

An Oversight on Mutation Testing

A.Ramya
Research Scholar,

Department of Computer Science,

Sri Ramakrishna College of Arts and Science for

Women,

Coimbatore.

ABSTRACT:

Software Testing is the process of executing

a program or system with the aim of finding

errors. 50% of the total development time is

spent on testing the software and correcting

them. Tests are commonly generated from

program source code, graphical models of

software (such as control flow graphs), and

specifications / requirements. Creating test

cases that efficiently checks for faults in

software is always a problem. To solve this

problem, mutation testing, a fault - based

testing technique, used to find the

effectiveness of test cases. This paper

provides an oversight on mutation testing

and also discusses various surveys on

mutation testing .It also describes the tools

,used to build them effectively and helps in

reaching a state of maturity and

applicability.

INTRODUCTION:

 Software testing is an important

phase of software development life cycle.

Software testing is an investigation

conducted to provide end-users with

information about the quality of the product

or service under test
.
 Software testing can

also provide an objective, independent view

of the software to allow the business to

appreciate and understand the risks of

software implementation.

S. Preetha,
Assistant Professor,

Department of Computer Science,

Sri Ramakrishna College of Arts and Science for

Women,

Coimbatore.

Software testing can be stated as the process

of validating and verifying that a computer

program/application/product:

 meets the requirements that guided

its design and development,

 works as expected,

 can be implemented with the same

characteristics,

 and satisfies the needs of end-users

The scope of software testing includes

examination of code and execution of that

code, in various environments and

conditions. It examines the two aspects of

code which is:

 does it do what it is supposed to do

 Do what it needs to do.

 However, for any other program,

faults may occur in any development phase

of a software .A Fault is a structural

weakness in a software system that may lead

to the systems eventually failing. To

eradicate those faults in software system, an

efficient test case is needed. The more

efficient the test cases are, the more testing

can be performed in a given time and

therefore the more confidence, can be kept

in the software. To solve this problem,

mutation testing is introduced. Mutation

Testing is a fault-based testing technique,

for evaluating, the quality of software.

2597

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10784

Mutation testing measures how “good” our

tests are, by inserting faults into the program

under test.

 The rest of the paper is enlisted as

follows: operators and tools used for

mutation testing,

Background of testing, and summarizes

researches made on mutation testing, in

several decades.

MUTATION TESTING:

The best way to find a test case, that

efficiently works on software faults is,

mutation testing.

Seeding defects into a program and checking

whether the test suite finds them. Mutation

testing (or Mutation analysis or Program

mutation) is used to design new software

tests and evaluate the quality of existing

software tests. Mutation testing involves

modifying a program's source code or byte

code in small ways. Each mutated version is

called a mutant and tests detect and reject

mutants by causing the behavior of the

original version to differ from the mutant.

This is called killing the mutant.

Test suites are measured by the percentage

of mutants that they kill. New tests can be

designed to kill additional mutants. Mutants

are based on well-defined mutation

operators, that either imitate typical

programming errors (such as using the

wrong operator or variable name) ,or force

the creation of valuable tests (such as

driving each expression to zero). The

purpose is to help the tester develop

effective tests or locate weaknesses in the

test data used for the program or in sections

of the code that are seldom or never

accessed during execution.

 Such defects can be created automatically,

using a set of mutation operators to change

(“mutate”) random program parts. A

mutation that is not detected (“killed”) by

the test suite indicates that the test suite was

unable to detect the seeded defect and it is

likely to miss similar, true defects in the

code. Test managers can use such results, to

improve their test suites, such that they

detect these mutants.

Mutation testing has been shown to be an

effective measurement, for the quality of a

test suite and superior to commonplace

assessments, such as coverage metrics. A

well-known issue is its large usage of

computing resources. A less known, but far

more significant cost, though, comes from

the problem of equivalent mutants. These

are mutants that leave the program’s overall

semantics unchanged and therefore cannot

be caught by any test suite: The result of

mutation testing ”surviving” mutations, not

found by the test suite ,thus mixes the most

valuable and the least valuable mutations in

one set.

 Fig: 1 Mutation testing process.

