For consistency, all regions will be

regarded as simply Z-region. A leaf of the UB-tree which is

mapped to a Z-region of the curve holds data (points) or link

to the data. Usually, a region mapped to a disk block (or

page). Range query can be handled by retrieval points in

regions that are perfectly subsumed by the query box or that

intersect the query box. Figure 1 shows (a) typical 2-D 8by8

space with 6 Z-regions (b) UB-tree-nodes corresponding to

the z-regions in the space. The inner nodes of UB-tree

recursively divides the space, such that a hierarchy of nested

Z-regions is formed.

Figure 1: Z-curve with Z-regions and UB-Tree

A. Data Types and Address Calculation

The values of the attributes specified in query operations by a

user are over specific domains (data types). Some of these

domains have natural lexicographical ordering. Domains with

explicit lexicographical ordering are directly converted to

binary. The interleaving algorithm is then invoked on the

binary equivalent of the values. Some domains require

transformation to achieve uniqueness and ordering of values

over such domain. To achieve this, transformation algorithms

are utilized. Then the transformed equivalent is used for

interleaving operation. In such domain, bit-lexicographic

order on the binary representation of tuples does not

correspond to any natural ordering. Transformation is

bijective. For Cartesian co-ordinates, the inverse function to

the transformation function is applied after bit extraction.

Figures 2a and 2b depict this concept. Character string can be

transformed to binary by using the ASCII lexicographical

ordering of the character. This will produce the binary

equivalent of the character string and interleaving invoked

appropriately. In programming language, ENUM type

defaults to Integer. For the integer default, the ENUM values

are mapped to their integer equivalents are interleaved

appropriate. ENUM of character string will of course undergo

two levels of transformation i.e. mapping and transformation

itself.

Figure 2: (L): Address Calculation. (R): Cartesian Calculation

B. Address Calculation and Interleaving Operation

The address computation of the UB-Tree determines its

efficiency. The UB-Tree utilizes the bit-interleaving

paradigm. If each attribute xi of a d-dimensional tuple (x1, x2,

..., xd) consists of 2r values, it can be regarded as a sequence

of bits xi,r ... xi,1. Bit-interleaving produces an r-dimensional

tuple from the d-dimensional tuple by re-arranging the bits of

the tuple in the following way[6]:

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS010586

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 01, January-2016

700

Interleaved,r (x1,r ... x1,1, x2,r...x2,1 … xd,r ...xd,1)

 =x1,r x2,r ... xd,r, x1,r-1...xd,r-1, x1,1... xd,1) (6)

The value produced by this computation is henceforth known

as Z-value. Thus interleave3,4 (1110,1010,0111) =

(110,101,111,001). If the result of interleaved’r is considered

as binary number in the place of an r-dimensional tuple,

incrementing this number by 1 yields the Z-Address (Zaddr) of

a tuple. Thus:
Zaddr (x1, x2, ..., xd)= interleaved’r (x1, x2 , ..., xd)+ 1 (7)

Therefore Zaddr(14,10,7) = Zaddr(1110, 1010, 0111) =

interleave3,4 (1110,1010,0111) + 1 = (110,101,111,001) + 1 =

(110,101,111,010) = 6.5.7.2. The Z-address can be computed

by a function given in [2].

Zaddr(P)=  






n

i

ijn

ji

s

j

P
1

1

,

1

0

2 (8)

Pϵ Ω, where the binary representation of each coordinate pi is

denoted as pi= pi,s-1, pi,s-2, …, pi,o. This function does the same thing as

bit-interleaving. The inverse function to interleaved,r can be

computed basically in the same way. This function is called

(interleaved,r)-1. Therefore interleaved,r (o) = interleaver,d (Zaddr(o)-

1). Only a slight modification of the interleave operation is

necessary to support a universe where the domain of each dimension

does not consist of the same number of bits r. The domains of this

work are of equal cardinalities (2r). The algorithm of bit-interleaving

has the CPU-complexity of O(d*r), where r stands the length of

each attribute in bits and d is the dimensions. The same holds for

(interleave)-1. Switching a tuple between Cartesian representation

and address representation can therefore be performed very

efficiently. Figures 2 and 3 show the bit-interleaving operations in

2d and 3d respectively. The bit-interleaving does not deteriorate by

high dimensionality (immune to the curse of dimensionality).

