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Abstract 

Colouring is one of the important 

branches of graph theory and has attracted the 

attention of almost all graph theorists, mainly 

because of the four colour theorem. This paper is 

concerned with circular colourings of hypergraphs 

and it is based on the results of Bondy and Hell. 

This paper also includes, few examples for this 

circular colourings of hypergraphs. 
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1.Indroduction 

 
In what follows hypergraphs are simple 

and finite unless otherwise specified. A hypergraph 

is an ordered triple  𝐻 = (𝑉, 𝐸, 𝜙), where 𝑉 is a set 

of objects called vertices, 𝐸 is a set of objects 

called edges, and the incidence function 𝜙 maps E 

to the set of non-empty subsets of 𝑉. If 𝜙 is one-to-

one, and no one-subset of 𝑉 is in its range, then the 

hypergraph 𝐻 is called simple. The hypergraph 𝐻 

is called finite if its vertex set 𝑉 is finite. A finite, 

simple hypergraph can be defined as an ordered 

pair 𝐻 =  (𝑉, 𝐸), where 𝑉 is a finite set of objects 

called vertices and 𝐸 is a set of subsets of 𝑉, each 

of which contains at least two vertices. 

A subhypergraph of a hypergraph 𝐻 is a 

hypergraph 𝐻′ such that   𝑉 (𝐻′) ⊆  𝑉(𝐻) and 

𝐸(𝐻′)  ⊆  𝐸(𝐻). I  𝑋 ⊆  𝑉(𝐻) and 𝐻′ is the 

hypergraph with vertex set 𝑉 (𝐻′)  =  𝑋 and edge 

set 𝐸(𝐻′ ) =  𝑒 ∶ 𝑒 ∈  𝐸(𝐻) 𝑎𝑛𝑑 𝑒 ⊆  𝑋 , then 𝐻′ 
is the subgraph of 𝐻 induced by 𝑋. A hypergraph is 

called 𝑘-uniform if every edge has cardinality 𝑘 . A 

simple graph 𝐺 =  (𝑉, 𝐸) is therefore a 2-uniform 

hypergraph and will sometimes be regarded as 

such. 

Let 𝐻 =  (𝑉, 𝐸) be a hypergraph. A 𝑘-

colouring of H is a function   𝑐 ∶  𝑉 →  𝑍𝑘  such 

that no edge of 𝐻 is monochromatic. Thus, if 𝐻 has 

a   𝑘-colouring, then every edge 𝑒 ∈  𝐸 contains 
vertices 𝑥 and 𝑦 such that, 𝑐(𝑥)  ≠  𝑐(𝑦). For 2-

uniform hypergraphs (i.e. undirected graphs), this 

is a restatement of the definition of a 𝑘-colouring 

of a graph. A 𝑘-colourable hypergraph is one that 

has a 𝑘-colouring. Every hypergraph 𝐻 =  (𝑉, 𝐸) 

is   𝑉 - colourable: assign a different colour to 

every vertex of 𝐻. The smallest integer 𝑘 for which 

𝐻 is 𝑘-colourable is called the chromatic number of 

𝐻, and is denoted by 𝜒(𝐻). 
An independent set in a hypergraph 

𝐻 =  (𝑉, 𝐸) is a subset 𝑋 ⊆  𝑉 such that no edge 

𝑒 ∈  𝐸 is a subset of 𝑋. In a  𝑘-colouring of 𝐻, the 

set 𝑉𝑖  of vertices that are assigned colour 𝑖 is an 

independent set. 

Let 𝐻1 and 𝐻2 be hypergraphs. A 

homomorphism of 𝐻1 to 𝐻2 is a function              

 𝑓 ∶  𝑉(𝐻1)  →  𝑉(𝐻2) such that 𝑓(𝑒)  ∈  𝐸(𝐻2) for 

every edge 𝑒 ∈  𝐸(𝐻1). If there exists a 

homomorphism of 𝐻1 to 𝐻2, then it is denoted as 

𝐻1  →  𝐻2, or   𝑓 ∶  𝐻1  →  𝐻2  to emphasize the 

name, 𝑓, of the mapping. If 𝑓 ∶  𝐻1  →  𝐻2 then, for 

every vertex 𝑕 ∈  𝑉(𝐻2), the set 𝑓-1
(𝑕) is an 

independent set. Let 𝑘 and 𝑑 be positive integers 

such that 𝑘 ≥  2𝑑. 

