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Abstract  

 Clustering problems arise in various areas like pattern 

recognition and pattern classification, image 

processing, bioinformatics etc. It is considered that the 

k-means algorithm is the best-known squared error 

based clustering algorithm. It is very simple and can be 

easily implemented in solving many practical problems. 

This paper presents the results of the analysis of 

running k-means algorithm in matlab with two UCI 

repository data sets, iris plant and haberman’s survival 

data.  
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1. Introduction  
    The aim of clustering is to partition a set of objects 

which have associated multi-dimensional attribute 

vectors into homogeneous groups such that the patterns 

within each group are similar. Several unsupervised 

learning algorithms have been proposed which partition 

the set of objects into a given number of groups 

according to an optimization criterion. One of the most 

popular and widely studied clustering methods is K-

means. In this paper an emphasis on understanding and 

analysis of k-means in matlab view is presented. 

   This paper is organized as follows: following the 

introduction Section2 gives an overview of k-means 

algorithm, Section3 introduces matlab, the datasets 

used and interprets the implementation of k-means in 

matlab, Section4 the experimental results and finally 

conclusion in Section5. 

 2. Overview of k-means clustering algorithm 
The k-means algorithm can work very well for 

compact and hyper spherical clusters. The time 

complexity of k-means is O(N K d)[4].  k-means can be 

used to cluster large data sets. It uses a two-phase 

iterative algorithm to minimize the sum of point-to-

centroid distances, summed over all k clusters: 

The first phase uses batch updates, where each 

iteration consists of reassigning points to their nearest 

cluster centroid, all at once, followed by recalculation 

of cluster centroids. This phase occasionally does not 

converge to solution that is a local minimum, that is, a 

partition of the data where moving any single point to a 

different cluster increases the total sum of distances. 

This is more likely for small data sets. The batch phase 

is fast, but potentially only approximates a solution as a 

starting point for the second phase.  

The second phase uses online updates, where points 

are individually reassigned if doing so will reduce the 

sum of distances, and cluster centroids are recomputed 

after each reassignment. Each iteration during the 

second phase consists of one pass though all the points. 

The second phase will converge to a local minimum, 

although there may be other local minima with lower 

total sum of distances. The problem of finding the 

global minimum can only be solved in general by an 

exhaustive choice of starting points, but using several 

replicates with random starting points typically results 

in a solution that is a global minimum. 

Given a data set, a desired number of clusters, k, 

and a set of k initial starting points, the k-means 

clustering algorithm finds the desired number of 

distinct clusters and their centroids.  A centroid is 

defined as the point whose coordinates are obtained by 

computing the average of each of the coordinates of the 

points of the samples assigned to the cluster.  Formally, 

the k-means clustering algorithm follows the following 

steps. 

1. Set k: Choose a number of desired clusters, k. 

2. Initialization: Choose k starting points to be used as 

initial estimates of the cluster centroids. These are 

the initial starting values. 

3. Classification: Examine each point in the data set and 

assign it to the cluster whose centroid is nearest to it.   

4. Centroid Calculation: When each point is assigned to 

a cluster, recalculate the new k centroids. 

5. Convergence condition: Repeat steps 3 and 4 until no 

point changes its cluster assignment, or until a 

maximum number of passes through the data set is 

performed.  

 

    Before the clustering algorithm can be applied, 

actual data samples are collected. The features that 

describe each data sample in the database are required 

a priori.  The values of these features make up a feature 
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vector (Fi1, Fi2, … , Fim), where Fim is the value of the 

mth feature of the ith job.  The feature vector can be 

thought of as a point in M-dimensional space.  Like 

other clustering algorithms, k-means requires that a 

distance metric between points be defined. This 

distance metric is used in step 3 of the algorithm given 

above.  A common distance metric is the Euclidean 

distance.  Given two sample points, pi and pj, each 

described by their feature vectors, pi = (Fi1, Fi2, … , 

FiM) and pj = (Fj1, Fj2, … , FjM), the distance, dij, 

between pi and pj is given by: 
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If the different features being used in the feature vector 

have different relative values and ranges, the distance 

computation may be distorted and hence can be scaled.  