Figure 4: Interleaving process of 2-d tuple [5,6]

Figure 5: Bit-interleaving in 3d tuple [5,4,6]

C. Rapid Hyper Quadrant Jump Addressing Approach

This new approach was introduced in [4]. Investigation show

that the approach is just a new method but not different from

the original idea. In geometry, the term quadrant depicts an

exactly defined quarter of 2-dimensional universe. Equally,

1-dimensional space can be divided into two halves, and for

3-dimensional space eight octants of space. Common to most

geometric constructs is a constraint to partition the universe.

Moreover, the partitioning is done using halving the space in

all existing dimensions. Such information can be generalized

by definition of the hyper-quadrant of n-dimensional space.

Let Ω=Dn be a vector space: The hyper-quadrant (hquad) HQ

is a subspace in Ω; i.e. HQ⊂Ω; such that.

HQ=HD1×HD2×HDn ; where each domain HDi is the lower

or the upper half of the domain D, i.e. HDi = low(D) or HDi =

up(D). i.e. the lower and upper subspace in each dimension.

Each n-dimensional vector space Ω is formed by its 2n

disjoint hquad. i.e. there are distinct 2n disjoint hquads. If the

hquad are designated with the 2n distinct possible values, a

unique code will be computed for each hquad. For instance in

n=2, i.e. 2d, there will be four quadrants designated 00, 01,

10 and 11. For 3d, there be 000, 001, 010, 011, 100, 101, 110,

111. The bit-length equals the dimension. Recall the

geometric representation of the Z-Order curve which expands

its resolution by half-splitting on all the n dimensions. Figure

6 shows the 2d Z-order curve and figures 7 gives the 3d

hquad representation.

Figure 6: 2d Z-Order curve of 2×2, 4×4, 8×8, 16×16 respectively

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS010586

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 01, January-2016

701

Figure 7: 3d case with Visualization of the various Hquads.

The Z-Order curve is a finite image of its self by recursively

splitting along the various dimensions of the plane. Since the

Z-Order is an image of itself, we can jump from one supper

quadrant to its specializations given the bit string address of

such quadrant. For Z-curve in 2d, the first two bits of the Z-

address represent the super quadrant where the point can be

found. The second two bit string specifically identifies the

second level of the splitting and so on. The same applies to d-

dimensional space. This approach combines the interleaving

and the searching together and has a great performance

impact for all the operations on the UB-Tree[4].

D. Insertion Algorithm

A point P to be inserted into the universe  is specified by its

Cartesian coordinates (x1 x2 , ..., xd) with address Z-value =

Zaddr(x1 x2 , ..., xd). P belongs to the unique region [:]

fulfilling ≤ Z-value ≤. It should be noted that Z-value

must be computed only to a precision sufficient enough to

determine the proper region. The addresses are linearly

ordered by ‘≤’. P is inserted into the leaf-page corresponding

to such region, which is found by an exact-match query.

Since pages can store only a maximum number M of pointers

or objects, pages may overflow and are split like in B-trees.

[:] is split by a new area with address  satisfying < < .

The region [:] is divided by  into [:] and [+1:]. The

objects or object pointers in page ([:]) are distributed onto

page([:]) and page([+1:]) accordingly.  is created by

increasing area() as follows: Add to area  sub-cubes from

[:] in increasing order until the number of the objects in

[:] is between ½M- and ½M+ . If the sub-cube that

follows in this process contains much objects, it undergoes a

recursive subdivision until the condition can be met. The

parameter  is used to get shorter split addresses, which are

favorable for the UB-Tree performance especially of the

range query algorithm[2].

E. Split Point Algorithm

The constraint of SFCs, (Z-order precisely) is that regions are

disjoint (regions don’t overlap). The non-overlapping of

regions has direct performance impact on range query. Range

query is succinctly finding those region that intersect the

query box (QB). If splitting is not optimal, the general

performance of the range query degrades. Another effect of

region or page splitting is to avoid post filtering as much as

possible. If the split point for a split is not optimally

computed, there could be overlapping of pages and this

directly impacts the access time during an operation that

affects such region. Reference[2] uses a tree to keep track of

split points. Reference [4] showed that the underlining one

dimensional tree used in [2] is redundant and introduced a

new optimal split point algorithm. The algorithm proposed in

[4] ensures that;

i. The left region should be half full.

ii. A perfect partition that creates at least the maximum

number of point’s larger page/region for the left

page. After the split, the left region has a restriction

of the number that can be inserted. This avoids early

split.