 A (𝑘, 𝑑)-colouring of a hypergraph 

𝐻 =  (𝑉, 𝐸) is a function 𝑐 ∶  𝑉 →  𝑍𝑘  such that 

for each edge 𝑒 there exist a pair of vertices 

{𝑢, 𝑣} ∈  𝑒 such that |𝑐(𝑢) –  𝑐(𝑣)|𝑘  ≥  𝑑. The 

infimum of the set of ratios 𝑘/𝑑 such that 𝐻 has a 

(𝑘, 𝑑)-colouring is called the circular chromatic 

number of 𝐻 and is denoted by 𝜒𝑐(𝐻). A       

(𝑘, 𝑑)-colouring of a graph 𝐺 is a function                        

𝑐 ∶  𝑉(𝐺)  →  𝑍𝑘  such that if 𝑢𝑣 ∈ 𝐸(𝐺) then 

|𝑐(𝑢) –  𝑐(𝑣)|𝑘  ≥  𝑑. The circular chromatic 

number of 𝐺, denoted 𝜒𝑐(𝐻) is the infimum of the 

set of ratios 𝑘/𝑑 such that 𝐺 has a (𝑘, 𝑑)-colouring.  

For positive integers 𝑘 and  𝑑 with 

𝑘 ≥  2𝑑, we define 𝐻𝑑
𝑘  to be the hypergraph with 

vertex set 𝑍𝑘  and edge set consisting of the subsets 

𝑋 of 𝑍𝑘  for which there exist vertices 𝑢, 𝑣 ∈  𝑋 

such that |𝑢 –  𝑣|𝑘  ≥  𝑑. This generalizes the 

corresponding concept for graphs: for positive 

integers 𝑘 and 𝑑 with 𝑘 ≥  2𝑑, the graph 𝐺𝑑
𝑘   is 

defined to have vertex set 𝑉 =  𝑍𝑘  and edge set  

𝐸 =  {𝑥𝑦 ∶   𝑥 − 𝑦 𝑘  ≥  𝑑}. Here 𝐺𝑑
𝑘 , considered 

as a 2-uniform hypergraph, is a subhypergraph of 

𝐻𝑑
𝑘 . In the case of 2-uniform hypergraphs, a graph 

G has a (𝑘, 𝑑)-colouring if and only if   𝐺 → 𝐺𝑑
𝑘  
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and 𝜒𝑐(𝐻) is known to be the minimum of the set 

of ratios 𝑘/𝑑 such that 𝐺 → 𝐺𝑑
𝑘 .  

Definition(Pigeonhole Principle):  Suppose 

𝑃, 𝑘 and 𝑛 are integers such that 𝑃 >  𝑘 +  𝑛 . If P 

pigeons are placed into 𝑛 pigeonholes, then the 

pigeonhole principle states there must be (at least) 

one pigeonhole which contains at least 𝑘 + 1 

pigeons. 

 

 

1. Circular Colourings Of 

Hypergraphs 
 

This section computes the circular chromatic 

number of hypergraphs in various families. Some 

basic results concerning circular colourings are 

proved along the way. 

 

Theorem 2.1   Let 𝐻 =  (𝑉, 𝐸) be a hypergraph. If 

𝐻 has a (𝑘, 𝑑)-colourings and 𝑘/𝑑 ≤  𝑘′/𝑑′, where 

𝑘′ and 𝑑′ positive intergers, then 𝐻 has a        

(𝑘′, 𝑑′)-colouring. 

Proof  Let 𝑐 ∶  𝑉 →  𝑍𝑘  be a (𝑘, 𝑑)-colouring of 𝐻. 
Define a mapping  𝑐′ ∶  𝑉 →  𝑍𝑘 ′ by 

 𝑐′(𝑣) =[𝑑′/𝑑. 𝑐(𝑣)] .  
Consider an edge 𝑒 ∈  𝐸, and in particular the two 

vertices 𝑢 and 𝑣 of 𝑒 such that |𝑐(𝑢) –  𝑐(𝑣)|𝑘  ≥ 𝑑. 

Assume that 𝑐(𝑢)  ≥ 𝑐(𝑣).  

Since 𝑐 is a (𝑘, 𝑑)-colourings of 𝐻, and 

  𝑑 ≤  𝑐(𝑢) –  𝑐 (𝑣)  ≤  𝑘 − 𝑑. 

