
AN IMPROVED APPROACH IN SOFTWARE DEVELOPMENT LIFE

CYCLE: A NEW MODEL

Author:-Jyoti, student of M.techAtDept:-Computer Science

and Engineering, College:-Gurgaon Institute of Technology

and Management, Bilaspur,

Co-Author:- rajeshyadavassistant professor At Dept:-

Computer Science and Engineering, College:-Gurgaon

Institute of Technology and Management, Bilaspur,

2.shivani rajoria,assistant professor At Dept:-Computer

Science and Engineering, College:-Gurgaon Institute of

Technology and Management, Bilaspur

Abstract:-We define the new SDLC model that is

developed to minimize the test effort of software project.

This model is enhanced version of V-Model. The concept

of stubs and drivers is used to minimize the test and efforts

by test point analysis. The main feature of our model is to

use the stubs and drivers for reusability of code to minimize

the test effort.

Main Goals of the proposed model:
 Enhance the reusability of code.

 Minimize the test effort estimation.

A software testing model summarizes how you should

think about test development. It tells you how to plan the

testing effort, what purpose tests serve, when they’re

created, and what sources of information you use to create

them. A good model guides your thinking; a bad one warps

it. V-Model is the basis for my work as it is a software

development standard model. In the V-Model the

development and testing are parallel activities that take up

simultaneously.

V-Model is the best model for development as it is very

easy to use and understood and each phase has some

specific deliveries and less chances of downward flow of

defects.

This reduces the cost of writing the drivers and stubs on a

per-use basis and the cost of retesting is better controlled.

We are using this approach as the stubs and drivers are

reused then the less coding is to be done, and less will be

the test effort for test the code.

1. INTRODUCTION

1.1 ESTIMATION

Adequate estimation of software development,

maintenance and testing effort is essential, as absence

of it leads to programmers compromising on quality.

Ineffective estimating leads to schedule and cost

overruns. The size estimate is based on customer

requirements, proposal, system specifications,

approach used, user and system requirement

description and any design documentations provided

by the customer. Effective test effort estimation is

one of the most challenging and important activity in

software testing. Many popular models for test effort

estimation in use today. One of the popular methods

is FPA.

1.1.1 FPA TECHNIQUE

The FPA technique estimates the development

function points, which also include white-box testing

effort. FPA is a method for measuring the size of the

software on the customer’s point of view and

describes a unit of work suitable for measuring the

size business application software. FPA can be used

to measure productivity across various tools and

environments. A basic knowledge of the FPA method

is necessary to understand test point and maintenance

analysis. The most common approach to unit testing

Requirements

Low level
Design

Module
implementation

Unit testing(unit a)

Integration
testing

System
integration
testing

Acceptance
testing

High level
Design

sb
1

sb
2

sb
3

U
a

U
b

U
c

Test plan document

Module
implementation

Coding

Test design document

Test client
generation

Testing
test client

STLC STLC

SDLC

Fig. 1:V-Model when stubs and driver are reused for testing

requires drivers and stubs to be written. The driver

simulates a calling unit and the stub simulates a

called unit. It allows for automation of the testing

process, reduces difficulties of discovering errors

contained in more complex pieces of the application,

and test coverage is often enhanced because attention

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

1www.ijert.org

is given to each unit. Finding the error (or errors) in

the integrated module is much more complicated than

first isolating the units, testing each, then integrating

them and testing the whole.

Driver: A program that calls the interface procedures

of the module being tested and reports the results.

Stub: A program that has the same interface

procedures as a module that is being called by the

module being tested.

1.1.2 TPA TECHNIQUE

While white-box test activities are included in the

size calculation produced by FPA, the black box

testing activities are not included in size computation

of FPA. TPA is one such method which can be

applied for estimating test effort in black-box testing.

The goal of this technique is to outline all major

factors that affect testing projects and to ultimately

do accurate test effort estimation. If one has a

predetermined estimate of test hours As per TPA

method, there are two kinds of test points-Dynamic

and Static.

