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Abstract— Mining High Utility Itemsets is a popular 

data mining task, which discovers High Utility 

Itemsets (HUIs) from a transaction database. Recently, 

several efficient algorithms have been proposed for 

this task with different datasets. But, many of them do 

not consider the on-shelf time period of items and 

negative unit profit value of items, which is common 

in real transaction databases. For efficiently finding 

HUIs, considering these two things is crucial.  In this 

paper, we address both of these challenges in 

analyzing customer data by proposing a novel efficient 

algorithm named  FHM(Fast High Utility Itemsets 

Mining) to mine HUIs while considering on-shelf time 

periods of items, and items having positive or negative 

unit profit. FHM is an extension of EFIM algorithm. 

An extensive experimental study with real-life dataset 

shows that the proposed algorithm can analyze the 

customer data (transaction database may represent 

purchasing behavior of customer) efficiently to 

discover the importance (utility) of those customer 

data. 

 

Keywords: Itemset mining, High-utility mining; Fast-

utility mining; High-utility database merging and 

projection; on-shelf time periods. 

 

1. INTRODUCTION 

Frequent Mining (FM) is a popular data mining task, 

which discovers frequent itemsets (groups of items) 

appearing frequently in the transaction database. But, 

the main drawback of FM is that it assumes all items 

have the same weight (profit or importance) and 

appears only once in each transaction. This lead to a 

bias in the real-time applications. For example, 

consider the transactions of the database which 

describes the customer behavior of purchasing items 

and unit profit value for each item in the transactions. 

In that case, FM discovers only the frequent itemsets 

that the customer bought, it does not consider about 

profit value of that frequent itemsets. So there is a 

chance to miss high profitable itemsets which appears 

infrequently in that transaction (customer’s purchasing 

behavior). To address this issue many efficient 

algorithms for mining high utility itemsets are 

proposed which are used different techniques that 

reduce the time complexity and different data 

structures which reduces space complexity to discover 

high profitable itemsets from transactions. EFIM (A 

Fast and Memory Efficient Algorithm for High Utility 

Itemset Mining) is one of the most efficient algorithms 

for finding high profitable itemsets from transactions. 

EFIM uses database projection and transaction 

merging technique to analyze the customer 

data(transactions) and discovering high profitable 

itemsets., but  EFIM was not designed to handle 

negative unit profit value and the on-self periods of 

items. In this paper, we present a novel algorithm 

named FHM (Fast High-utility itemsets Mining) to 

mine HUIs while considering both positive and 

negative unit profits with the on-self periods. It extends 

the current EFIM algorithm so that it can handle 

negative unit profits and the on-self periods efficiently. 

The rest of this paper is organized as follows. Section 

2, 3, 4and 5 respectively presents the problem 

definition and related work, the proposed FHM 

algorithm, the experimental evaluation and the 

conclusion. 

 

2. PROBLEM STATEMENT AND RELATED 

WORK 

In this section, we first state the problem of utility 

mining and then review the previous extensive studies 

of utility mining. 

Problem Statement 

Given a transaction database, the problem of finding 

high utility itemset is to find the complete set of 

itemsets whose utilities are greater than or equal to 

minimum utility threshold by analyzing customer data 

which contains different time periods for each 
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transaction, positive or negative unit profit value and 

minimum utility threshold. 

 

Related Works  

Extensive studies have been proposed for mining high 

utility itemsets. A base of utility mining is frequent 

itemsets mining. One of the important frequent mining 

algorithms is FP-Growth [1], which is the tree-based 

approach, so it can find frequent itemsets without 

generating any candidate itemset by scanning the 

database just twice. However, the main drawback of 

frequent mining is not considering unit profit value of 

items. To overcome this drawback many utility mining 

algorithms are proposed, like FP-Growth one of the 

popular algorithms for utility mining is UP-Growth: 

An Efficient Algorithm for High Utility Itemset 

Mining[2], which is also used tree-data structure to 

efficiently pruning unprofitable itemsets by scanning 

the database  just twice and it uses different utility 

values like TU  and TWU for pruning the search space 

for discovering high utility itemsets. But it generates 

more candidate itemsets  before discovering HUIs 

based on user-specified minimum utility threshold. 