Therefore,  

𝑐′(𝑣)  +  𝑑′  =  [𝑑′/𝑑. 𝑐(𝑣) + (𝑑𝑑′)/𝑑] =  𝑐′(𝑢)
  

Since   𝑐 𝑢 ≤  𝑐 𝑣 +  𝑘 − 𝑑 and   

  𝑐′ 𝑢  = [𝑑′/𝑑. 𝑐(𝑢)] 
    

Therefore 𝑐 ′ 𝑢 ≤ 𝑐′(𝑣)  +  𝑘′ −  𝑑′           

                

(i.e.) 𝑑′ ≤  𝑐′(𝑢)  −  𝑐′(𝑣)  ≤  𝑘′ −  𝑑′ 

Thus 𝑐′ is a (𝑘′, 𝑑′)-colouring of  𝐻.      ∎ 

 

Corollary 2.2   If 𝐻 has a (𝑘, 𝑑)-colouring, then it 

has a (𝑘′, 𝑑′)-colouring with 𝑘/𝑑 =   𝑘′/𝑑′ 

and    𝑔𝑐𝑑 (𝑘′, 𝑑′)  =  1. 

 

Theorem 2.3   Let 𝐻 be a hypergraph on 𝑛 

vertices. If 𝐻 has a  𝑘, 𝑑 - colouring  𝑐 which is not 

onto 𝑍𝑘 , then 𝐻 has a (𝑘′, 𝑑′)-colouring with 

𝑘′ ≤  𝑘 and 𝑘′/𝑑′ ≤   𝑘/𝑑. 

Proof   Let 𝑐 be a (𝑘, 𝑑)-colouring of 𝐻.Using 

Corollary 2.2 and assume that 𝑔𝑐𝑑 (𝑘, 𝑑)  =  1. 

Since 𝑐 is not onto, some colour is not used. 

Assume that this colour is 𝑑. Now remove the 

colours that are a multiple of 𝑑 (taken modulo 𝑘) 

by recolouring the vertices as follows. Recolour 

vertices of colour 2𝑑 with colour 2𝑑 –  1. Since no 

vertex is coloured  𝑑 this is still a (𝑘, 𝑑)-colouring.  

               Similarly, recolour the vertices of colour 

3𝑑 with colour 3𝑑 –  1, as above this is still a  

(𝑘, 𝑑)-colouring since there are no vertices of 

colour 2𝑑. As 𝑔𝑐𝑑(𝑘, 𝑑)  =  1, there exists a 

unique such that 𝛼𝑑 ≡1 (𝑚𝑜𝑑 𝑘), Then it will 

continue in this way with colours   

4𝑑, 5𝑑, …… . , 𝛼𝑑 ≡ 1 (𝑚𝑜𝑑 𝑘) to obtain a new 

(𝑘, 𝑑)- colouring 𝑐′. Formally, 

c'(u) =  
𝑐(𝑢) − 1,   𝑖𝑓 𝑐(𝑢) = 𝑡. 𝑑 𝑓𝑜𝑟 2 ≤  𝑡 ≤  𝛼

𝑐(𝑢),   𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  

 

Denote by 𝑆 the set {𝑑, 2𝑑, … . , 𝛼𝑑} and 

define 𝑋 to be the set 𝑍𝑘  −  𝑆 .  

Again recolour any vertex 𝑥 ∈  𝑋 with the 

colour 𝑥 −  |{𝑦 ∈  𝑆 ∶  𝑦 ≤  𝑥}.   
Since  |𝑋|  =  𝑘 −  |𝑆|  =  𝑘 −  𝛼 . By 

relabeling the colours of 𝑋 to be from the set                  

{0, 1, … , (𝑘 − 1) –  𝛼}. Set 𝑘′ =  𝑘 − 𝛼 .Thus, the 

modified mappings 𝑐′ is now a mapping              

𝑐′ ∶  𝑉 →  𝑍𝑘 ′. As 𝛼𝑑 ≡ 1 (𝑚𝑜𝑑 𝑘). Here      

𝛼𝑑 −  1 =  𝛽𝑘 for some β ∈ 𝑍. 

 Define 𝑑′ = 𝑑 –  𝛽. Next part of this 

theorem is to show that 𝑐′ is a (𝑘′, 𝑑′)-colouring of 

H. Consider the interval  

𝐼𝑗  =  {𝑗, 𝑗 + 1, … . , 𝑗 + 𝑑 −  1}  of 𝑍𝑘  .  

