

 An Experimental Analysis of K-means Using Matlab

 G.Chamundeswari1, Prof. G. Pardasaradhi Varma2, Prof. Ch. Satyanarayana3

 1Assoc. Professor, Ramachandra College of Engineering, Eluru, A.P, India.
2Professor and HOD, Dept. of IT, SRKR Engg. College, Bhimavaram.

3 Professor, JNTUK, Kakinada.

Abstract

 Clustering problems arise in various areas like pattern

recognition and pattern classification, image

processing, bioinformatics etc. It is considered that the

k-means algorithm is the best-known squared error

based clustering algorithm. It is very simple and can be

easily implemented in solving many practical problems.

This paper presents the results of the analysis of

running k-means algorithm in matlab with two UCI

repository data sets, iris plant and haberman’s survival

data.

Keywords— k-means, clustering, UCI repository, k-means-Matlab.

1. Introduction
 The aim of clustering is to partition a set of objects

which have associated multi-dimensional attribute

vectors into homogeneous groups such that the patterns

within each group are similar. Several unsupervised

learning algorithms have been proposed which partition

the set of objects into a given number of groups

according to an optimization criterion. One of the most

popular and widely studied clustering methods is K-

means. In this paper an emphasis on understanding and

analysis of k-means in matlab view is presented.

 This paper is organized as follows: following the

introduction Section2 gives an overview of k-means

algorithm, Section3 introduces matlab, the datasets

used and interprets the implementation of k-means in

matlab, Section4 the experimental results and finally

conclusion in Section5.

 2. Overview of k-means clustering algorithm
The k-means algorithm can work very well for

compact and hyper spherical clusters. The time

complexity of k-means is O(N K d)[4]. k-means can be

used to cluster large data sets. It uses a two-phase

iterative algorithm to minimize the sum of point-to-

centroid distances, summed over all k clusters:

The first phase uses batch updates, where each

iteration consists of reassigning points to their nearest

cluster centroid, all at once, followed by recalculation

of cluster centroids. This phase occasionally does not

converge to solution that is a local minimum, that is, a

partition of the data where moving any single point to a

different cluster increases the total sum of distances.

This is more likely for small data sets. The batch phase

is fast, but potentially only approximates a solution as a

starting point for the second phase.

The second phase uses online updates, where points

are individually reassigned if doing so will reduce the

sum of distances, and cluster centroids are recomputed

after each reassignment. Each iteration during the

second phase consists of one pass though all the points.

The second phase will converge to a local minimum,

although there may be other local minima with lower

total sum of distances. The problem of finding the

global minimum can only be solved in general by an

exhaustive choice of starting points, but using several

replicates with random starting points typically results

in a solution that is a global minimum.

Given a data set, a desired number of clusters, k,

and a set of k initial starting points, the k-means

clustering algorithm finds the desired number of

distinct clusters and their centroids. A centroid is

defined as the point whose coordinates are obtained by

computing the average of each of the coordinates of the

points of the samples assigned to the cluster. Formally,

the k-means clustering algorithm follows the following

steps.

1. Set k: Choose a number of desired clusters, k.

2. Initialization: Choose k starting points to be used as

initial estimates of the cluster centroids. These are

the initial starting values.

3. Classification: Examine each point in the data set and

assign it to the cluster whose centroid is nearest to it.

4. Centroid Calculation: When each point is assigned to

a cluster, recalculate the new k centroids.

5. Convergence condition: Repeat steps 3 and 4 until no

point changes its cluster assignment, or until a

maximum number of passes through the data set is

performed.

 Before the clustering algorithm can be applied,

actual data samples are collected. The features that

describe each data sample in the database are required

a priori. The values of these features make up a feature

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

1www.ijert.org

vector (Fi1, Fi2, … , Fim), where Fim is the value of the

mth feature of the ith job. The feature vector can be

thought of as a point in M-dimensional space. Like

other clustering algorithms, k-means requires that a

distance metric between points be defined. This

distance metric is used in step 3 of the algorithm given

above. A common distance metric is the Euclidean

distance. Given two sample points, pi and pj, each

described by their feature vectors, pi = (Fi1, Fi2, … ,

FiM) and pj = (Fj1, Fj2, … , FjM), the distance, dij,

between pi and pj is given by:

M

m
ij FFd jmim

1

2

)(

If the different features being used in the feature vector

have different relative values and ranges, the distance

computation may be distorted and hence can be scaled.

 The number of clusters to be found, along with the

initial starting point values are specified as input

parameters to the clustering algorithm. Given the initial

starting values, the distance from each sample data

point to each initial starting value is found using

equation. Each data point is then placed in the cluster

associated with the nearest starting point. New cluster

centroids are calculated after all data points have been

assigned to a cluster. Suppose that Cim represents the

centroid of the mth feature of the ith cluster. Then,

 n

F
C

i

j
jmi

im

ni

1

*

,

where F
*

i,jm is the mth feature value of the jth job

assigned to the ith cluster and where ni is the number of

data points in cluster i. The new centroid value is

calculated for each feature in each cluster. These new

cluster centroids are then treated as the new initial

starting values and steps 3-4 of the algorithm are

repeated. This continues until no data point changes

clusters or until a maximum number of passes through

the data set is performed.

