
Analysing Customer Data using Utility Mining

Karunambika R

PG Scholar

Department of CSE

PSG College of Technology

Coimbatore, India

Dr.R.Venkatesan

Professor&Head

Department of CSE

PSG College of Technology

Coimbatore, India

Dr.S.Lovelyn Rose

professor

Department of CSE

PSG College of Technology

Coimbatore, India

Abstract— Mining High Utility Itemsets is a popular

data mining task, which discovers High Utility

Itemsets (HUIs) from a transaction database. Recently,

several efficient algorithms have been proposed for

this task with different datasets. But, many of them do

not consider the on-shelf time period of items and

negative unit profit value of items, which is common

in real transaction databases. For efficiently finding

HUIs, considering these two things is crucial. In this

paper, we address both of these challenges in

analyzing customer data by proposing a novel efficient

algorithm named FHM(Fast High Utility Itemsets

Mining) to mine HUIs while considering on-shelf time

periods of items, and items having positive or negative

unit profit. FHM is an extension of EFIM algorithm.

An extensive experimental study with real-life dataset

shows that the proposed algorithm can analyze the

customer data (transaction database may represent

purchasing behavior of customer) efficiently to

discover the importance (utility) of those customer

data.

Keywords: Itemset mining, High-utility mining; Fast-

utility mining; High-utility database merging and

projection; on-shelf time periods.

1. INTRODUCTION

Frequent Mining (FM) is a popular data mining task,

which discovers frequent itemsets (groups of items)

appearing frequently in the transaction database. But,

the main drawback of FM is that it assumes all items

have the same weight (profit or importance) and

appears only once in each transaction. This lead to a

bias in the real-time applications. For example,

consider the transactions of the database which

describes the customer behavior of purchasing items

and unit profit value for each item in the transactions.

In that case, FM discovers only the frequent itemsets

that the customer bought, it does not consider about

profit value of that frequent itemsets. So there is a

chance to miss high profitable itemsets which appears

infrequently in that transaction (customer’s purchasing

behavior). To address this issue many efficient

algorithms for mining high utility itemsets are

proposed which are used different techniques that

reduce the time complexity and different data

structures which reduces space complexity to discover

high profitable itemsets from transactions. EFIM (A

Fast and Memory Efficient Algorithm for High Utility

Itemset Mining) is one of the most efficient algorithms

for finding high profitable itemsets from transactions.

EFIM uses database projection and transaction

merging technique to analyze the customer

data(transactions) and discovering high profitable

itemsets., but EFIM was not designed to handle

negative unit profit value and the on-self periods of

items. In this paper, we present a novel algorithm

named FHM (Fast High-utility itemsets Mining) to

mine HUIs while considering both positive and

negative unit profits with the on-self periods. It extends

the current EFIM algorithm so that it can handle

negative unit profits and the on-self periods efficiently.

The rest of this paper is organized as follows. Section

2, 3, 4and 5 respectively presents the problem

definition and related work, the proposed FHM

algorithm, the experimental evaluation and the

conclusion.

2. PROBLEM STATEMENT AND RELATED

WORK

In this section, we first state the problem of utility

mining and then review the previous extensive studies

of utility mining.

Problem Statement

Given a transaction database, the problem of finding

high utility itemset is to find the complete set of

itemsets whose utilities are greater than or equal to

minimum utility threshold by analyzing customer data

which contains different time periods for each

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS090079
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 09, September-2023

www.ijert.org
www.ijert.org

transaction, positive or negative unit profit value and

minimum utility threshold.

Related Works

Extensive studies have been proposed for mining high

utility itemsets. A base of utility mining is frequent

itemsets mining. One of the important frequent mining

algorithms is FP-Growth [1], which is the tree-based

approach, so it can find frequent itemsets without

generating any candidate itemset by scanning the

database just twice. However, the main drawback of

frequent mining is not considering unit profit value of

items. To overcome this drawback many utility mining

algorithms are proposed, like FP-Growth one of the

popular algorithms for utility mining is UP-Growth:

An Efficient Algorithm for High Utility Itemset

Mining[2], which is also used tree-data structure to

efficiently pruning unprofitable itemsets by scanning

the database just twice and it uses different utility

values like TU and TWU for pruning the search space

for discovering high utility itemsets. But it generates

more candidate itemsets before discovering HUIs

based on user-specified minimum utility threshold.

Mining High Utility Itemsets without Candidate

Generation [3] is another popular utility mining

algorithm, which used list structure instead of a tree. It

scans the transaction database just once to calculate

TWU and construct list structure for each item with

item utility and remaining utility. Based on this

remaining utility, items can be explored for

discovering HUIs so it can give better performance

than UP-Growth. EFIM is one of the most efficient

algorithms [4], which uses different techniques

(explained in section 3.2) to discover HUIs in less time

and space requirement. The above algorithms are only

considering positive unit profit value of items, does not

care about negative unit profit.

3. THE FHM ALGORITHM

We next present our proposal, the FHM algorithm. It is

an extended version of EFIM one-phase algorithm,

EFIM uses several novel ideas to minimize the time

and memory required for discovering high utility

itemsets. FHM algorithm uses these novel ideas to the

database which has transactions with the on-self

period, negative or positive unit profit value.