Fig 2: Execution of a single unit

2. PROPOSED MODEL

As FPA is doing white box testing only, we need the

TPA model to find the black box testing. The FP

count we use to calculate the TPA is estimated earlier

in the FPA technique. As per the FPA technique,

there are two sets of elementary processes-transaction

function points (data in motion), data function points

(data in rest).TPA is one such method which can be

applied for estimating test effort in black box testing.

It is a 6-step approach to test estimation and

planning. This approach has a good potential for

providing test estimation for various projects.

Ineffective test effort estimation leads to schedule

and cost overruns. This is due to lack of

understanding of development process and

constraints faced in this process. Drivers and stubs

can be reused so the constant changes that occur

during the development cycle can be retested

frequently without writing large amounts of

additional test code. In effect, this reduces the cost of

writing the drivers and stubs on a per-use basis and

the cost of retesting is better controlled. We are using

this approach as the stubs and drivers are reused then

the less coding is to be done, and less will be the test

effort for test the code.

2.1 TPA APPROACH FOR ESTIMATION

2.1.1. Computing Dynamic Test Points (TPs)

Dynamic test points are related to individual function

and are based on FPA transaction function points.

Dynamic test points are computed by summing the

product of Transaction Function points (FPt),

Dependency Factor (Df), and Dynamic Quality

Characteristics (Qd) for individual function points.

Dependency factor (Df): A rating is assigned for the

individual functions points. A useful heuristics is to

have 25% functions in low, 50% in medium and 25%

in high category.

Fig 3: Derived TPA model

 User Importance of the functions: Rating—3-

low, 6-medium, 12-high.

 Usage Intensity of the functions: Rating—2-

low, 4-medium, 12-high.

 Interfacing with other functions: Rating—2-

low, 4-medium, 8-high.

 Complexity of function: Rating—3-low, 6-

medium, 12-high.

These ratings are added and divided by 20 (sum of

medium rating) to arrive at weighted rating, and

uniformity factor could be 0.6 or 1. The uniformity is

taken at 0.6 in case of second occurrence of unique

function, where test specs can be reused else,

uniformity factor is taken at 1.Dependency factor is

calculated by multiplying weighted rating with

uniformity factor.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

2www.ijert.org

Dynamic quality characteristics (Qd): This

calculation is based on rating and weighing factor for

the variables-suitability, security, usability,

efficiency. Weighing factors for these four variables

are 0.75, 0.05, 0.10, and 0.10 respectively. For each

of these variables the rating is (0-not important, 3-

relatively unimportant, 4-medium importance,5-very

important, 6-extremely important.

Total dynamic test points equal sum of FPt* Df*Qd

for individual functions.

2.1.2. Computing Static Test Points

Static test points are related to overall FP of the

system and static quality characteristics of the

system. Overall FP of the system is assumed at

minimum 500(in case it is below 500)recommends

functionality, usability, reliability, efficiency,

portability and maintainability as quality

characteristics and several sub- characteristics within

these as desirable. For each quality characteristics

statistically tested, a value of 16 is added to Qi.

2.1.3. Total test points

Total test points are equal to sum of Dynamic and

Static test points.

TP = (Sum of FPt* Df*Qd for individual functions) +

(Total FP* Qi/500)

2.1.4. Productivity factor (P)

Indicates tests hours required per test point. It ranges

from 0.7(if test team is highly skilled) to 2(if test

team has insufficient skills) hours per test point.

Productivity factor requires historical data of the

projects and it can vary from one organization to

another organization. So, this factor can be called

organization dependent factor.

2.1.5. Environmental factor (E)
The number of test hours required for each test point

is not only influenced by productivity factor but also

by the environmental factor. The following

environmental factor might affect the testing effort:

test tools, development testing, test basis, test ware,

development environment, and test environment.

Environmental factor is calculated by adding the

rating on all the above environmental factors and

divided by value 21(the sum of nominal ratings).

