
An Emperical Study of Performance in the Requirement Traceability Links

(RTL) Using Initial Mapping Technique

T. Hemalatha
1
 N. Prakash

2
, S. Sathyaraj S

3

1
P.G. Student,

2
 Assistant Professor,

3
 Assistant Professor

Department of Computer Science and Engineering

Oxford College of Engineering and Technology

Abstract - Requirement Traceability Link (RTL) in software engineering refers the ability of describing

and following the life of a requirement in both forward and backward direction. While software

development it is very essential to ensure that the traceability links for each and every requirement in the

project. From the software requirement specification document the traceability goes through design

document and coding in the forward direction. During software maintenance and evolution, requirement

traceability links become obsolete because developers do not devote effort to updating them. Yet,

recovering these traceability links later is a daunting and costly task for developers. To avoid such issues

in software project management the developer should keep updating the traceability in design document

and software requirement specification. Here two completed projects are taken in the educational domain

to study the efficiency and accuracy of the requirement traceability first all the requirements are

categorized using the decision tree algorithm. And then all the requirements are arranged in an order

using merge sort according to its severity. To maintain the links in the backward direction that means

while doing any change in the coding it is really a tough task to maintain the link through design

document and software requirement specification (SRS) document. This backward traceability is achieved

using a machine learning and trained initial mapping algorithm to improve the efficiency and accuracy.

Then comapared the result of the existing system with the new technique used in this work and found that

the proposed model is producing better results.

Index Terms— Requirement Traceability, Requirement Elicitation, Machine Learning, Software

Requirement Specification, Sorting, Categorising

1. INTRODUCTION:

The requirement is considered to be the most

important part of software engineering process

of a system or a product. Requirements are those

which uniquely discover the various required

attributes, features, functionalities and the

quality of a software system. Among the various

list of attributes of requirements the most

predominant and important one is that it must be

“traceable”. Traceable in general confirms with

the point that the requirement is authoritatively

documented and satisfies all or part of the

required needs as stated by the clients or the

stakeholders. Requirement Engineering is

defined as a systematic way to gather and

1773

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120705

analyze the requirements which are

consecutively subjected to various processes like

problem analysis, requirement collection,

analysis and validation. Requirement

engineering consists of two important phases as:

 Requirement Elicitation.

 Requirement Analysis.

A successful software engineering process

depends upon a high quality requirement

management.Requirement elicitation refers to

the task of communicating with clients through

various methods and gathers all the requirements

efficiently. It uses various techniques such as

questionnaire, brainstorming, group discussion,

interview and prototyping. On the other hand,

the requirement analysis corresponds to the task

of determining whether the mentioned

requirements are clear, complete and resolves if

any issues arises.

2. REQUIREMENT TRACEABILITY:

 Requirement traceability refers to

documenting the life of a requirement and

providing traceability between these

requirements and other different attributes

concerned in the phases of the development.

Requirement traceability is considered to be an

important discipline of requirement management

in software development and system

engineering.

 In general it is denoted that it is the

ability to describe and follow the life of a

requirement in both forward and backward

directions. Tracing is basically the concept of

identifying all parts of the software system from

requirements and the ability to trace back from

the product to the requirements. Requirement

traceability allows tracing the requirements from

the instance it is obtained until it is implemented

into a running coed as a specification. The

different objectives of a requirement traceability

are:

 Capable of managing the changes

efficiently.

 Understand the software product under

development and its functionality.

 Bridges the gap between the software

and the environment in which it operates

and provides consistency among them.

3. METHODS AVAILABLE IN SOFTWARE

REQUIREMENT TRACEABILITY:

3.1. Traceability Links:

 Traceability links are one of important

and predominant method of requirement

traceability. It corresponds to the tracking of the

relationship between each requirement and its

origin. Traceability links are meant for tracking

the relationship between each requirement and

the end product to which the requirement is

allocated.There are four typical types of

traceability links as described in figure Fig 1.