Original

program

Original

program

Generate

mutants

Execute

test suites

Run test

cases

Order/split

test cases

Prioritized

test case
Mutation

coverage

Set of non-

redundant

mutants

Mutation

analysis

2598

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10784

Various heuristics based on mutant

similarity have been suggested. Static

program analysis, in particular path

constraints, can detect many cases of

equivalent behaviour . Program slicing can

helps in narrowing down the impact of

mutation. Genetic algorithms have been

suggested to specifically evolve mutants

detected by at least one test case.

One approach to building confidence in test

cases is mutation analysis, which introduces

faults in the software under test. It is

assumed that test cases are good, if they

detect these faults. This approach, which has

been successfully applied to qualify unit test

cases, for object-oriented classes, gives

programmers useful feedback on the “fault

revealing power” of their test cases.

The test cases that testers generally provide

easily cover 50–70 percent of the introduced

faults, but improving this score to 90–100

percent is time consuming and therefore

expensive. So, automating the test

optimization process could be extremely

helpful.

Mutation testing is done by selecting a set of

mutation operators, and then applying them

to the source program, one at a time for each

applicable piece of the source code. The

result of applying one mutation operator to

the program is called a mutant. . If a test

cases distinguish the mutant program from

the original program in term of output, then

we say mutant are killed, otherwise mutants

are alive.

For instance:

Table: 1

Program p Mutant p

if (a >0 && b > 0) if (a > 0 || b > 0)

return 1; return 1;

In this example, program p, is a test case

given. Mutant p is a modified form of test

case. One mutant operator || is applied to a

piece of source program p, instead of &&.

2599

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10784

MUTATION OPERATORS:

Mutation Operator Description

AAR Array reference for array reference replacement

ABS Absolute value insertion

ACR Array reference for constant replacement

AOR Arithmetic operator replacement

ASR Array reference for scalar variable replacement

CAR Constant for array reference replacement

CNR Comparable array name replacement

CRP Constant replacement

CSR Constant for scalar variable replacement

DER DO statement alterations

DSA DATA statement alterations

GLR GOTO label replacement

LCR Logical connector replacement

ROR Relational operator replacement

RSR RETURN statement replacement

SAN Statement analysis

SAR Scalar variable for array reference replacement

SCR Scalar for constant replacement

SDL Statement deletion

SRC Source constant replacement

SVR Scalar variable replacement

UOI Unary operator insertion

TOOLS:

The development of Mutation Testing tools is an important enabler for the transformation of

Mutation Testing from the laboratory into practical and widely used testing technique. Without

fully automated mutation tool, Mutation Testing is unlikely to be accepted by industry. In this

section, it summaries development work on Mutation Testing tools. These tools are classified

into three classes: academic, open sources and industrial.

 Name Application Year Character

PIMS Fortran 1977 General

EXPER Fortran 1979 General

CMS.1 COBOL 1980 General

FMS.3 Fortran 1981 General

Mothra Fortran 1987 General

Proteum 1.4 C 1993 Interface Mutation, FNS

TUMS C 1995 Mutant Schemata Generation

Insure++ C/C++ 1998 Source Code Instrumentation

2600

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10784

Proteum/IM 2.0 C 2001 Interface Mutation, FNS.

Jester Java 2001 General (Open Source)

Pester Python 2001 General (Open Source)

TDS CORBA IDL 2001 Interface Mutation

Nester C# 2002 General (Open Source)

JavaMut Java 2002 General

MuJava Java 2004 Mutant Schemata, Reflection Technique.

Plextest C/C++ 2005 General (Commercial)

SQLMutation SQL 2006 General

Certitude C/C++ 2006 General (Commercial)

SESAME C, Lustre,Pascal 2006 Assembler Injection

ExMAn C, Java 2006 TXL

MUGAMMA Java 2006 Remote Monitoring

MuClipse Java 2007 Weak Mutation, Mutant Schemata,
Eclipse plug-in.

CSAW C 2007 Variable type optimization.