Each interval 𝐼𝑗  contains the same number 

of elements of 𝑆, by construction, with the 

exception of 𝐼1 which begins and ends with as 

element of 𝑆, namely 𝛼𝑑 and 𝑑 . Thus 𝐼1 contains 

one more elements of 𝑆 than do the other intetvals. 

As 𝑆 contains exactly 𝛼 =  
𝛽𝑘+1

𝑑
  elements of 𝑍𝑘  

and  | 𝐼𝑗  | =  𝑑, each interval 𝐼𝑗  (𝑗 ≠  1) contains 𝛽  

elements of 𝑆. Since 𝐼1 contains the colour one, 𝐼1 

contains 𝛽+1 elements of 𝑆.  

Consider any two vertices 𝑥 and 𝑦 such 

that |𝑐(𝑥) –  𝑐(𝑦)|  ≥  𝑑. As each interval        

 𝐼𝑗 (𝑗 ≠  1), has had  𝛽 elements removed. Since  

|𝑐′(𝑥) –  𝑐′(𝑦)|  ≥  𝑑 −  𝛽 =  𝑑′. The interval 𝐼1 as 

the colour 𝑑 is not used in the 𝑐 colouring and thus 

a colour difference of less than 𝑑′ is not possible.  

Thus, 𝑑′ ≤  |𝑐′(𝑢) –  𝑐′(𝑣)|   ≤  𝑘′ − 𝑑’. 

Hence, 𝑐′ is a (𝑘′, 𝑑′)-colouring of 𝐻 with             

𝑘′/𝑑′  =  (𝑘 −  𝛼)/ (𝑑 − 𝛽) < 𝑘/𝑑 .                ∎            

 

Corollary 2.4   Let 𝐻 =  (𝑉, 𝐸) be a hypergraph. 

If 𝐻 has a (𝑘, 𝑑)-colouring 𝑐 ∶  𝑉 →  𝑍𝑘   then we 

may assume 𝑐 is onto. 

  

The following corollary implies that the circular 

chromatic number of a hypergraph is rational. 

 

Corollary 2.5   If 𝐻 is a hypergraph on n vertices, 

then   

𝜒𝑐 𝐻 =  𝑚𝑖𝑛{𝑘/𝑑: 𝐻 𝑕𝑎𝑠 𝑎   𝑘, 𝑑 
− 𝑐𝑜𝑙𝑜𝑢𝑟𝑖𝑛𝑔  𝑎𝑛𝑑 𝑘 ≤  𝑛}. 

Proof   Using Theorem 2.3 and Corollary 2.4. If 𝐻 

has a  𝑘, 𝑑  - colouring, then it has a               

273

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120098



(𝑘′, 𝑑′) - colouring with 𝑘' ≤ n and  𝑘′/𝑑′ ≤  𝑘/𝑑.  
Thus, 

𝜒𝑐(𝐻)  =  inf⁡{𝑘/𝑑: 𝐻 𝑕𝑎𝑠 𝑎 (𝑘, 𝑑) −
                                    𝑐𝑜𝑙𝑜𝑢𝑟𝑖𝑛𝑔 𝑎𝑛𝑑  𝑘 ≤  𝑛}.  
Since this set is finite, the result follows.           ∎ 

 

Lemma 2.6  The maximum size of an independent 

set in the hypergraph 𝐻𝑞
𝑝

 is 𝑞. 

Proof Clearly the set {0,1, … . . , 𝑞 − 1} is 

independent, therefore the maximum size of an 

independent set in the hypergraph 𝐻𝑞
𝑝

 is   atleast 𝑞. 

 Let 𝑋 be a (𝑞 + 1)-subset of 𝑉(𝐻𝑞
𝑝

). 

Claim that 𝑋 is not an independent set. Suppose the 

contrary. By symmetry, it can be assumed that         

𝑞 ∈ 𝑋. If 𝑋 contains a vertex 𝑦 not in 

{1, 2, … ,2𝑞 –  1}, then 𝑋 is not an independent set 

as |𝑞 –  𝑦|𝑝  ≥  𝑞. Therefore,  𝑋 ⊆ {1, 2, … ,2𝑞 –  1}. 