    The number of clusters to be found, along with the 

initial starting point values are specified as input 

parameters to the clustering algorithm. Given the initial 

starting values, the distance from each sample data 

point to each initial starting value is found using 

equation. Each data point is then placed in the cluster 

associated with the nearest starting point.  New cluster 

centroids are calculated after all data points have been 

assigned to a cluster.  Suppose that Cim represents the 

centroid of the mth feature of the ith cluster.  Then,  
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where F
*

i,jm is the mth  feature value of the jth job 

assigned to the ith cluster and where ni is the number of 

data points in cluster i.  The new centroid value is 

calculated for each feature in each cluster.  These new 

cluster centroids are then treated as the new initial 

starting values and steps 3-4 of the algorithm are 

repeated.  This continues until no data point changes 

clusters or until a maximum number of passes through 

the data set is performed. 

3. Implementation of k-means in matlab  

3.1 About Matlab 
    MathWorks is the leading developer of mathematical 

computing software for engineers and scientists. The 

product of Mathworks, matlab is a programming 

environment for algorithm development, data analysis, 

visualization, and numerical computation[7]. Using 

matlab, we can solve technical computing problems 

faster than with traditional programming languages, 

such as C, C++, and Fortran. We can use matlab in a 

wide range of applications, including signal and image 

processing, communications, control design, test and 

measurement, financial modeling and analysis, and 

computational biology. For a million engineers and 

scientists in industry and academia, matlab is the 

language of technical computing. 

3.2 Data Sets 
    For testing of k-means in matlab, we used the well 

known UCI Machine Learning Repository. The UCI 

Machine Learning Repository is among other things, a 

collection of databases, which is widely used by the 

research community of Machine Learning, especially 

for the empirical algorithms analysis of this 

discipline[6]. The two data sets used for 

experimentation here are the iris plant dataset and the 

Haberman's Survival Data. 
    Iris plant Dataset: Total number of attributes is five 

of which four (Sepal Length, Sepal Width, Petal Length 

and Petal Width) are numeric and one the name of the 

class. The total number of instances are 150 (50 in each 

of the three classes). The three classes are Iris Setosa, 

Iris Versicolour, and Iris Virginica. One class is 

linearly separable from the other 2, the latter are not 

linearly separable from each other.  

    Haberman's Survival Data: The dataset contains 

cases from a study that was conducted at the University 

of Chicago's Billings Hospital on the survival of 

patients who had undergone surgery for breast cancer. 

It contains 4 attributes of numerical type (Age of the 

patient, Year of operation, No. of positive axillary 

nodes detected and Survival Status). Total number of 

instances are 306. 

3.3 Implementation Issues 
    The matlab function used for k-means clustering is 

idx = kmeans(data,k), which partitions the points in the 

n-by-p data matrix data into k clusters. This iterative 

partitioning minimizes the sum, over all clusters, of the 

within-cluster sums of point-to-cluster-centroid 

distances. Rows of data correspond to points, columns 

correspond to variables. kmeans returns an n-by-1 

vector idx containing the cluster indices of each point. 

By default, kmeans uses squared Euclidean distances. 

When data is a vector, kmeans treats it as an n-by-1 

data matrix, regardless of its orientation. 

>> opts = statset('Display','final'); 

[idx,ctrs] = kmeans(data,3,... 

                    'Distance','city',... 

                    'Replicates',5,... 

                    'Options',opts); 
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    Like many other types of numerical minimizations, 

the solution that kmeans reaches often depends on the 

starting points. It is possible for kmeans to reach a local 

minimum, where reassigning any one point to a new 

cluster would increase the total sum of point-to-

centroid distances, but where a better solution does 

exist. However, you can use the optional 'replicates' 

parameter to overcome that problem. 

    In iris dataset, for three clusters, specify five 

replicates, and use the 'display' parameter to print out 

the final sum of distances for each of the solutions.  