Heckle Ruby 2007 General (Open Source)

Jumble Java 2007 General (Open Source)

Testool Java 2007 General

ESPT C/C++ 2008 Tabular

MUFORMAT C 2008 Format String Bugs

CREAM C# 2008 General

MUSIC SQL(JSP) 2008 Weak Mutation, SQL Vulnerabilities

MILU C 2008 Higher Order Mutation, Search-based
tech, Test harness embedding.

Javalanche Java 2009 Invariant and Impact analysis.

GAmera WS-BPEL 2009 Genetic algorithm.

MutateMe PHP 2009 General (Open Source).

AjMutator AspectJ 2009 General.

MUTATION-TESTING

BACKGROUND:

The main interest of mutation analysis, is to

provide an estimate of the quality of a test

dataset, with the proportion of faulty

programs it detects. To be effective, the

mutation analysis, must create mutant

programs, which correspond to realistic

faults. A test set, is related to the ability of

that test set, to differentiate the program

being tested, from a set of marginally

different, and presumably incorrect,

alternate programs. A test case differentiates

two programs, if it causes the two programs

to produce different outputs.

The process of performing mutation analysis

on some test set T, relative to a given

program P, begins by running P against

every test case in T. If the program

computes an incorrect result, the test set has

fulfilled its duty and the program must be

changed. Assuming P, computes correct

results, for every test case in T, a set of

alternate programs is produced. Each

alternate program, Pi, known as a mutant of

2601

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10784

P, is formed by modifying a single statement

of P, according to some predefined

modification rule. Such modification rules,

G, are called mutagenic operators or

mutagens.

The syntactic change itself is called the

mutation. The original program, plus the

mutant programs, are collectively known as

the program neighborhood, N, of P. Each

mutant is run against the test cases in T. If

for some test case in T, a mutant produces a

result different than that of the original

program, we say that test case has “killed"

the mutant indicating that the test case is

able to detect the faults, represented by the

mutant.

Once killed, these dead mutants are not run

against any additional test cases. Some

mutants, who are called equivalent mutants,

that are syntactically different, are

functionally identical to the original

program.

An EXAMPLE OF EQUIVALENT

MUTATION:

Table : 2

Program p Equivalent Mutant m

 for (int i = 0; i < 10;
i++)

for (int i = 0; i ! = 10;
i++)

{ {

...(the value of i ... (the value of i

is not changed) is not changed)

} }

An equivalent mutant is generated by

changing the operator < into operator! = . If

the statement within the loop does not

change the value of i, program p and mutant

m will produce same output.

MSG (P, T) = (#Dead/ (#Mutants-

#Equivalent)) * 100%

#Mutants = total number of mutants in the

program neighborhood.

The mutation adequacy score MS by the set

of mutagens G to reflect their influence on

the number and type of mutants produced.

 False True

 Fig : 2 Process of mutation Analysis.

 Input Original
Program P

 Create

Mutants P’
 Input Test Set T

 Run T on P

 Fix P P Run T on

Each Live P’

All P’ Killed

Analyse and

Mark

Equivalent
Mutants.

2602

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10784

RESEARCH IN

MUTATION TESTING:

Empirical study is an important aspect in the

evaluation and dissemination of any

technique. Empirical results on the

evaluation of Mutation Testing are then

reported in detail.

Work in parallel mutation testing has been

suggested for vector processors, single-

instruction-multiple-data (SIMD) machines,

and multiple-instruction-multiple-data

(MIMD)machines. Mutant unification was

proposed by Mathur and

Krauser

. Their

hope is that a vector processor could then

execute the unified mutant programs and

achieve a significant speedup over a scalar

processor .But only only scalar variable

replacement (svr) type mutants are suitable

for unification. A later paper by Mathur

Krauser,, and Rego suggests a strategy for

efficient execution of mutants on SIMD

machines. As in mutant unification, the

authors suggest that mutants of the same

type be grouped together and that the groups

be handled by different processors in the

SIMD system. This strategy also has not

been implemented.