Mining High Utility Itemsets without Candidate 

Generation [3] is another popular utility mining 

algorithm, which used list structure instead of a tree. It 

scans the transaction database just once to calculate 

TWU and construct list structure for each item with 

item utility and remaining utility. Based on this 

remaining utility, items can be explored for 

discovering HUIs so it can give better performance 

than UP-Growth. EFIM is one of the most efficient 

algorithms [4], which uses different techniques 

(explained in section 3.2) to discover HUIs in less time 

and space requirement. The above algorithms are only 

considering positive unit profit value of items, does not 

care about negative unit profit.    

        

3. THE FHM ALGORITHM 

We next present our proposal, the FHM algorithm. It is 

an extended version of EFIM one-phase algorithm, 

EFIM uses several novel ideas to minimize the time 

and memory required for discovering high utility 

itemsets. FHM algorithm uses these novel ideas to the 

database which has transactions with the on-self 

period, negative or positive unit profit value. 

Subsection 3.1 reviews the depth-first search of 

itemsets. Subsection 3.2 gives an overview of EFIM 

algorithm.  Subsection 3.3 presents proposed FHM 

algorithm. Finally, subsection 3.4 gives the pseudo 

code of FHM. 

 

 

 

3.1 DEPTH-FIRST SEARCH 

The FHM algorithm explores this search space using a 

depth-first search, starting from the root (the empty 

set). During this depth-first search, for any itemset, 

FHM recursively adds one item at a time according to 

the increasing order of TWU because it generally 

reduces the search space, to generate larger itemsets.  

 

3.2 EFIM - ALGORITHM 

EFIM is a single phase algorithm to discover High 

Utility Itemsets (HUIs) for the customer data with only 

positive unit profit value. Table 1. shows a Transaction 

Database which contains five transactions, each row 

represents the transaction.id, items in that transaction, 

TU, the utility of the items in that transaction and the 

on-self period of that transaction. 

 

Fig.1. Depth-First Search Procedure for I - {a,b,c,d} 

 

Table.1. Transaction Database 

 
 

Table.2. Projected Database of {c} 
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3.2.1 Transaction Utility (TU) and Transaction 

Weighted Utility (TWU) 

Transaction Utility is a utility of transaction, which is a 

summation of utility values of the items in a 

transaction. The utility value of an item is a product of 

unit profit and frequency count of an item. For 

example, In Table 1- first transaction, item a’s utility is 

-5, likewise (c, 1) and (d, 2). TU is 3(actually it is -3(-

5+1+2) but here we take only positive utilities for TU 

calculation while we have negative utility, the reason 

for this is given in section 3.3.2). Transaction weighted 

Utility is a summation of the TU values of transactions 

in which a particular item appears. For example, item 

a’s TWU is 45(3+17+25). TU values of transactions 

shown in Table 1. 

 

3.2.3 Three Techniques in EFIM 

This algorithm  mainly used three techniques to 

efficiently reduce the search space and time required to 

discover HUIs. Three techniques are, 

1. High Utility Database Projection, 

2. High Utility Transaction Merging, 

3. Using    Utility-Bin Array to calculate   Utility  

(Transaction Utility(TU), Transaction Weighted 

Utility(TWU). 

 

3.2.3.1 High Utility Database Projection (HDP) 

EFIM is a pattern-growth algorithm. It scans the 

horizontal database to calculate the utility. By using 

projected databases it reduces the cost of database 

scans. To reduce the memory space, EFIM performs 

pseudo-projections. Table 2 shows projection database 

of an item {c}. 

 

3.2.3.2 High Utility Transaction Merging (HTM) 

To further reduce the cost of database scans, EFIM 

also introduced an efficient transaction merging 

technique named High-Utility Transaction Merging. 

HFM is based on the observation that transaction 

databases often contain identical transactions. The 

technique consists of identifying these transactions and 

then replaces them with a single transaction while 

combining their utilities. Table 3 -shows Merged 

Database for an item {c}. In that Transactions T2 and 

T5 has identical items e and g so, those two 

transactions can be merged into a single transaction 

T(2,5) and frequency count of those items also added 

respectively(for example if T2  is (e,1) (g,1) and T5 is 

(e,2) (g,1) after  merging it becomes T(2,5) which is 

(e,3) (g,2)).  