They are:

Forward to requirement links:

This keeps the tracking information

from the sources of the requirements up to their

analysis.

Backward from requirement links:

This link helps in tracking the

information from requirement to their

corresponding origin.

Forward from requirement links:

This link records the information of the

progress from the requirement for the product.

Backward to requirement links:

1774

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120705

This link maintains the data used in the

tracking of the final product to their

corresponding initial requirement. Here the

forward to requirement and backward from

requirement links are together denoted as a pre-

requirement traceability links whereas, the rest

two are termed as post-requirement traceability

links with respect to the direction of the flow in

relation to the requirement. These traceability

links are required to bi-directional. Bi-

directional traceability links give the capability

to analyze the impact of the modification where

all the products are affected by a modification in

the requirement and all the requirements are

affected by a modification or a fault in the

products. Traceability links in general provide

continuous assessment of the current status of

the requirements and the end products by

determining the missing requirements.

Fig 1. Requirement traceability link's description.

3.2. TRACEABILITY MATRICES:

 A traceability matrix is considered to be

a document in the form of a table that correlates

two baseline documents and measure the

completeness of the relationship. It is also

considered to be a classical tool to ensure that

the project’s objective, scope, requirements and

end products remain same when compared to the

baseline document.This is a rarely used method

of requirement traceability. Non-functional

requirements such as performance goals,

objectives and quality measures don’t always

trace into the code. In general, the functional

requirements are traced backwards to their

parent non-functional requirement and forward

to the products.

 Among these various methods of

traceability this paper concentrates on the

method of requirement traceability links. In a

concise, these requirement traceability links

helps a lot in holding every information right

from the source along with the requirements till

the development process ends and also

throughout the maintenance phase. If this is the

case it would be the very useful way through

which it is possible to maintain a complete

record of the product generation. But the key

point lies with regular updating of these links

which is often left out by the developers and

later becomes a very tedious process.

4. TECHNIQUES USED IN UPDATING THE

REQUIMENT TRACEABILITY LINKS

 With the importance of the requirement

traceability links in mind the literature has

proposed various techniques that automatically

or semi-automatically update these links.

Among the lots of available techniques two

which we considered are:

Requirement

Source

(E.g. Client

Industry

Standard, etc.)

Specified

Requirement

Project Artifact

 (E.g. Test case,

Design

document, etc.)

Backward from

requirements

Forward from

requirements

Backward to

requirements

Forward to

requirements

1775

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120705

4.1. TECHINQUE 1:

This technique proposes a trust based

approach where the main concept was in mining

software repositories and combining those

mined results with Information retrieval (IR)

techniques which would improve the accuracy

of RTLs with subject to better recall and

precision values. In general, the IR techniques

can automatically recover RTLs.

4.2. TECHNIQUE 2:

This technique has been framed with the

objective to improve experts trust on a recovered

link and trust over traceability inputs. It

constitutes of three basic components such as

LTI, TFC and HTA.

LTI: This uses various sources of information to

increase the expert.

TFC: This helps in finding out which factors

impact traceability process inputs and document

them in a trust pattern.

HTA: This process combines different

traceability recovery approaches.

5. Empirical Evaluation

 Like above the literature has proposed

various approaches for requirement traceability.

But those were not completely successful and

satisfactory for both the directions. They were

very efficient in improving the accuracy of the

links in the forward direction alone. But, a

successful software developer must incorporate

traceability to be bi-directional. This paper

provides a solution for this problem wherein we

suggest a model for detecting the modification

of requirements also in the reverse engineering

process and enhance the efficiency of the RTLs.