Choi and Mathur

give a general method

for scheduling mutant executions on the

nodes of a hypercube . In this strategy, each

mutant program is separately compiled on

the host processor and the resulting

executable programs are scheduled for

execution on the node processors. The

implementation of the strategy, called

PMothra, runs on a 128 processor NCUBE/7

hypercube. Unfortunately, because of the

cost of separately compiling each mutant

program, PMothra actually ran slower than

the single processor, interpretive version of

Mothra. In their paper, Choi and Mathur

suggested removing the compilation

bottleneck from PMothra through a method

called compiler integrated testing. In this

method, the original program is compiled

once and the mutant programs are created by

making simple code patches to the original

executable program. The principle

difference between PMothra and

HyperMothra is the way that the systems

process mutants. In PMothra, each mutant is

compiled separately, and the mutant

executables are distributed to and executed

by the node processors. HyperMothra

distributes the MDRs to the

node processors,

which then apply the changes to the

intermediate code and interprets each

mutant.

Hamlet presented an early testing system

that was embedded in a compiler and

performed a version of instrumented weak

mutation.Hamlet's system seems to be the

first mutation-like testing system.

Girgis andWoodward implemented a

system for Fortran-77 programs that

integrates weak mutation and data flow

analysis. Their system instruments a source

program to collect program execution

histories. These execution histories are then

evaluated to measure the completeness of

test data with respect to weak mutation and

2603

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10784

several data flow path selection criteria. The

system examines the execution history, and

if the test case would have caused a

mutant to produce an internal program state

that differed from the original program's

internal state, the mutant is killed.

It suffers from two problems.

First, whether a mutant can be killed can

only be obtained for a few kinds of mutants.

Second, since no separate executions are

being done for the mutants, the components

must have a very localized extent,

precluding several of

the components that

we have implemented.These transformations

seem to correspond to Mothra's scalar

variable replacement (svr), unary operator

insertion (uoi), and relational operator

replacement (ror) operators.

.

The

Mothra testing project

was initiated in

1986 by members of the Georgia Institute of

Technology's Software Engineering

Research Center . Mothra is a complete,

flexible software test environment that

supports mutation

based testing of software

systems. It was implemented in the C

programming language under the Ultrix-32

operating system and has been ported to a

variety of BSD and System V UNIX

environments. Mothra was designed as a

collection of “plugcompatible" tools based

on shared data structures that are stored as

files and treated as abstract objects. This

design has allowed Mothra to evolve to a

remarkable degree as a growing group of

researchers continues to add new tools and

capabilities, implement different user

interfaces that allow for novel styles of

interaction, and modify the system for

special

purpose experimentation. At the core

of this collection of tools is a set of

programs and objects that enable Mothra to

translate, execute, and modify programs.

They refer to this portion of Mothra as the

language system.This paper provides

valuable insights for building language

systems for special-purpose applications. In

particular, some techniques that can be

useful in program analysis systems such as

debuggers, testing systems, and

development environments.

The Mothra software testing environment

consists of an extensive tool set. With help

and guidance from an advanced user

interface, a tester can specify testing goals,

automatically generate test cases to satisfy

test criteria, execute the program and

determine input/output pair correctness or

equivalence of mutants, manipulate or fine

tune the test cases, and debug the program

when errors are revealed. Mothra

intermediate code to be simple and efficient.

MIC instructions have been used for

interpretation, various types of symbolic

analysis, data flow analysis [26],

decompilation, automatic generation of test

data , and are currently being used to

develop a debugger . There is much

information stored in the MIC instructions

and in the Mothra symbol table, yet the

information

is simple to understand and easy

to access. The design and implementation

techniques the Mothra team developed to

satisfy particular goals and

requirements are

useful in applications other than mutation

analysis and software testing. The way they

designed

and implemented the Mothra

language system has been instrumental in

the continuing success of the software. They

expected that these techniques to be useful

for building largescale program analysis

systems, research software, and educational

tools.

Woodward and Halewood

introduced the

idea of firm mutation by pointing out that

weak and strong mutation represent extreme

ends of what is actually spectrum of

mutation approaches. In mutation testing,

mutants are killed by comparing the state of

the mutant program with the state of the

2604

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10784

original program on the same test case.