3. Implementation of k-means in matlab

3.1 About Matlab
 MathWorks is the leading developer of mathematical

computing software for engineers and scientists. The

product of Mathworks, matlab is a programming

environment for algorithm development, data analysis,

visualization, and numerical computation[7]. Using

matlab, we can solve technical computing problems

faster than with traditional programming languages,

such as C, C++, and Fortran. We can use matlab in a

wide range of applications, including signal and image

processing, communications, control design, test and

measurement, financial modeling and analysis, and

computational biology. For a million engineers and

scientists in industry and academia, matlab is the

language of technical computing.

3.2 Data Sets
 For testing of k-means in matlab, we used the well

known UCI Machine Learning Repository. The UCI

Machine Learning Repository is among other things, a

collection of databases, which is widely used by the

research community of Machine Learning, especially

for the empirical algorithms analysis of this

discipline[6]. The two data sets used for

experimentation here are the iris plant dataset and the

Haberman's Survival Data.
 Iris plant Dataset: Total number of attributes is five

of which four (Sepal Length, Sepal Width, Petal Length

and Petal Width) are numeric and one the name of the

class. The total number of instances are 150 (50 in each

of the three classes). The three classes are Iris Setosa,

Iris Versicolour, and Iris Virginica. One class is

linearly separable from the other 2, the latter are not

linearly separable from each other.

 Haberman's Survival Data: The dataset contains

cases from a study that was conducted at the University

of Chicago's Billings Hospital on the survival of

patients who had undergone surgery for breast cancer.

It contains 4 attributes of numerical type (Age of the

patient, Year of operation, No. of positive axillary

nodes detected and Survival Status). Total number of

instances are 306.

3.3 Implementation Issues
 The matlab function used for k-means clustering is

idx = kmeans(data,k), which partitions the points in the

n-by-p data matrix data into k clusters. This iterative

partitioning minimizes the sum, over all clusters, of the

within-cluster sums of point-to-cluster-centroid

distances. Rows of data correspond to points, columns

correspond to variables. kmeans returns an n-by-1

vector idx containing the cluster indices of each point.

By default, kmeans uses squared Euclidean distances.

When data is a vector, kmeans treats it as an n-by-1

data matrix, regardless of its orientation.

>> opts = statset('Display','final');

[idx,ctrs] = kmeans(data,3,...

 'Distance','city',...

 'Replicates',5,...

 'Options',opts);

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

2www.ijert.org

 Like many other types of numerical minimizations,

the solution that kmeans reaches often depends on the

starting points. It is possible for kmeans to reach a local

minimum, where reassigning any one point to a new

cluster would increase the total sum of point-to-

centroid distances, but where a better solution does

exist. However, you can use the optional 'replicates'

parameter to overcome that problem.

 In iris dataset, for three clusters, specify five

replicates, and use the 'display' parameter to print out

the final sum of distances for each of the solutions.

5 iterations, total sum of distances = 159.3

5 iterations, total sum of distances = 159.3

5 iterations, total sum of distances = 159.3

5 iterations, total sum of distances = 159.3

4 iterations, total sum of distances = 159.3

 [idx,ctrs] = kmeans(data,k) returns the k cluster

centroid locations in the k-by-p matrix C.

 In our experiment only three of the features for iris

data set (sepal length, sepal width and petal length) are

taken for convenience. To plot a scattered graph we

use,

scatter3(data(:,1), data(:,2),data(:,3),10,idx,'filled')



 In haberman‟s dataset, for two clusters, specify five

replicates, and use the 'display' parameter to print out

the final sum of distances for each of the solutions.

[idx,ctrs] = kmeans(data,2,...

 'Distance','city',...

 'Replicates',5,...

 'Options',opts);

4 iterations, total sum of distances = 3682

4 iterations, total sum of distances = 3682

5 iterations, total sum of distances = 3684

4 iterations, total sum of distances = 3684

6 iterations, total sum of distances = 4286

 To plot a scattered graph for haberman‟s survival

data year, age and number of axillary nodes are used

for convenience.



4. Experimental Results
 Tests are done on the number of iterations in k-means

algorithm for reaching the minimum. The optional

'display' parameter is used to print information about

each iteration. „iter‟ is the number of iterations, „phase‟

is the number of phases in the algorithm, „num‟ is the

number of points exchanged and „sum‟ is the total sum

of the distances.