Since |𝑋|  =  𝑞 + 1, by the Pigeonhole Principle, 

some of the two elements 𝑎, 𝑏 ∈  𝑋 are congruent 

modulo 𝑞. But then |𝑎 –  𝑏|𝑝 =  𝑞, so 𝑋 is not an 

independent set. This completes the Proof.      ∎ 

   

Proposition 2.7  The hypergraph 𝐻𝑞
𝑝
  has circular 

chromatic number 𝑝/𝑞.  

Proof  Suppose 𝑐 : 𝐻𝑞
𝑝

 → 𝐻𝑑
𝑘   is a homomorphism. 

Since the maximum size of an independent set in 

the hypergraph 𝐻𝑞
𝑝

 is 𝑞 and also the inverse image 

of an independent, set in 𝐻𝑑
𝑘  is an independent set 

in 𝐻𝑞
𝑝

, it follows that for any integer 𝑖 ∈  𝑍𝑘  ,

    

 |𝑐−1(𝑗 )| ≤  𝑞

|𝑖+𝑑−1|𝑘

𝑗=𝑖

 

    

 

Hence,             

𝑝𝑑 =    |𝑐−1(𝑗 )| ≤  𝑘𝑞

|𝑖+𝑑−1|𝑘

𝑗=𝑖

𝑘−1

𝑖=0

 

 

Therefore,  𝑝/𝑞 ≤  𝑘/𝑑   ∎ 

  

Theorem 2.8   For any hypergraph 𝐻,  
𝜒 𝐻 − 1 <  𝜒𝑐(𝐻)  ≤  𝜒 𝐻 . 

Proof Let 𝐻 be a hypergraph with chromatic 

number 𝜒(𝐻).   
Suppose 𝜒𝑐(𝐻)  =  𝑘/𝑑 ≤  𝜒 𝐻 − 1. Therefore, 

there is a homomorphism  𝐻 →  𝐻1
𝜒 (𝐻)−1

, and thus 

a (𝜒(𝐻) −1,1)-colouring, contradicting the 

definition of the chromatic number.  

Thus, 𝜒(𝐻) −1< 𝜒𝑐(𝐻).On the other hand, here 

𝐻 →  𝐻1
𝑥(𝐻)

 thus,  𝜒𝑐(𝐻)  ≤   𝜒(𝐻).   Finally 

𝜒(𝐻) − 1 <  𝜒𝑐(𝐻)  ≤  𝜒(𝐻).     ∎ 
      

Corollary 2.9   Let 𝐻 be a hypergraph. Then 

𝜒(𝐻)  =  [ 𝜒𝑐(𝐻)] 
 

 A hypergraph 𝐻 =  (𝑉, 𝐸) with at least 

one edge is bipartite if 𝑉 can be partitioned into 

two independent sets. Clearly, 𝐻 is bipartite if and 

only if   𝜒 (𝐻)  =  2 . 

 

Proposition 2.10   Let 𝐻 =  (𝑉, 𝐸) be a 

hypergraph with at least one edge. Then    

𝜒𝑐(𝐻)   ≥  2 with equality if and only if 𝐻 is 

bipartite. 

Proof    It follows directly from the definition of 

the circular chromatic number that 𝜒𝑐(𝐻)   ≥  2.
 If 𝐻 is bipartite, then using Theorem 2.8 

gives  𝜒 (𝐻)   ≥  𝜒 𝑐(𝐻)  =  2. Therefore, 𝜒𝑐(𝐻) = 

2. Conversely, if 𝜒𝑐(𝐻) = 2 then using Corollary 

2.9 gives      𝜒 (𝐻)  =  [𝜒𝑐 𝐻 ]  = 2. Therefore H is 

bipartite.       ∎ 

 

A clique of a hypergraph is a complete 

subhypergraph. The clique number of 𝐻, denoted 

𝜔(𝐻), is the maximum size of a clique in 𝐻. In a 

𝑘-colouring of a clique each vertex must receive a 

different colour. Hence for any 𝐻,  𝜒 (𝐻) ≥ 𝜔(𝐻) . 

Using  Proposition 2.7   gives 𝜒𝑐(𝐻𝑑
𝑘) =  𝑘/𝑑. 

Therefore 𝜒𝑐(𝐻1
𝑛)  =  𝑛 =  𝜔(𝐻).    

Let 𝐻 =  (𝑉, 𝐸) be a hypergraph. Vertex 

𝑣 ∈  𝑉 is universal if every non-singleton subset of 

𝑉 containing 𝑣 is an edge of 𝐻. 
 