F. Point Query Algorithm

Point Queries are also called "exact-match queries". They are

specified by the Cartesian coordinates (x1, x2, ..., xd) of the

point P. In OLAP these co-ordinates are usually called

dimensions or dimension attributes. To find P, the address z-

value := Zaddr(x1, x2, ..., xd) of P with sufficient precision to

find the unique region [:] with the property a*b and fetch

page([:]). This is realized by searching the UB-tree with

the address Z-value as the search key. page([:]) must

contain point P with the additional information or the

identifier Id(P) that is used to reference P. P can be found in

O(logkN) time, where N is the number of objects in the

universe  and k is the order of the tree. Since UB-trees are

balanced and searched exactly like the B-tree used as the

underlying data structure for the UB-tree. Thus the point

query performance of a UB-Tree is similar to that of a B-Tree

index. The additional address calculation overhead is

negligible.

G. Range Query Alogorithm

To answer a range query, only those regions, which perfectly

intersect the query box, must be fetched from the database

and thus from the disk. Initially the range query algorithm

computes and retrieves the first region that is overlapped by

the query-box. Then the next intersecting region is computed

and retrieved. This is repeated until a minimal cover for the

query box has been constructed, i.e., the region that contains

the ending point of the query box has been retrieved. At first,

Z-address of the query box lower and upper bounds are

computed. Using this value, a leaf page of the UB-tree is

retrieved and searched for relevant data tuples. Next, the

following query-intersected leaf is retrieved and so on. The

algorithm will finish as soon as the  of the actual Z-region

gets greater than Z-address of the query box upper bound, i.e.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS010586

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 01, January-2016

702

when > Z-valueh . With the exception of cases where the

query box degenerates to a hyper-plane of the universe, the

number of regions, which must be fetched from the database,

is for sufficiently large databases proportional to the volume

of Q and therefore proportional to the size of the answer to

the range query.

IV. CONCLUDING REMARKS

Extant commercial DBMS do either not support

multidimensional indexes at all or only use them as an add-

ons. A widespread approach to handling multi-dimensional

range queries consists of the successive application of such

single key structures, one for each dimension. Concatenated

or compound single structures are used to handle multi-

dimensional range queries. Unfortunately, this approach can

be very inefficient. Since each index is accessed

independently of the others. It’s apparent that high selectivity

in one dimension to narrow down the search in the remaining

dimensions is not possible. Generally, there is no easy and

apparent approach to expand single key structures to handle

multi-dimensional data. Other shortcomings of existing

multidimensional indexing structures for databases is that

they don’t guarantee for spatial proximity and they suffer of

the curse of dimensionality. Their performance also degrade

because of memory consumption for creating indexes for the

various attributes in the case of compound indexing and post-

filtering (matching of tuples to build the result set). For

concatenated indexing, queries favor the first attributes. More

also every query using such indexing must include the first

group of attributes. Experience also show that existing

indexing structures for complex range queries possess

additive complexity whereas the approach discussed here

possesses multiplicative complexity which impacts

performance. The enforcement of tuple clustering which also

translates to page clustering based on majority dimensions

(attributes) of the tuple reduces disk accesses for complex

range queries.

REFERENCES
[1] SAP-Group, 2015. [Online]. Available: www.sap.com.

[2] V. Markl, "Processing relational queries using a multidimensional
acces technique," Dissertations in Database and Information Systems-

Infix,, vol. 59, 1999.

[3] "MISTRAL Project," 1999. [Online]. Available:

http://mistral.informatik.tu-muenchen.de.

[4] P.Z. Piah, “An Efficient Range Searching Algorithm in Complex

Geometric Space”, PhD thesis, University of Port Harcourt, 2015.
[5] T. Skopala, M. Kratkyb, J. Pokornya and V. Snaselb, "A new range

query algorithm for Universal B-trees," Information Systems, vol. 31,

p. 489–511, 2006.
[6] R. Bayer, "The universal B-tree for multidimensional indexing:

general concepts," in International Conference on Worldwide

Computing and Its Applications, Springer, Berlin, 1997.
[7] J. Lewder, "The Application of Space-the Storage and Retrieval of

Multi-dimensional Data," London, 1999.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS010586

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 01, January-2016

703