2.1.6. Primary test hours

The number of primary test hours is obtained by

multiplying the number of test points by productivity

factor (P) and environment factor (E).

Primary test hours = Test points (TP)*P*E

2.1.7. Planning and control allowance

The standard value of this is 10%.this value may be

increased or decreased depending on two factors

Team size: The bigger the team, the more effort it

will take to manage the project. The ratings for this

value are:

3- if team consists of up to 4 persons, 6- if team

consists of up to 5 and 10 persons, 12- if team

consists of more than 10 persons.

Management tools: More the number of tools used

to automate management and planning less are the

amount of effort required. The ratings for this value

are:

2-both an automated time registration system and

automated defect tracking system are available, 4-

either an automated time registration system or

automated defect tracking system is available, 8- no

automated systems are available.

Planning and control allowance =Team size factor

+Management tools factor

2.1.8. Total test hours

The total number of test hours is obtained by adding

primary test hours and the planning and control

allowance.

Total test hours= Primary test hours+ Planning and

control allowance

In the many approaches to test effort estimation, the

use of stubs and drivers may be one. This could

become a robust method of estimation over a period

of time. The estimation technique is not claimed to be

rigorous, but the approach offers practical advantages

over techniques currently in use.

3.RESULTS
This chapter consist an example of the TPA method.

This chapter describes how we can use the TPA

method to find the test effort and produce a more cost

effective and reliable software. Stubs and drivers are

reused in this model so that time and cost can be

reduced as less test efforts are applied when we reuse

the stubs and drivers.The drivers and stubs may have

bugs themselves that result in a lot of additional

debugging effort. Automationof code generation for

drivers and stubs can result in a useful saving of

effort for thetester. It also will ensure that there are

no defects in the stubs or drivers that results

inavoidable loss of time.

DCM Data Systems Ltd. had a number of software

products. One of the newly developed products was

installed locally and abroad. It is found that some of

the program functionality claimed did not adequately

function. The management of the company then

handed over the project to a LEVEL 5 company---

KR V&V. KR V&V decided to use TPA method to

estimate the testing effort. System study by KR V

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

3www.ijert.org

and V requests a 2 day systems and requirements

study to understand the scope of testing work and

assess the testing requirement to arrive at TPA

estimate. Earlier experience of KR V and V using

TPA technique suggests it requires 1.4 tests per hours

per unit test point. FP count is estimated earlier by

using FPA estimate technique and then applies the

TPA method to calculate the testing effort and

compare the result, when the coding is done without

writing stubs and drivers and when stubs and drivers

are written and reused for minimized the cost of

rewriting code again and again. The data count is 650

and transaction count is 600 for this project.

All this data of the company is used in this paper to

calculate the test point analysis.

User importance (Up): It implies how important the

function to the users related to other system function

is

 .Table 4.1: User importance

Usage intensity (Ui): It depicts how many users

process a function and how often.

Weights:

Weight

without

stubs

and

drivers

Weight

with

stubs and

drivers

Category Rating

20% 20% Low importance 3

60% 60% Medium importance 6

20% 20% High importance 12

Table 4.2: Usage intensity

Interfacing (I): It implies how much one function

affects other parts of the system.

Weights:
Weight without

stubs and

drivers

Weight

with stubs

and

drivers

Category Rating

50% 25% Low

interfacing

2

 25% Medium

interfacing

4

50% 50% High

interfacing

8

Table 4.3: Interfacing

Complexity (C): The complexity of a function is

determined on the basis of its algorithm. The

complexity rating of the function depends on the

number of conditions in the functions algorithm.

Weights:
Table 4.4: Complexity

Uniformity factor (U): It checks the reusability of

the code.

Weights:
Weight

without

stubs and

drivers

Weight with

stubs and

drivers

Category Rating

40% 60%
Repetitive

test cases
0.6

60% 40%
Unique

testcases
1

Table 4.5: Uniformity factor

Dynamic quality characteristics (Qd): Four

dynamically explicit measurable quality

characteristics are defined in TPA.

