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Abstract— Since the main memory is expensive and volatile 

persistence data cannot be kept in main memory. Most 

databases utilize the secondary/tertiary storage. The main 

overhead of using a secondary storage is access time. This is 

usually high in multi-dimensional databases like OLTP that are 

characterized by recurrent updates and queries. The use of 

secondary/tertiary storage inherently suggests indexing. 

Indexing helps to retrieve/store the required data/ data segments 

faster than iterating through the table. Indexing enhances speed 

of querying. In multi-dimensional databases (like OLAP 

databases) the essential tool for accessing data is the range 

query (or window query). In extant databases, B-Trees and its 

variants are the convention for indexing. But the major setback 

of B-trees is that they are single attribute index structures. 

Which implies that the record of such database are ordered by a 

particular attribute usually but not necessarily the primary key. 

This limits range query restriction on one particular attribute of 

the table. The use of multiple B-trees indexing for various 

attributes of a table is the convention for achieving range query 

for other attributes. The use of multi-indexing is additive and 

poses so many drawbacks (additional space required and speed 

is hampered). With the exponential burst of data, there is need 

for a better data structure with efficient query algorithm that 

has high storage capacity and also considerably fast (algorithm) 

for multidimensional range queries. This paper discusses a 

multidimensional indexing structure that is fast and also 

consumes virtually equivalent space as though is a single 

attribute structure. Experiment show that the structure has 

multiplicative complexities and is immune to the curse of 

dimensionality.  
 

Keywords— Range query, Indexing, multidimensional, 

database, B-tree, UB-Tree. 

I.  INTRODUCTION  

Complex enterprise applications for instance SAP HANA [1], 

data mining (DM), data warehousing (DW) and non-standard 

DBMS applications such as geographical information 

systems (GIS) and statistical databases have spawned a strong 

demand for efficiency in the processing of extremely 

complex queries on large databases. These complex queries 

of course set new requirements on the query processing and 

indexing method algorithms for DBMSs. The main purpose 

of indexing a table of a database is to expedite query 

execution. This is achieved by utilizing the constraints 

imposed by a query in order to condense the number of disk 

accesses. In multi-dimensional databases (like OLAP 

databases) the essential tool for accessing data is the range 

query (or window query). In extant databases, Bitmap, B-

Trees and its variant are the convention for indexing. But the 

major setback of B-trees is that they are single attribute index 

structure. Which implies that the record of such database are 

ordered by a particular attribute usually but not necessarily 

the primary key. This limits range query restriction on one 

particular attribute of the table. The use of multiple B-trees 

indexing for various attributes of a table is the convention for 

achieving range query for other attributes. 

This paper discusses an access method (indexing structure) 

for efficient manipulation of range queries called the UB-

Tree. It organizes and clusters any table of a database by a 

certain computation that depends on some or all the attributes 

of the table. By this, data points that are close by this 

computation are stored closely in the storage. In other words, 

spatial proximity is maintained based on all the attributes or 

some of the attributes of the table. 

II. QUERIES 

Relational queries are primarily expressed by operators of the 

relational algebra and they operate either with a single table 

or span multiple tables [2]. Single table queries restrict, re-

arrange or aggregate the tuples of one relation [3]. A query is 

a predicate (x) over the tuples of a relation R. The result set 

(RS) of a query is the subset of tuples of R sufficiently satisfy 

the query predicate in (1). The result set size is the cardinality 

of the result set as given in (2). 

 

RS(R,) = {xR |(x)}                       (1) 

    |RS(R,)|                                                         (2) 

A restriction query is a predicate (x) on the tuples ‘x’ of a 

relation R. A restriction query can be to a point-exact match 

query or on some dimension-partial match or partial range 

query. A range query is a special case of query with 

restrictions on all the dimensions. Reference [4] categorizes 

queries into single table queries and multiple table queries. 

Multiple table queries specifically join single table queries of 
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different tables. Single table queries are further categorized 

into restriction queries and queries of re-arrangement which 

can be sorting, projection , grouping and aggregation. Partial 

range query is a type that gives restriction on some 

dimensions of the query and some unrestricted. This can be 

further categorized as exact-match query or range query.   
 