For Iris data set with three clusters,

>> [u,v,sumd,D]= kmeans(data,3,'display','iter');

 iter phase num sum

 1 1 150 144.909

 2 1 4 143.181

 3 1 5 140.999

 4 1 5 131.651

 5 1 11 107.511

 6 1 12 89.6144

 7 1 6 85.6414

 8 1 3 84.4773

 9 1 4 83.6055

 10 1 5 82.3714

 11 1 4 81.3672

 12 1 4 80.3157

 13 1 3 79.6817

4
5

6
7

8

2
3

4
5
1

2
3

4
5

6
7

S L SW

PL

20
40

60
80

100

55
60

65
70
0

10

20

30

40

50

60

Age Year

Nodes

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

3www.ijert.org

 14 1 3 79.1156

 15 1 1 78.9451

 16 2 0 78.9451

16 iterations, total sum of distances = 78.9408

 Notice that the total sum of distances decreases at

each iteration as kmeans reassigns points between

clusters and recomputes cluster centroids. In this case,

the second phase of the algorithm did not make any

reassignments, indicating that the first phase reached a

minimum. In some problems, the first phase might not

reach a minimum, but the second phase always will.

>>plot(iter,num,'Marker','.','MarkerSize',15,'MarkerEd

geColor','r') plots the graph illustrating the number of

iterations against the number of points exchanged.



>>plot(iter,sum,'Marker','.','MarkerSize',15,'MarkerEd

geColor','r') plots the graph illustrating the number of

iterations against the total sum of distances.



For Hyberman‟s Survival data set with two clusters,

>> [u,v,sumd,D]= kmeans(data,2,'display','iter');

 iter phase num sum

 1 1 306 35083.6

 2 1 29 31905.2

 3 1 18 30906.4

 4 1 8 30686.4

 5 1 3 30662.9

 6 1 2 30651.4

 7 1 2 30642.4

 8 1 3 30618.1

 9 1 2 30595.2

 10 1 1 30592.8

 11 2 0 30592.8

11 iterations, total sum of distances = 30592.8

 >> plot(iter,num,'Marker','.','MarkerSize',15)





 >> plot(iter,sum,'Marker','.','MarkerSize',15)



Test Results Show tha

 90-95% of the points are located in the second

iteration itself in both the cases.

1 2 3 4 5 6 7 8 9 10 11 3.05
3.1

3.15
3.2

3.25
3.3

3.35
3.4

3.45
3.5

3.55 x 10 4

No. of Iterations

T
o
ta

l
s
u
m

 o
f

d
is

ta
n
c
e
s

d
is

ta
n
c
e
s

1 2 3 4 5 6 7 8 9 10 11 0

50

100

150

200

250

300

350

No. of Iterations

N
o
.

o
f

p
o
in

ts
 e

x
c
h
a
n
g
e
d

e
x
c
h
a
n
g
e
d

0 2 4 6 8 10 12 14 16 0

50

100

150

No. of Iterations

N
o
.

o
f

p
o
in

ts
 e

x
c
h
a
n
g
e
d

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

4www.ijert.org

 The algorithm reaches minimum in the first phase

itself in both the cases.

5. Conclusion
 Our work with matlab is simple and efficient for

statistical analysis when compared to the work in java.

Though k-means clusters datasets using heuristics, it is

based on other clustering and location problems. Hence

there is a need to experiment, analyse, improve and

explore other algorithms. This can be done faster and

effectively using matlab.

6. References
[1] Tapas Kanungo, David M Mount,“An Efficient K-means

Clustering Algorithm: Analysis and Implementation.”
Pattern Analysis and Machine Intelligence, IEEE
Transactions on Pattern Analysis and Machine
Intelligence. Vol. 24, No. 7 (July 2002).

[2] Krishna.K,M. Murty, “Genetic K-means algorithm.”
IEEE Trans. Syst., Man, Cybern. B., Cybern., vol. 29, no.
3, pp. 433 – 439, Jun. 1999.

[3] Kaufman L. and P. Rouseeuw, “Finding Groups in Data:
An Introduction to Cluster analysis.” Wiley & Sons,
1990.

[4] Rui Xu, Donald Wunsch II, “Survey of Clustering
Algorithms.” IEE Transactions on Neural Networks,
Vol.16, No.3, May 2005.

[5] G.Babu, M. Murthy, “ A near-optimal initial seed value
selection in K-means algorithm using a genetic
algorithm”, Pattern Recognition, Vol.14, No.10, 1993.

[6] UCI. Asuncion, A. & Newman, D.J. (2007). UCI Machine
Learning Repository Irvine, CA: University of California,
School of Information and Computer Science.
[http://www.ics.uci.edu/~mlearn/MLRepository.html].

[7] Matworks. http: //www.matworks.com
[8] C. Aggarwal and P. Yu, “Redefining clustering for high-

dimensional applications” IEEE Trans. Knowl. Data
Eng., vol.14, No. 2, Feb. 2002.

[9] P.S. Bradley, Usama M.Fayyad, “Initial Points for k-
Means Clustering.” Advances in Knowledge Discovery
and Data Mining, MIT Press.

[10] Pang Tan,Vipin Kumar, Michael Steinbach,
“Introduction to Data Mining” Pearson Publication.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

5www.ijert.org