6. Experimental Work

 For the experimental work we have

taken two completed project in the education

domain and find the performance of the Though

the literature has enlisted with lots of techniques

and approaches for recovering the traceability

links and also updating the recovered links, still

there are lots of drawbacks and inefficiencies in

most of the softwares developed. One of the

main reasons in correspondence with RTL is that

most of the techniques are well suited and

efficient in the forward direction. But, when the

situation arises in a place where reverse

engineering takes place or when it is a need to

track behind from the coding of a module to its

corresponding design document or requirement

it fails to be successful. The problem is not only

the inefficiency of the techniques used but also

with the developers as they forget in updating

the links regularly. This drawback will

automatically result in reduced efficiency of the

software being produced. Also, there will be

problems such as wrong estimation, increased

cost, complexity, delay in the development and

increased rate of bugs and errors which on a

whole decreases the quality of the software

product. In order to reduce such

complexities that harm the quality of the

software product an approach that helps in

traceability along the reverse direction also. This

in turn will comparatively increase the

efficiency of the product at a very high rate.

Such a technique is being discussed in this

paper.

 If in such a way that when the

requirement become possible to be accessed in

backward direction also then this will

automatically reflect the changes back up to the

initial document of Software requirement

specification (SRS).

1776

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120705

6.1. INITIAL MAPPING WORK:

As described in the diagram Fig 2. The

following steps are carried out in the initial

mapping work.

Step 1: Initially all the requirements of the

clients are properly gathered and analyzed using

different elicitation and analysis techniques.

Step 2: Each of the gathered requirements is

named uniquely like R1, R2, R3...… RN (where

n denotes the last number of the requirements).

Step 3: Similarly proper investigation is made

and the corresponding detailed design of the

requirements R1 up to Rn are names as DD1,

DD2, DD3 ….. DDn.

Fig 2. Initial mapping technique

Step 4: Here the requirements in a group like can

depend on a single design document. For

example, R1, R2 and R3 can be dependent on

DD1; R4, R5 can be dependent on DD2 and so

on.

Step 5: For all the above named DD1 to DDn

their corresponding functional points are to be

identified and noted as FP1, FP2, FP3 …. FPn.

(DD1, DD2 – Design documents,

FP1, FP2- Functional points of source code,

T1, T2 – Test cases.)

Step 6: Here also a single or a group of DDs can

depend on a particular functional point. For

example, DD1 depends on FP1, DD2, DD3 and

DD4 depends on FP2 and so on.

Step 7: Then the corresponding test cases for

their respective modules are taken as T1, T2, T3,

…. Tn. Here test cases can be framed separately

for single or group of modules.

Step 8: After identification of the entire

component items proper mapping of every

requirement in their progress must be noted

which helps in tracking whenever necessary.

Such a way the comaparision of the two

techniques

6.2. PROVISION OF LINK:

The output of the requirement analysis

phases is generally a Software requirement

specification (SRS). This SRS in turn are fed to

the design phase where it generates the design

document. These when entering the coding

phase is developed in the source code and as a

test case in the testing phase so on and so forth.

Here the links for every requirement in each of

these outputs according to which it is being used

are to be given. This would rather help in

maintaining the traceability paths.

SOFTWARE REQUIREMENT

SPECIFICATION (SRS)

 R1 R2

R3

R4

DD1 DD2

FP2 FP1

T1 T2

1777

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120705

6.3. MODIFICATION DETECTION SYSTEM:

Once links are given it is to be designed

in such a way that a change when made

highlights it in the mapped requirements. This

helps in enhancement of modification detection

system. Let us consider that in the development

of a project let R1, R2 and R3 be three initial

requirements and DD1 be their corresponding

design document and FP1 be their corresponding

functional point. Then, if a change or error

occurs in FP1 the system would automatically

highlight it corresponding DD1 and R1, R2 and

R3 respectively.

When this happens then it is possible to

manage the entire traceability easily. Also if any

change occurs during the coding phase then it

correspondingly highlights the requirements and

design document which could be later used for

reference. Also when an error or a bug arises in

any functional module then with reference to the

highlighted portions it could be easier to identify

the correct part where the error could be

recovered.

In order to check the working and

accuracy of this system we developed a project

for result analysis in the college. Then we took it

as a sample for evaluation of the system and the

result data is tabulated in Table 1 and are used

for generation of the following graph (Fig 3).