Usability –Characteristics relating to the effort

needed for use and on the individual assessment of

such use by a set of users.

Weights:

Table 4.7: Usability

Suitability – This characteristics relating to the

achievement of the basic purpose for which the

software is being prepared.

Weights:

Table 4.8: Suitability

Security –Ability to prevent unauthorized access.

Weights:

table 4.9 security

Efficiency- characteristics related to the relationship

between the level of performance of software and the

amount of resources used.

Weights:

Weight without

stubs and

drivers

Weight with

stubs and

drivers

Category Rating

10% 10%
Low

intensity
3

70% 70%
Medium

intensity
6

20% 20%
High

intensity
12 Weight

without stubs

and drivers

Weight

with stubs

and drivers

Category Rating

0 0
Low

complex
3

100% 100%
Medium

complex
6

0 0
High

complex
12

Weight without

stubs and

drivers

Rating

Weight with

stubs and

drivers

Rating

Highly

important
5

Highly

important
5

Weight without

stubs and

drivers

Rating

Weight with

stubs and

drivers

Rating

Medium

important
4

Extremely

important
6

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

4www.ijert.org

Table 4.10: Efficiency

3.1 CALCULATION OF TPA WITHOUT STUBS

AND DRIVERS:

1. Dynamic test point: Dt= FPf* Df * Qd

Where, FPf =Transaction FP = 600 (given)

Df = Dependency Factor = Weighted rating on

Importance to user, usage intensity, interfacing of

functions, complexity of functions.

 Rating on user importance(Up):

Up= 3*20%+6*60%+12*20%

 =0.6+3.6+2.4 =6.6

 Rating on usage intensity(Ui):

Ui=2*10%+4*70%+12*20%

= 0.2+2.8+2.4 =5.4

 Rating on interfacing (I):

 I= 2*50%+8*50% =5

 Rating on Complexity (C):

 C= 6(nominal complexity)

Df= (Up + Ui+ I + C)/ 20* U

U =Uniformity Factor= 60%*1+40%*0.

= 0.6+ 0.24 =0.84

Df= (Up + Ui+ I + C)/ 20* U

Df = (6.6+5.4+5+6)/20 *0.84 =0.97

Qd = Dynamic quality characteristics = weighted

score on following 4 quality characteristics:

 Suitability(weight=0.75, medium

importance—rate =4)

 Security (weight=0.05, extremely

importance—rate =6)

 Usability(weight=0.10, highly importance—

rate =5)

 Efficiency(weight=0.10, medium

importance—rate=4)

So,

weighted score = (0.75*4+0.05*6+0.10*5+0.10*4)

Qd = 3+0.3+0.5+0.4= 4.2

 Hence,

Dt =FPt *Df*Qd

Dt =600 *0.97 *4.2=2444.4

2. Static test point

 St=total FP * Qi/500

 Total FP = Data FP+ Transaction FP= 650+600=

1250

 St=total FP * Qi/500

 =1250*80/500 =200

3. Total test point
 TP= Dt+ St = 2444.4+200= 2644.4

4. Productivity Factor (PF) = 1.4 tests hours per test

point

Rating on test tools=1

Rating on development testing =4

Rating on test basis = 6

Rating on development environment =2

Rating on test environment =2

Rating on test ware =2

5. Environmental Factor

 EF =1+4+6+2+2+2/21 =0.81

6. Primary test hours

P=TP* PF *EF=2644*1.4*0.81 = 2999

Planning control allowance =6%+2% = 8%

7. Total test hours = P+ 8% of P

=2999+8% of 2999 =

3.2 CALCULATION OF TEST HOURS WITH

STUBS AND DRIVERS:

1. Dynamic test point: Dt= FPf* Df * Qd

Where, FPf=Transaction FP = 600 (given)

Df = Dependency Factor = Weighted rating on

Importance to user, usage intensity, interfacing of

functions, complexity of functions.