Theorem 2.11    If the hypergraph 𝐻 =  (𝑉, 𝐸) has 

a universal vertex 𝑣, then    𝜒𝑐  (𝐻)  =  𝜒 (𝐻). 
Proof     Suppose 𝜒𝑐(𝐻)  =  𝑘/𝑑 and let                

 𝑐 : 𝐻 → 𝐻𝑑
𝑘   be a (𝑘, 𝑑)-colouring of 𝐻. Then, for 

every edge 𝑒 ∈  𝐸 there exist vertices 𝑥, 𝑦 ∈  𝑒 

such that  𝑑 ≤ |𝑐(𝑥) − 𝑐(𝑦)|𝑘  ≤   𝑘 − 𝑑. Since 

𝑣 is a universal vertex, {𝑣, 𝑥} ∈  𝐸 for every vertex 

𝑥 ∈  𝑉-{𝑣}.  

Assume 𝑐(𝑣)  =  𝑘 − 𝑑. Thus, 𝑐(𝑥) ∈
{0,1, … , 𝑘 − 2𝑑} for every vertex 𝑥 ∈ V-{𝑣}. 

 Define ′ : 𝑉 →{0,1,…,[𝑘/𝑑] -1} by 

𝑐 ′ 𝑤 = [𝑐(𝑤)/𝑑]. Then, since 𝑐 was a          

(𝑘, 𝑑)-colouring of 𝐻, for every edge 𝑒 ∈  𝐸 there 

exist vertices 𝑥, 𝑦 ∈  𝑒 such that 𝑐′(𝑥) ≠ 𝑐′(𝑦). 

Therefore, χ 𝐻 ≤ [𝑘/𝑑]  =[ χ
c
 𝐻 ]. It follows that    

𝜒 (𝐻)  =  𝜒𝑐(𝐻)       ∎ 
 

Lemma 2.12    Let 𝐻 be a hypergraph, then 

𝜒𝑐(𝐻)  ≥  𝜔(𝐻)  

Proof    Suppose 𝐻′ is a clique in 𝐻 of size 𝜔(𝐻). 
Since every vertex of 𝐻′ is universal in 𝐻′, It 

follows that  𝜒𝑐(𝐻′)  =  𝜒 (𝐻′)  =  𝜔(𝐻). Thus, 

𝜒𝑐(𝐻)  ≥  𝜒𝑐(𝐻′)  =  𝜔(𝐻).                 ∎ 

 
Corollary 2.13 Let 𝐻 be a hypergraph. If               

χ (𝐻) = 𝜔(𝐻), then 𝜒𝑐(𝐻)   =  𝜒 (𝐻) 

Proof   Using Lemma 2.12    𝜒 (𝐻)  ≥  𝜒𝑐(𝐻)  ≥
 𝜔(𝐻) .The result follows.            ∎ 
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Corollary 2.14  Let 𝐻 =  (𝑉, 𝐸) be a complete     

𝑘-partite hypergraph. Then    𝜒 (𝐻)  =  𝜒𝑐  (𝐻)  =
 𝑘. 
Proof    Suppose that 𝑉1 , 𝑉2, … , 𝑉𝑘  is a partition of 

𝑉 such that 

  𝐸 =  {𝑋 ∶  𝑋 ⊆  𝑉, 𝑎𝑛𝑑 𝑋 ⊈  𝑉𝑖  , 1 ≤  𝑖 ≤  𝑘}  . 

Since any 2-subset of 𝑉 not contained in any block 

of the partition is an edge, it is clear that      

𝜒 (𝐻)  =  𝑘. The subhypergraph induced by a set 

of 𝑘 vertices, one from each block of the partition, 

is a clique of size 𝑘.  
Thus 𝜔(𝐻)  =  𝑘 =  𝜒 (𝐻). It now follows that 

𝜒𝑐(𝐻)   =  𝑘.          ∎ 
 

Theorem 2.15   Let 𝐻 =  (𝑉, 𝐸) be a complete 𝑘-

uniform hypergraph on n vertices. Then  

𝜒𝑐(𝐻)   =  𝑛/(𝑘 − 1) and 𝜒 (𝐻)  = [𝑛/(𝑘 − 1)] 
Proof     Suppose ∶  𝐻 → 𝐻𝑞

𝑝
, where 𝑝 ≤  𝑛, is a 

homomorphism. Since any 𝑘-subset of 𝑉 is an 

edge, the maximum size of an independent set in 𝐻 

is 𝑘 −1 and the inverse image of an independent set 

in 𝐻𝑞
𝑝

 is independent. Thus, for any integer 𝑖 ∈  𝑍𝑝  

     

 |𝑐−1(𝑗)| ≤  𝑘 − 1

|𝑖+𝑞−1|𝑝

𝑗=𝑖

 