 

3.2.3.3 Utility-Bin Array to calculate Utility 

A utility-bin array can be used to efficiently calculate 

TWU of items in O(n) time (n is the number of 

transactions). A utility-bin array U is initialized with 

zero. For example, consider the database of the 

running example. In this example I = {a; b; c; d; e; f}. 

A utility-bin array U is constructed with 7 bins since 

there are 7 items as illustrated in Fig. 2 A. Then, the 

database is scanned one transaction at a time. The first 

transaction is T1, which has a transaction utility of 3. 

Because items a, c, and d appear in transaction T1, the 

value 3 is added to the utility-bins U[a], U[c], and 

U[d]. The result is shown in Fig. 2 B. Then the next 

transaction T2 is read, which has a transaction utility 

of 17. Because items a, c, e, and g appear in 

transaction T2, the value 17 is added to the utility-bins 

U[a], U[c], and U[d]. The result is shown in Fig. 2 C. 

Then, the same process is repeated for the remaining 

transactions. The content of the utility-bin array after 

reading transactions T3, T4, and T5 are respectively 

shown in Fig. 2 D, E, and F. After the last transaction 

has been read, it is found that the TWU of items a, b, c, 

d, e, f, and  g are respectively 45,56, 76, 48, 73, 25, 

and 53, according to their respective entries in the 

utility-bin array. 

 

Table.3. Merged Transactions Database of {c} 

 
3.3 FHM - ALGORITHM 

Fast High Utility Itemsets Mining (FHM) is an 

extended version of EFIM algorithm with the on-self 

period and positive or negative unit profit value.  It 

uses the same three techniques explained in 3.2.3, but 

with some modifications corresponding to negative 

unit profit and the on-self period. Following 

subsections illustrates handling on-self periods of 

transactions (3.3.1) and handling negative unit profit of 

items (3.3.2). 

 

3.3.1 HANDLING ON-SELF PERIODS  

This high utility mining algorithm does not consider 

the on-shelf period of items. In real-life, some items 

are only sold during specific time periods (For 

example summer). High utility mining is biased 

towards the items with long shelf-time because they 

have more opportunity to generate a higher profit. 

Each transaction has its period which is shown in 

Table 1. In FHM, we first calculate Total Period 

Utility (PTO) of each period. Our running example has 

three periods (0, 1, 2). Total Period Utility of a period 

is defined as the summation of TU (- and +) of 
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transactions in which that period appears. For example 

period 0th PTO is 5(-2 for T1 + 7 for T2). In FHM, we 

calculate TWU for all items and for all periods. Each 

TWU is divided by that corresponding period’s PTO. 

This value can be used for comparing with user-

defined Minimum Utility threshold value (minutil) for 

discovering HUI. 

 

 

 
 

Fig.2. TWU Calculation using Utility-Bin Array 

 

 

3.3.2 HANDLING NEGATIVE UNIT PROFIT  

In high utility mining, items are not allowed to have 

negative unit profit, but in real-life transaction 

databases, items are often sold at a loss. FHM integrate 

new ideas to handle negative items more efficiently. In 

FHM, first, we calculate two types of TU, TU (+) is 

calculated with the only positive utility of items and 

TU (- and +) is with both positive and negative utility 

of items. While calculating TWU, we use TU (+) 

because if we use the negative utility of an item then 

that item can’t be explored, but there may be a chance 

to miss itemset which can give HUI. Likewise while 

calculating Total Period Utility and transaction 

merging (for comparing items to find identical items) 

we used TU (- and +).  

 

3.4 PSEUDOCODE OF FHM 

In this subsection, we present the FHM algorithm, 

which combines all the ideas presented in the previous 

section. The main procedure (Algorithm 1) takes as 

input a transaction database and the minutil threshold. 