A. Range Queries 

Range queries give restriction on all dimensions (attributes) 

of the query. From the geometric perspective, let P be a set of 

n points in Ðk (i.e. k dimensional- Ðk= {d1, d2, d3, …, dk }) and 

let D be a family of subsets of Ðk
 ( i.e.D Ðk). Let ri represent 

a range of the ith dimension (ri  di). We call ri an interval 

represented by its lower and upper bound (ri =(l,h)). Elements 

of D are called ranges (i.e. D ={r1 , r2, …, rk}). Let Δ be 

points subsumed by the range set D. Given the above, the 

requirement is to build appropriate data structure that 

supports range reporting, range count (number of points in 

the result set or the cardinality of the result set), emptiness 

query (determining if the result set size is not zero) given in 

(3), (4) and (5) respectively. 
       Δ∩P                                                    (3) 

                                |Δ∩P |                                                  (4) 

                                Δ∩P=Φ or |Δ∩P|=0                     (5) 

An exact point query shall be regarded as a special case of 

range query whose intervals are equal values on the various 

dimensions. i.e. l=h for all the k dimensions. No two points 

on the plane have the same address (no two points have the 

same x-and y-coordinates for 2-d space). Range queries are a 

fundamental problem for all database systems. A range query 

is specified by an interval for each dimension. If no 

restriction for a dimension it formally means that the interval 

is (-, +) i.e. unbounded. The query is the Cartesian 

product of the intervals for all dimensions, called the query 

box (QB) or Query Volume of Q with the lower and upper 

bounds ql and qh. The answer to Q is the set of data points-

objects in Q. Subsequently, this set will be called Result Set 

or simply RS of Q.                        

III. THE UB-TREE 

The UB-tree is due to Markl [2] in their work on Mistral [3]. 

The UB-tree as described in [2] is a structure to index multi-

dimensional data with linear complexities i.e. using a 

structure that has linear complexities. The UB-Tree exploits 

the capabilities of B-tree and Z-curve [7]. Each multi-

dimensional data tuple is transformed into an integer (Z-

address), which is inserted into the B-tree. Each node is a pair 

of integer ([:]) denoting the lower bound () and the upper 

bound () of a region on the plane respectively. It suffices to 

note at this point that the entire plane is regarded as a Z-

region (Super-Z-region). For consistency, all regions will be 

regarded as simply Z-region. A leaf of the UB-tree which is 

mapped to a Z-region of the curve holds data (points) or link 

to the data. Usually, a region mapped to a disk block (or 

page). Range query can be handled by retrieval points in 

regions that are perfectly subsumed by the query box or that 

intersect the query box. Figure 1 shows (a) typical 2-D 8by8 

space with 6 Z-regions (b) UB-tree-nodes corresponding to 

the z-regions in the space. The inner nodes of UB-tree 

recursively divides the space, such that a hierarchy of nested 

Z-regions is formed.  
 

 
Figure 1: Z-curve with Z-regions and UB-Tree 

A. Data Types and Address Calculation 

The values of the attributes specified in query operations by a 

user are over specific domains (data types). Some of these 

domains have natural lexicographical ordering. Domains with 

explicit lexicographical ordering are directly converted to 

binary. The interleaving algorithm is then invoked on the 

binary equivalent of the values. Some domains require 

transformation to achieve uniqueness and ordering of values 

over such domain. To achieve this, transformation algorithms 

are utilized. Then the transformed equivalent is used for 

interleaving operation. In such domain, bit-lexicographic 

order on the binary representation of tuples does not 

correspond to any natural ordering. Transformation is 

bijective. For Cartesian co-ordinates, the inverse function to 

the transformation function is applied after bit extraction. 

Figures 2a and 2b depict this concept. Character string can be 

transformed to binary by using the ASCII lexicographical 

ordering of the character. This will produce the binary 

equivalent of the character string and interleaving invoked 

appropriately. In programming language, ENUM type 

defaults to Integer. For the integer default, the ENUM values 

are mapped to their integer equivalents are interleaved 

appropriate. ENUM of character string will of course undergo 

two levels of transformation i.e. mapping and transformation 

itself.   

 

 

 

 

 

 

 

 
 

 

Figure 2: (L): Address Calculation. (R): Cartesian Calculation 

B. Address Calculation and Interleaving Operation 

The address computation of the UB-Tree determines its 

efficiency. The UB-Tree utilizes the bit-interleaving 

paradigm. If each attribute xi of a d-dimensional tuple (x1, x2, 

..., xd ) consists of 2r  values, it can be regarded as a sequence 

of bits xi,r ... xi,1. Bit-interleaving produces an r-dimensional 

tuple from the d-dimensional tuple by re-arranging the bits of 

the tuple in the following way[6]: 
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Interleaved,r (x1,r ... x1,1,  x2,r...x2,1 … xd,r ...xd,1) 

          =x1,r x2,r ... xd,r, x1,r-1...xd,r-1, x1,1... xd,1)                       (6)                                                               

The value produced by this computation is henceforth known 

as Z-value. Thus interleave3,4 (1110,1010,0111) = 

(110,101,111,001). If the result of interleaved’r is considered 

as binary number in the place of an r-dimensional tuple, 

incrementing this number by 1 yields the Z-Address (Zaddr) of 

a tuple. Thus: 
Zaddr (x1, x2, ..., xd)= interleaved’r (x1, x2 , ..., xd )+ 1         (7) 

 

Therefore Zaddr(14,10,7) = Zaddr(1110, 1010, 0111) = 

interleave3,4 (1110,1010,0111) + 1 = (110,101,111,001) + 1 = 

(110,101,111,010) = 6.5.7.2. The Z-address can be computed 

by a function given in [2]. 