5 iterations, total sum of distances = 159.3 

5 iterations, total sum of distances = 159.3 

5 iterations, total sum of distances = 159.3 

5 iterations, total sum of distances = 159.3 

4 iterations, total sum of distances = 159.3 

 

 [idx,ctrs] = kmeans(data,k) returns the k cluster 

centroid locations in the k-by-p matrix C. 

    In our experiment only three of the features for iris 

data set (sepal length, sepal width and petal length) are 

taken for convenience.  To plot a scattered graph we 

use, 

scatter3(data(:,1), data(:,2),data(:,3),10,idx,'filled') 

 



    In haberman‟s dataset, for two clusters, specify five 

replicates, and use the 'display' parameter to print out 

the final sum of distances for each of the solutions.  

[idx,ctrs] = kmeans(data,2,... 

                    'Distance','city',... 

                    'Replicates',5,... 

                    'Options',opts); 

 

4 iterations, total sum of distances = 3682 

4 iterations, total sum of distances = 3682 

5 iterations, total sum of distances = 3684 

4 iterations, total sum of distances = 3684 

6 iterations, total sum of distances = 4286 

    To plot a scattered graph for haberman‟s survival 

data year, age and number of axillary nodes are used 

for convenience. 

 



4. Experimental Results 
   Tests are done on the number of iterations in k-means 

algorithm for reaching the minimum. The optional 

'display' parameter is used to print information about 

each iteration. „iter‟ is the number of iterations, „phase‟ 

is the number of phases in the algorithm, „num‟ is the 

number of points exchanged and „sum‟ is the total sum 

of the distances. 

 

For Iris data set with three clusters, 

>> [u,v,sumd,D]= kmeans(data,3,'display','iter'); 

  iter  phase      num          sum  

     1      1      150      144.909   

     2      1        4      143.181  

     3      1        5      140.999  

     4      1        5      131.651   

     5      1       11      107.511  

     6      1       12      89.6144 

     7      1        6      85.6414 

     8      1        3      84.4773 

     9      1        4      83.6055 

    10      1        5      82.3714 

    11      1        4      81.3672 

    12      1        4      80.3157 

    13      1        3      79.6817 
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    14      1        3      79.1156 

    15      1        1      78.9451 

    16      2        0      78.9451 

16 iterations, total sum of distances = 78.9408 

    Notice that the total sum of distances decreases at 

each iteration as kmeans reassigns points between 

clusters and recomputes cluster centroids. In this case, 

the second phase of the algorithm did not make any 

reassignments, indicating that the first phase reached a 

minimum. In some problems, the first phase might not 

reach a minimum, but the second phase always will.  

>>plot(iter,num,'Marker','.','MarkerSize',15,'MarkerEd

geColor','r')  plots the graph illustrating the number of 

iterations against the number of points exchanged. 

 



>>plot(iter,sum,'Marker','.','MarkerSize',15,'MarkerEd

geColor','r')  plots the graph illustrating the number of 

iterations against the total sum of distances. 

 

 

 

 

 

 

 



For Hyberman‟s Survival data set with two clusters, 

 

>> [u,v,sumd,D]= kmeans(data,2,'display','iter'); 

   

     iter  phase      num          sum 

     1      1      306      35083.6 

     2      1       29      31905.2 

     3      1       18      30906.4 

     4      1        8      30686.4 

     5      1        3      30662.9 

     6      1        2      30651.4 

     7      1        2      30642.4 

     8      1        3      30618.1 

     9      1        2      30595.2 

    10      1        1      30592.8 

    11      2        0      30592.8 

11 iterations, total sum of distances = 30592.8 

 

 >> plot(iter,num,'Marker','.','MarkerSize',15) 

 





  >> plot(iter,sum,'Marker','.','MarkerSize',15)



Test Results Show tha

 90-95% of the points are located in the second 

iteration itself in both the cases. 
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 The algorithm reaches minimum in the first phase 

itself in both the cases. 

5. Conclusion 
    Our work with matlab is simple and efficient for 

statistical analysis when compared to the work in java. 

Though k-means clusters datasets using heuristics, it is 

based on other clustering and location problems. Hence 

there is a need to experiment, analyse, improve and 

explore other algorithms. This can be done faster and 

effectively  using matlab. 
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