From the graph (Fig 3) a conclusion can

be derived that the proposed system has detected

comparatively a large number of changes or

modifications than the related works in

improving the accuracy of requirement

traceability links. Another notable point is that

the related works highly detects and corrects the

modifications only in the coding phase whereas

the proposed system detects equally in all the

phases.

SOFTWARE

ENGINEERING

PHASES

ACCURACY

OF

DETECTION

IN THIS WORK

(%)

ACCURACY

OF

DETECTION

IN RELATED

WORKS (%)

REQUIREMENT

ANALYSIS

69.2 49.1

DESIGN 60.1 52.1

CODING 78.9 88.1

TESTING 73.1 65.1

Table 1. Tabulation of data obtained from a

sample project subject to the proposed system in

comparison with other related work.

Fig 3. Graph denoting the difference in accuracy

of errors between the proposed and related

system with the above data in the table.

7. CONCLUSION AND FUTURE WORK:

 This paper provides a experimental for

the detection of modifications and errors in the

requirement traceability links. Here a mapping is

being provided between the outputs of the

various phases carried out during the

development process of the software. This is

designed in such a way that the error occurred in

any part of the development would

automatically trace its path in the remaining

phases and would denote that part by

highlighting the phrases.

1778

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120705

This is designed in such a way that it is possible

to make the traceability links accessible in both

forward and backward directions. In general, the

errors detected in the testing phase are recovered

only in the source code alone in a fast manner.

But this system would rather help to identify the

problem right from the requirement source that

would eventually eradicate the problem

completely from arising in the future.

 The future work of this paper is in

concentration with updating the detected

modifications made and creating and

maintaining a separate repository to store these

modifications so that it can be used in the future.

 8. REFERENCES:

[1] Nasir Ali, Member, Yann-Ga¨ El

Gu´eh´eneuc, and Giuliano Antoniol,

“Trustrace: Mining software repositories to

improve the accuracy of requirement traceability

links”, IEEE Transactions on Software

Engineering, 29 Oct. 2012. IEEE computer

Society Digital Library.

[2] O. C. Z. Gotel and C. W. Finkelstein, “An

analysis of the requirements traceability

problem,” Requirements Engineering.,

Proceedings of the First International

Conference on, pp. 94–101, April 1994.

[3] N. Ali, Y. -G. Gu´eh´eneuc, and G. Antoniol,

“Trust-based requirements traceability,” in

Proceedings of the 19th International

Conference on Program Comprehension, S. E.

Sim and F. Ricca, Eds. IEEE Computer Society

Press, June 2011, 10 pages.

[4] G. Antoniol, G. Canfora, G. Casazza, A. D.

Lucia, and E. Merlo, “Recovering traceability

links between code and documentation,”

IEEE Transactions on Software Engineering,

vol. 28, no. 10, pp. 970– 983, 2002.

[5] A. Marcus and J. I. Maletic, “Recovering

documentation-to source-code traceability links

using latent semantic indexing,” in Proceedings

of 25th International Conference on Software

Engineering. Portland Oregon USA: IEEE CS

Press, 2003, pp. 125–135.

[6] Murphy, G. C., Notkin, D. And Sullivan, K.,

Software Reflexion Models: Bridging the Gap

between Source and High-Level Models, In the

Proceedings of the Third ACM SIGSOFT

Symposium on the Foundations of Software

Engineering, October 1995, ACM, New York,

NY, p. 18-28.

[7] Ramesh, Bala; Stubbs, Lt Curtis; & Edwards,

Michael. "Lessons Learned from Implementing

Requirements Traceability." Crosstalk, Journal

of Defense Software Engineering 8, 4 (April

1995): 11-15.

[8] Ramesh, B., Jarke, M., Toward Reference

Models for Requirements Traceability, IEEE

Transactions On Software Engineering, vol. 27,

no. 1, January 2001.

[9] INCOSE requirements management tool

survey, Online at http://www.incose.org.

http://www.stsc.hill.af.mil/crosstalk/1995/apr/Le

ssons.asp

1779

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120705