Zaddr(P)=  






n

i

ijn

ji

s

j

P
1

1

,

1

0

2                                           (8) 

Pϵ Ω, where the binary representation of each coordinate pi is 

denoted as pi= pi,s-1, pi,s-2, …, pi,o. This function does the same thing as 

bit-interleaving. The inverse function to interleaved,r can be 

computed basically in the same way. This function is called 

(interleaved,r)-1. Therefore interleaved,r (o) = interleaver,d (Zaddr(o)-

1). Only a slight modification of the interleave operation is 

necessary to support a universe where the domain of each dimension 

does not consist of the same number of bits r. The domains of this 

work are of equal cardinalities (2r). The algorithm of bit-interleaving 

has the CPU-complexity of O(d*r), where r stands the length of 

each attribute in bits and d is the dimensions. The same holds for 

(interleave)-1. Switching a tuple between Cartesian representation 

and address representation can therefore be performed very 

efficiently. Figures 2 and 3 show the bit-interleaving operations in 

2d and 3d respectively. The bit-interleaving does not deteriorate by 

high dimensionality (immune to the curse of dimensionality).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Interleaving process of 2-d tuple [5,6] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

Figure 5: Bit-interleaving in 3d tuple [5,4,6] 

 
 

C. Rapid Hyper Quadrant Jump Addressing Approach 

This new approach was introduced in [4]. Investigation show 

that the approach is just a new method but not different from 

the original idea. In geometry, the term quadrant depicts an 

exactly defined quarter of 2-dimensional universe. Equally, 

1-dimensional space can be divided into two halves, and for 

3-dimensional space eight octants of space. Common to most 

geometric constructs is a constraint to partition the universe. 

Moreover, the partitioning is done using halving the space in 

all existing dimensions.  Such information can be generalized 

by definition of the hyper-quadrant of n-dimensional space. 

Let Ω=Dn be a vector space: The hyper-quadrant (hquad) HQ 

is a subspace in Ω; i.e. HQ⊂Ω; such that. 

HQ=HD1×HD2×HDn ; where each domain HDi is the lower 

or the upper half of the domain D, i.e. HDi = low(D) or HDi = 

up(D). i.e. the lower and upper subspace in each dimension.  

Each n-dimensional vector space Ω is formed by its 2n 

disjoint hquad. i.e. there are distinct 2n disjoint  hquads. If the 

hquad are designated with the 2n distinct possible values, a 

unique code will be computed for each hquad. For instance in 

n=2, i.e. 2d, there will be four quadrants designated 00, 01, 

10 and 11. For 3d, there be 000, 001, 010, 011, 100, 101, 110, 

111. The bit-length equals the dimension. Recall the 

geometric representation of the Z-Order curve which expands 

its resolution by half-splitting on all the n dimensions. Figure 

6 shows the 2d Z-order curve and figures 7 gives the 3d 

hquad representation. 

 

 

 

 

 

 

 

 
Figure 6: 2d Z-Order curve of 2×2, 4×4, 8×8, 16×16 respectively 
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Figure 7: 3d case with Visualization of the various Hquads. 

 

The Z-Order curve is a finite image of its self by recursively 

splitting along the various dimensions of the plane. Since the 

Z-Order is an image of itself, we can jump from one supper 

quadrant to its specializations given the bit string address of 

such quadrant. For Z-curve in 2d, the first two bits of the Z-

address represent the super quadrant where the point can be 

found. The second two bit string specifically identifies the 

second level of the splitting and so on. The same applies to d-

dimensional space. This approach combines the interleaving 

and the searching together and has a great performance 

impact for all the operations on the UB-Tree[4]. 
 

D. Insertion Algorithm 

A point P to be inserted into the universe  is specified by its 

Cartesian coordinates (x1 x2 , ..., xd) with address Z-value = 

Zaddr(x1 x2 , ..., xd). P belongs to the unique region [:] 

fulfilling ≤ Z-value ≤.  It should be noted that Z-value 

must be computed only to a precision sufficient enough to 

determine the proper region. The addresses are linearly 

ordered by ‘≤’. P is inserted into the leaf-page corresponding 

to such region, which is found by an exact-match query. 

Since pages can store only a maximum number M of pointers 

or objects, pages may overflow and are split like in B-trees. 

[:] is split by a new area with address  satisfying < < . 