The algorithm initially considers that the current 

itemset α is the empty set (line 1). The algorithm then 

scans the database once to calculate the local utility of 

each item w.r.t. α and positive and negative unit profit, 

using a utility-bin array (line 2). Note that in the case 

where α = ϕ, the local utility of an item is its TWU 

which is divided by PTO (h) h represents 

corresponding period. Then, the local utility of each 

item is compared with minutil to obtain the secondary 

items w.r.t to α that is items that should be considered 

in extensions of α (line3). Then, these items are sorted 

by ascending order of TWU and that order is thereafter 

used as the x order (line 4). The database is then 

scanned once to remove all items that are not 

secondary items w.r.t to α since they cannot be part of 

any high-utility itemsets (line 5). At the same time, 

items in each transaction are sorted according to x, and 

if a transaction becomes empty, it is removed from the 

database. Then, the database is scanned again to sort 

transactions by the xT order to allow O(nw) 

transaction merging, thereafter (line6). Then, the 

algorithm scans the database again to calculate the 

sub-tree utility of each secondary item w.r.t. α, using a 

utility-bin array (line 7 and 8).Thereafter, the 

algorithm calls the recursive procedure Search to 

perform the depth-first search starting from α (line 9). 

 

The Search procedure (Algorithm 2) takes as 

parameters the current itemset to be extended, the α 

projected database, the primary and secondary items 

w.r.t α and the minutil threshold. The procedure 

performs a loop to consider each single-item extension 

of α of the form β = α U {i}, where i is a primary item 

w.r.t α (line 1 to 9). For each such extension β, a 

database scan is performed to calculate the utility of β 

and at the same time construct the β projected database 

(line 3). Note that transaction merging is performed at 

the same time the β projected database is constructed. 

If the utility of β is no less than minutil, β is output as 

a high-utility itemset (line 4). Then, the database is 

scanned again to calculate the sub-tree and local utility 

w.r.t β of each item z that could extend β (the 

secondary items w.r.t to α), using two utility-bin arrays 

(line 5). This allows determining the primary and 

secondary items of β (line 6and 7). Then, the Search 

procedure is recursively called with β to continue the 

depth-first search by extending β (line 8). Based on 

properties and theorems presented in previous sections, 

it can be seen that when FHM terminates, all and only 

the high-utility itemsets have been output. 
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4. EXPERIMENTAL RESULT 

We performed several experiments to evaluate the 

performance of the proposed FHM algorithm. 

Experiments were carried out on a computer with 64-

bit Core i7 processor running Windows 7 and 4 GB of 

RAM. Algorithms were implemented in Java and 

memory measurements were done using the standard 

Java API. Experiments were performed using a 

standard dataset used in the FOSHU literature for 

evaluating FHM algorithm which is downloaded from 

SPMF open-source data mining library details shown 

in Table4. Subsection 4.1 gives the influence of user-

specified minimum utility threshold and 4.2 gives time 

and space complexity of FHM algorithm. 

 

4.1 INFLUENCE OF MINIMUM UTILITY 

THRESHOLD USER SPECIFIED (MINUTIL) 

Table 5 shows the results for minutil (0.65, 0.75, 0. 

85), we can observe that while minutil value increases 

the number of HUIs generated was reduced. 

 

4.2 TIME AND SPACE COMPLEXITY 

The time complexity of FHM is O(lnw), where n and 

w is respectively the number of transactions and the 

average length of transactions, finally, l is a number of 

itemsets in the search space. Space complexity is 

O(Ih)+O(lnw), wherein O(Ih) I and h means total items 

and period, Ih gives space requirement of bin-array to 

calculate TU and TWU and  O(lnw) is space 

requirement for projected database because the number 

of projected databases is determined by the number of 

itemsets in the search space l.  

 

Table.4. Dataset - mushroom 

 
 

Table.5. Results 

 

5. CONCLUSION 

High Utility mining is an important task in many 

applications. But still, it has some drawbacks like not 

considering negative or positive unit profit value with 

an on-self period. The EFIM algorithm uses some 

unique techniques to reduce the time and memory 

required to discover HUIs but not handled negative 

profit and the on-self period. So, for analyzing 

customer data (for example, transactions represents 

purchasing behavior of customers) we presented an 

algorithm called FHM with on-self period and negative 

unit profit of items. FHM uses the techniques in EFIM 

with some modifications for handling periods and 

negative unit profit values,  like using TU(+), TU(- and 

+), PTO for each period and TWU which is used by 

dividing with respect to corresponding period’s PTO.  
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