 Rating on user importance(Up):

 Up= 3*20%+6*60%+12*20%

=0.6+3.6+2.4 =6.6

 Rating on usage intensity(Ui):

Ui =2*10%+4*70%+12*20%

= 0.2+2.8+2.4 =5.4

 Rating on interfacing (I):

I= 2*25%+4*25%+8*50% =5.5

 Rating on Complexity (C):

 C= 6(nominal complexity)

Df= (Up + Ui+ I + C)/ 20* U

U =Uniformity Factor= 60%*0.6+40%*1

 = 0.36+ 0.4 =0.76

Df= (Up + Ui+ I + C)/ 20* U

Df = (6.6+5.4+5.5+6)/20 *0.76 =0.89

Qd = Dynamic quality characteristics = weighted

score on following 4 quality characteristics:

 Suitability(weight=0.75, medium

importance—rate =4)

 Security (weight=0.05, extremely

importance—rate =6)

 Usability(weight=0.10, highly importance—

rate =5)

 Efficiency(weight=0.10, extremely

importance—rate=6)

so, weighted score =

(0.75*4+0.05*6+0.10*5+0.10*6)

Weight without

stubs and

drivers

Rating

Weight with

stubs and

drivers

Rating

Extremely

important
6

Extremely

important
6

Weight without

stubs and drivers
Rating

Weight with

stubs and

drivers

Rating

Medium

important
4

Medium

important
4

3239

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

5www.ijert.org

Qd = 0.6+0.3+3+0.5= 4.4

Hence,

Dt =FPt *Df*Qd

Dt =600 *0.89 *4.4=2349.6

2. Static test point

St=total FP * Qi/500

Total FP = data FP+ transaction FP= 650+600= 1250

St=total FP * Qi/500

 =1250*80/500 =200

3. Total test point

 TP= Dt+ St = 2349.6+200= 2549.6

4. Productivity Factor (PF) = 1.4 tests hours per test

point

Rating on test tools=1

Rating on development testing =4

Rating on test basis = 6

Rating on development environment =2

Rating on test environment =2

Rating on test ware =2

5. Environmental Factor

 EF=1+4+6+2+2+2/21 =0.81

6. Primary test hours

 P=TP* PF *EF=2549.6*1.4*0.81 = 2891

Planning control allowance =6%+2% = 8%

7. Total test hours = P+ 8% of P

=2891+8% of 2891 =

4.CONCLUSION AND FUTURE WORK

Testing effort is the number of hours that is required

for the testingprocess of software that is being

developed. Effective test effort estimation is one of

the most challenging and important activity in

software testing. There are many popular models for

test effort estimation in vogue today. Ineffective test

effort estimation leads to schedule and cost overruns.

This is due to lack of understanding of development

process and constraints faced in the process. But we

believe that our approach overcomes all these

limitations. My dissertation work is aimed to find out

that how effectively we can minimize the test effort

for a project. We used the TPA method for our

proposed work. Test Case Point Analysis is a tool to

estimate the effort required to test a software project,

based on the number of use cases and the other

features of object-orientation used in software

development. Testing is an important activity that

ensures the quality of the software. TCP is such a

method which is almost equal to the actual effort.

Here is an area where further work is necessary,

obviously. However, there are methods that make it

possible to estimate effort required for executing

Testing projects. Test Points are slowly emerging for

sizing Software Testing projects. In the many

approaches to test effort estimation, the use of stubs

and drivers may be one. Drivers and stubs can be

reused so the constant changes that occur during the

development cycle can be retested frequently without

writing large amounts of additional test code. In

effect, this reduces the cost of writing the drivers and

stubs on a per-use basis and the cost of retesting is

better controlled. We are using this approach as the

stubs and drivers are reused then the less coding is to

be done, and less will be the test effort for test the

code. Either it takes more code writing for stubs or

drivers but the reusability of these minimizes the

overall coding and the test effort also. So using the

stubs and drivers approach is more beneficialthan

without them. This could become a robust method of

estimation over a period of time. It leads to accurate

estimation of test effort by this estimation we can

easily calculate the test effort for the each phases of a

testing life cycle. We can apply this estimation to

find the estimated test plan and it is also a very

powerful method to generate realistic test cases.