Weak and strong mutation differ principally

in when they compare the states; strong

mutation compares the final outputs of the

programs and weak mutation compares the

intermediate states after execution of the

component. Woodward and Halewood point

out that they can compare the states of the

two programs at any point between the first

execution of the mutated statement and the

end of the program, yielding what they

called firm mutation..

Firm mutation is similar to Morell's

concept of extent" in fault-based testing.

A local extent technique demonstrates that a

fault has a local effect on the computation,

and a global extent demonstrates that a fault

will cause a program failure. Weak mutation

is a local extent technique and strong

mutation is a global extent technique. Morell

also points out that we could require that the

fault affect the program's execution at any

point between the local and global extents,

depending on how far we require the

incorrect program state to propagate.

Richardson and Thompson

have used a

path analysis approach to extend these ideas

to require that a fault transfer from its

origination point to some point later in the

program's execution.. Marick

has also

implemented a weak mutation system and

reported results from using test data

generated for weak and strong mutation to

find faults that were injected into programs.

OO programs have many characteristics that

differ from traditional programs. They are

often structured differently and they contain

new features such as encapsulation,

inheritance, and polymorphism. These

differences and new features in OO

programs change the requirements for

mutation testing. A major difference for

testers is that OO software changes

the

levels at which testing is performed.

In OO

software, unit and integration level testing

can be classified into four levels:

(1) intra-method, (2) Inter-method, (3)

intra-class, and (4) inter-class.

Kim, Clark and McDermind, and

Chevalley and Thevenod-Foss.

Offutt

developed a categorization of OO

programming faults , which is used to design

a more comprehensive collection of class

mutation operators . There are two goals for

the mutation operators, first to address all

the OO programming faults

and second to

ensure all OO language features are tested.

The mutation operators tested the language

features of inheritance, polymorphism,

dynamic binding, and access control. In

addition to new mutation operators,

some

existing operators have been refined for

MuJava. The

new version contains three

new mutation operators for type

conversion, merges two operators from the

old version into one, and splits three

different operators into two a piece (three

operators became six). These changes make

the operator definitions and implementations

more consistent.

MuJava presents a method for determining

equivalent class-level mutants, data on the

number of equivalent mutants found, and

data on the number of mutants created. The

automated Java mutation system MuJava

was

used to investigate the characteristics of

class-level mutants generated from 866

classes drawn from six open-source Java

programs. The equivalency conditions

described in MuJava was found that more

than 70% of the class-level mutants were

equivalent, far more than the 5% to 15%

found with unit-level mutants. Results on

the open source software show that there

were many fewer class-level mutants than

unit-level mutants.

2605

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10784

Percentage of publications addressing each

language to which Mutation Testing has

been applied

 Is shown below:

CONCLUSION:

This paper has provided a detailed survey,

and analysis of trends, and results on

Mutation Testing. The paper covers

mutation testing, its background, and

empirical evaluations of the mutation

testing. Recent trends also include the

provision of new open source, and industrial

tools. Mutation Testing, is now reaching, a

mature state. Mutation has three benefits.

 First, it allows mutation to be

described in a more simple way and

understood more readily.

 Second, it is easier to develop new

applications of mutation analysis. It

makes it easier, to apply mutation

analysis, to new contexts.

 The third benefit is left for future

work, that of ensuring that existing

techniques, are complete according

to the generic criteria.

Previous researchers have tried to enhance

the strength of mutation, by adding more

mutation operators, taking the “more is

better" philosophy. But the later researchers

found that “less is more", or at least, that

“less is nearly as good". Previous research,

focused on improving the strength of

mutation testing, but without a clear metric

for strength.

Future mutation testing tools will be

developed faster than previous research

systems and will require significantly less

human involvement.

REFERENCES:

 [1] J. Offutt and R. H. Untch,

“Mutation 2000: Uniting the

Orthogonal,” in Proceedings of the 1st

Workshop on Mutation Analysis

(MUTATION’ 00), published in book

form, as Mutation Testing for the New

Century. San Jose, California, 6-7

October 2001, pp. 34-44.