 

Hence,                                       

𝑞𝑛 =   |𝑐−1(𝑗)| ≤ 𝑝( 𝑘 − 1)

|𝑖+𝑞−1|𝑝

𝑗 =𝑖

𝑝−1

𝑖=0

 

Therefore, 𝑛/(𝑘 − 1)  ≤  𝑝/𝑞. 
 Claim that the function ′ : 𝑉 → 𝐻𝑘−1

𝑛  

defined by 𝑐′(𝑥)  =  𝑥 is an  (𝑛,𝑘-1)-colouring of 

𝐻.  Let 𝑋 be a 𝑘-subset of 𝑉. By symmetry, it can 

be assumed without loss of generality that           

𝑘 − 1 ∈ 𝑋. If 𝑋 contains a vertex 𝑦 which is not in 

the set {1, 2, … . . , 2(𝑘 − 1) − 1} , then 

 |(𝑘 − 1) −  𝑦|𝑛   ≥  𝑘 − 1. 

 If 𝑋 ⊆  {1, 2, … . , 2(𝑘 − 1) − 1} then, 

since |𝑋|  =  𝑘, by the Pigeonhole principle, some 

two elements 𝑎, 𝑏 ∈  𝑋 are congruent modulo 𝑛.  

Thus, |𝑎 − 𝑏|𝑛 =  𝑘 − 1. Hence, any      

𝑘-set 𝑋 contains a pair of vertices 𝑥 and 𝑦 such that 

|𝑐′(𝑥) – 𝑐′(𝑦)|𝑛 =   𝑘 − 1. This proves the claim. 

Therefore, 𝜒𝑐(𝐻)  =  𝑛/(𝑘 − 1) and  Using 

Corollary 2.9  Finally  χ (𝐻) =[𝑛/(𝑘 − 1)]  .        ∎ 

 

Proposition 2.16  For every rational number 

𝑝/𝑞 ≥  2 there exists a 𝑘-uniform hypergraph 

𝐻 =  (𝑉, 𝐸) such that    𝜒𝑐(𝐻) =  𝑝/𝑞. 
Proof   Let 𝑟 be an integer such that 𝑟𝑞 ≥  𝑘. 

Consider the hypergraph 𝐻𝑞𝑟
𝑝𝑟

(k). Since 𝐻𝑞𝑟
𝑝𝑟

(k) is 

the subhypergraph of 𝐻𝑞𝑟
𝑝𝑟

 induced by the edges of 

cardinality 𝑘,    χ c(𝐻𝑞𝑟
𝑝𝑟

(k))  ≤ (𝑝𝑟/𝑞𝑟)  =  𝑝/𝑞.  

Suppose 𝑐 : 𝐻𝑞𝑟
𝑝𝑟

(k) → 𝐻𝑡
𝑠  is a (𝑠, 𝑡)-colouring of 

𝐻𝑞𝑟
𝑝𝑟

(k).  

Using Lemma 2.6 gives the maximum size 

of an independent set in the hypergraph 𝐻𝑞𝑟
𝑝𝑟

(k) is  , 

it follows that for any integer 𝑖 𝜖 𝑍𝑠 , 

    

 |𝑐−1(𝑗)| ≤ 𝑞𝑟

|𝑖+𝑡−1|𝑠

𝑗=𝑖

 

Hence                                     

𝑝𝑟𝑡 =   |𝑐−1(𝑖)| ≤ 𝑞𝑟𝑠

𝑖+𝑡−1

𝑗=𝑖

𝑠−1

𝑖=0

 

Therefore,  𝑝/𝑞  ≤   𝑠/𝑡.    ∎ 

 

 
3.CONCLUSION 

  Finally this paper concludes, if the 

hypergraph 𝐻 has a universal vertex 𝑣, then the 

chromatic number’s and the circular chromatic 

number’s are equal. And also if  𝐻  is  a 

hypergraph then the chromatic number’s, the 

circular chromatic number’s and the Clique 

number’s are all equal. 
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