5. REFERENCES

[1] Nick Jenkins, et. el, ―A Software Testing primer, An

Introduction to Software testing‖, e-book, 2008.
[2] Dr.-Ing Michael Kaiser, et. el., ―The V Model of project

execution specification phases & QA, iXIT Engineering

Technology‖, GmbHQA-IX04-ProjExecution-
&BDB01-0003, Feb 2006.

[3] Raymond Lewallen, et. el., ― Software Development

Life Cycle‖, 2005.
[4] Hee-GyunYeom and Sun-Myung Hwang, et. el., ― A

Study on Tool for supporting the Software Process

Improvement‖, International Journal of Software
Engineering and Its Applications,Vol.3, No.2, April

2009.

[5] Jakobsson, et. el., ― V-Model Testing –Process model
configuration using SVG‖, PMoC 14/04/2003, Version

1.5.

[6] Goldsmith, Robin F, et. el., ―Software Development
Magazine‖, 4-part series, July-October, 2002.

[7] Brian Marick, et. el., ― New models for test

development, Reliable Software Technologies, 1999.
Version 1.0 of 03/28/00.

[8] Christian Bucanac, et. el., ― The V Model‖, University

of KarlskronaRonneby, 1999.
[9] IABG Technology: V-Model, Lifecycle Process Model,

1999.

[10] Sira Vegas, Natalia Juristo, and Victor R. Basili, et. el.,
― Maturing Software Engineering Knowledge through

Classifications: A Case Study on Unit Testing

Techniques‖, IEEE Transactions on Software
Engineering, Vol. 35, No. 4, July/August 2009.

[11] Jaya Gupta Asanani, et. el., ― V-Model (Software

Development)‖.

[12] Dr. Dwayne L. Knirk, et el, ― software Testing Process

Improvements‖, Thirteenth International Conference on

Testing Computer, Software Sandia National
Laboratories,NM 87185-0638.

[13] Patrick Oladimeji, Dr. Markus Roggenbach, and Prof.

Dr. HolgerSchlingloff, et. el., ― Levels of Testing,
Advance topics in Computer Science‖, University of

Wales.

[14] Bor-Yuan Tsai, Simon Stobart, Norman Parrington and
Barrie Thompson, et. el., ―Iterative Design and Testing

3122

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

6www.ijert.org

within the Software Development Life Cycle‖,

Software Quality Journal, 6(4),pp295-309. December
1997.

[15] Mary Jean Harrold, et. el., ― Testing: a roadmap,In

Proceedings of the conference on the future of software
engineering‖,pp 61–72. ACM Press, 2000.

[16] Vijay.N,et.el., ―Little Joe Model of Software Testing‖,

Software Solutions Lab, Honeywell, Bangalore, PACT-
Product Assurance and Capability Team.

[17] Andreas Leitner, IlincaCiupa, Manuel Oriol, Bertrand

MeyerArnoFiva, et. el., ― Contract Driven Development
=Test Driven Development – Writing Test Cases‖,

ESEC/FSE’07, September 2007, ACM 978-1-59593-

811-4/07/0009.
[18] Kuhn, D.R. and D.R. Wallace, et. el., ― Software Fault

Interactions and Implications for Software Testing‖,

IEEE, Trans. Softw. Engg, pp 418-421, 2004.
[19] MaaretPyhäjärvi, KristianRautiainen and JuhaItkonen,

et. el., ―Increasing Understanding of the Modern

Testing Perspective in Software
ProductDevelopmentProjects,Proceedings of the 36th

Hawaii International Conference on System Sciences –

2003.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

7www.ijert.org