The region [:] is divided by  into [:] and [+1:]. The 

objects or object pointers in page ([:]) are distributed onto 

page([:]) and page([+1:]) accordingly.  is created by 

increasing area() as follows: Add to area  sub-cubes from 

[:] in increasing order until the number of the objects in 

[:] is between ½M-  and ½M+  . If the sub-cube that 

follows in this process contains much objects, it undergoes a 

recursive subdivision until the condition can be met. The 

parameter   is used to get shorter split addresses, which are 

favorable for the UB-Tree performance especially of the 

range query algorithm[2].  

 

 

E. Split Point Algorithm 

The constraint of SFCs, (Z-order precisely) is that regions are 

disjoint (regions don’t overlap). The non-overlapping of 

regions has direct performance impact on range query. Range 

query is succinctly finding those region that intersect the 

query box (QB). If splitting is not optimal, the general 

performance of the range query degrades. Another effect of 

region or page splitting is to avoid post filtering as much as 

possible. If the split point for a split is not optimally 

computed, there could be overlapping of pages and this 

directly impacts the access time during an operation that 

affects such region. Reference[2] uses a tree to keep track of 

split points. Reference [4] showed that the underlining one 

dimensional tree used in [2] is redundant and introduced a 

new optimal split point algorithm. The algorithm proposed in 

[4] ensures that; 

i. The left region should be half full.  

ii. A perfect partition that creates at least the maximum 

number of point’s larger page/region for the left 

page. After the split, the left region has a restriction 

of the number that can be inserted. This avoids early 

split.  

F. Point Query Algorithm 

Point Queries are also called "exact-match queries". They are 

specified by the Cartesian coordinates (x1, x2, ..., xd ) of the 

point P. In OLAP these co-ordinates are usually called 

dimensions or dimension attributes. To find P, the address z-

value := Zaddr(x1, x2, ..., xd) of P with sufficient precision to 

find the unique region [:] with the property a*b and fetch 

page([:]). This is realized by searching the UB-tree with 

the address Z-value as the search key. page([:]) must 

contain point P with the additional information or the 

identifier Id(P) that is used to reference P. P can be found in 

O(logkN) time, where N is the number of objects in the 

universe  and k is the order of the tree. Since UB-trees are 

balanced and searched exactly like the B-tree used as the 

underlying data structure for the UB-tree. Thus the point 

query performance of a UB-Tree is similar to that of a B-Tree 

index. The additional address calculation overhead is 

negligible. 
 

G. Range Query Alogorithm 

To answer a range query, only those regions, which perfectly 

intersect the query box, must be fetched from the database 

and thus from the disk. Initially the range query algorithm 

computes and retrieves the first region that is overlapped by 

the query-box. Then the next intersecting region is computed 

and retrieved. This is repeated until a minimal cover for the 

query box has been constructed, i.e., the region that contains 

the ending point of the query box has been retrieved. At first, 

Z-address of the query box lower and upper bounds are 

computed. Using this value, a leaf page of the UB-tree is 

retrieved and searched for relevant data tuples. Next, the 

following query-intersected leaf is retrieved and so on. The 

algorithm will finish as soon as the  of the actual Z-region 

gets greater than Z-address of the query box upper bound, i.e. 
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when > Z-valueh . With the exception of cases where the 

query box degenerates to a hyper-plane of the universe, the 

number of regions, which must be fetched from the database, 

is for sufficiently large databases proportional to the volume 

of Q and therefore proportional to the size of the answer to 

the range query. 

IV. CONCLUDING REMARKS  

Extant commercial DBMS do either not support 

multidimensional indexes at all or only use them as an add-

ons. A widespread approach to handling multi-dimensional 

range queries consists of the successive application of such 

single key structures, one for each dimension. Concatenated 

or compound single structures are used to handle multi-

dimensional range queries. Unfortunately, this approach can 

be very inefficient. Since each index is accessed 

independently of the others. It’s apparent that high selectivity 

in one dimension to narrow down the search in the remaining 

dimensions is not possible. Generally, there is no easy and 

apparent approach to expand single key structures to handle 

multi-dimensional data. Other shortcomings of existing 

multidimensional indexing structures for databases is that 

they don’t guarantee for spatial proximity and they suffer of 

the curse of dimensionality. Their performance also degrade 

because of memory consumption for creating indexes for the 

various attributes in the case of compound indexing and post-

filtering (matching of tuples to build the result set). For 

concatenated indexing, queries favor the first attributes. More 

also every query using such indexing must include the first 

group of attributes. Experience also show that existing 

indexing structures for complex range queries possess 

additive complexity whereas the approach discussed here 

possesses multiplicative complexity which impacts 

performance. The enforcement of tuple clustering which also 

translates to page clustering based on majority dimensions 

(attributes) of the tuple reduces disk accesses for complex 

range queries. 
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