[2] K. N. King and A. J. Offutt, “A

Fortran Language System for Mutation-

Based Software Testing,” Software:

Practice and Experience, vol. 21, no. 7,

pp. 685–718, October 1991

[3] T. A. Budd and D. Angluin, “Two

Notions of Correctness and Their

Relation to Testing,” Acta Informatica,

vol. 18, no. 1, pp. 31–45, March 1982.

[4] J. H. Andrews, L. C. Briand, and Y.

Labiche. Is mutation an appropriate tool

for testing experiments? In ICSE ’05:

Proceedings of the 27
th

 International

Conference on Software Engineering,

pages 402–411, New York, NY, USA,

2005. ACM.

[5] P. J. Walsh. A measure of test case

completeness (software, engineering).

2606

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10784

PhD thesis, State University of New

York at Binghamton,Binghamton, NY,

USA, 1985

[6] P. G. Frankl, S. N. Weiss, and C. Hu.

All-uses versus mutation testing: An

experimental comparison of

effectiveness. Journal of Systems and

Software, 38:235–253, 1997

[7] J. Choi and A. P. Mathur. Use of

fifth generation computers for high

performance reliable software testing.

Technical report SERC-TR-72-

P,

Software Engineering Research Center,

Purdue University, West Lafayette IN,

April 1990.

[8] E. W. Krauser, A. P. Mathur, and V.

Rego. High performance testing on

SIMD machines. In Proceedings of the

Second Workshop on Software.

[9] Aditya P. Mathur and E. W. Krauser.

Modeling mutation on a vector

processor. In Proceedings of the 10th

International Conference on Software

Engineering, pages 154{161, Singapore,

April 1988. IEEE Computer Society

Press.

[10] Aditya P. Mathur and E. W.

Krauser. Mutant unification for

improved vectorization. Technical report

SERC-TR-14-P, Software Engineering

Research Center, Purdue University,

West Lafayette IN, April 1988.

[11] M. R. Girgis and M. R. Woodward.

An integrated system for program testing

using weak mutation and data flow

analysis. In Proceedings of the Eighth

International Conference on Software

Engineering, pages. 313{319, London

UK, August 1985. IEEE Computer

Society.

[12] R. G. Hamlet. Testing programs

with the aid of a compiler. IEEE

Transactions on Software.

[13] R. A. DeMillo and E. H. Spafford,

`The Mothra software testing

environment', Proceedings of the 11th

NASA Software Engineering Laboratory

Workshop, Goddard Space Center,

December 1986.

[14] R. A. DeMillo, E.W. Krauser, R. J.

Martin, A. J. Offutt and E. H. Spafford,

`The Mothra tool set', Proceedings of the

Hawaii International Conference on

System Sciences, Kailua-Kona, HI,

January 1989.

[15] Offutt, `An extended overview of

the Mothra software testing

environment', Proceedings of the IEEE

Second Workshop on Software Testing,

Verification and Analysis, Banff

Alberta, July 1988.

[16] L. J. Morell. A Theory of Error-

Based Testing. PhD thesis, University of

Maryland, College Park MD, 1984.

Technical Report TR-1395.

[17] Marick. The weak mutation

hypothesis. In Proceedings of the Third

Symposium on Software Testing,

Analysis, and Verification, pages

190{199, Victoria, British Columbia,

Canada, October 1991. IEEE Computer

Society Press

[18] P. Chevalley and P. Thevenod-

Fosse. A mutation analysis tool for Java

programs. Journal on Software Tools for

Technology Transfer (STTT), pages

1{14, December 2002.

2607

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10784

[19] J. Offutt, R. Alexander, Y. Wu, Q.

Xiao, and C. Hutchinson. A fault model

for subtype inheritance and

polymorphism. In Proceedings of the

12th International Symposium on

Software Reliability Engineering, pages

84{93, Hong Kong China, November

2001. IEEE Computer Society Press.

[20] Y. S. Ma, Y. R. Kwon, and J.

Offutt. Inter-class mutation operators for

Java. In 13th International Symposium

on Software Reliability Engineering,

pages 352{363, Annapolis MD,

November 2002. IEEE Computer

Society Press.

2608

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10784