Subsection 3.1 reviews the depth-first search of

itemsets. Subsection 3.2 gives an overview of EFIM

algorithm. Subsection 3.3 presents proposed FHM

algorithm. Finally, subsection 3.4 gives the pseudo

code of FHM.

3.1 DEPTH-FIRST SEARCH

The FHM algorithm explores this search space using a

depth-first search, starting from the root (the empty

set). During this depth-first search, for any itemset,

FHM recursively adds one item at a time according to

the increasing order of TWU because it generally

reduces the search space, to generate larger itemsets.

3.2 EFIM - ALGORITHM

EFIM is a single phase algorithm to discover High

Utility Itemsets (HUIs) for the customer data with only

positive unit profit value. Table 1. shows a Transaction

Database which contains five transactions, each row

represents the transaction.id, items in that transaction,

TU, the utility of the items in that transaction and the

on-self period of that transaction.

Fig.1. Depth-First Search Procedure for I - {a,b,c,d}

Table.1. Transaction Database

Table.2. Projected Database of {c}

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS090079
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 09, September-2023

www.ijert.org
www.ijert.org

3.2.1 Transaction Utility (TU) and Transaction

Weighted Utility (TWU)

Transaction Utility is a utility of transaction, which is a

summation of utility values of the items in a

transaction. The utility value of an item is a product of

unit profit and frequency count of an item. For

example, In Table 1- first transaction, item a’s utility is

-5, likewise (c, 1) and (d, 2). TU is 3(actually it is -3(-

5+1+2) but here we take only positive utilities for TU

calculation while we have negative utility, the reason

for this is given in section 3.3.2). Transaction weighted

Utility is a summation of the TU values of transactions

in which a particular item appears. For example, item

a’s TWU is 45(3+17+25). TU values of transactions

shown in Table 1.

3.2.3 Three Techniques in EFIM

This algorithm mainly used three techniques to

efficiently reduce the search space and time required to

discover HUIs. Three techniques are,

1. High Utility Database Projection,

2. High Utility Transaction Merging,

3. Using Utility-Bin Array to calculate Utility

(Transaction Utility(TU), Transaction Weighted

Utility(TWU).

3.2.3.1 High Utility Database Projection (HDP)

EFIM is a pattern-growth algorithm. It scans the

horizontal database to calculate the utility. By using

projected databases it reduces the cost of database

scans. To reduce the memory space, EFIM performs

pseudo-projections. Table 2 shows projection database

of an item {c}.

3.2.3.2 High Utility Transaction Merging (HTM)

To further reduce the cost of database scans, EFIM

also introduced an efficient transaction merging

technique named High-Utility Transaction Merging.

HFM is based on the observation that transaction

databases often contain identical transactions. The

technique consists of identifying these transactions and

then replaces them with a single transaction while

combining their utilities. Table 3 -shows Merged

Database for an item {c}. In that Transactions T2 and

T5 has identical items e and g so, those two

transactions can be merged into a single transaction

T(2,5) and frequency count of those items also added

respectively(for example if T2 is (e,1) (g,1) and T5 is

(e,2) (g,1) after merging it becomes T(2,5) which is

(e,3) (g,2)).

3.2.3.3 Utility-Bin Array to calculate Utility

A utility-bin array can be used to efficiently calculate

TWU of items in O(n) time (n is the number of

transactions). A utility-bin array U is initialized with

zero. For example, consider the database of the

running example. In this example I = {a; b; c; d; e; f}.

A utility-bin array U is constructed with 7 bins since

there are 7 items as illustrated in Fig. 2 A. Then, the

database is scanned one transaction at a time. The first

transaction is T1, which has a transaction utility of 3.

Because items a, c, and d appear in transaction T1, the

value 3 is added to the utility-bins U[a], U[c], and

U[d]. The result is shown in Fig. 2 B. Then the next

transaction T2 is read, which has a transaction utility

of 17. Because items a, c, e, and g appear in

transaction T2, the value 17 is added to the utility-bins

U[a], U[c], and U[d]. The result is shown in Fig. 2 C.

Then, the same process is repeated for the remaining

transactions. The content of the utility-bin array after

reading transactions T3, T4, and T5 are respectively

shown in Fig. 2 D, E, and F. After the last transaction

has been read, it is found that the TWU of items a, b, c,

d, e, f, and g are respectively 45,56, 76, 48, 73, 25,

and 53, according to their respective entries in the

utility-bin array.

Table.3. Merged Transactions Database of {c}

3.3 FHM - ALGORITHM

Fast High Utility Itemsets Mining (FHM) is an

extended version of EFIM algorithm with the on-self

period and positive or negative unit profit value. It

uses the same three techniques explained in 3.2.3, but

with some modifications corresponding to negative

unit profit and the on-self period. Following

subsections illustrates handling on-self periods of

transactions (3.3.1) and handling negative unit profit of

items (3.3.2).

3.3.1 HANDLING ON-SELF PERIODS

This high utility mining algorithm does not consider

the on-shelf period of items. In real-life, some items

are only sold during specific time periods (For

example summer). High utility mining is biased

towards the items with long shelf-time because they

have more opportunity to generate a higher profit.

Each transaction has its period which is shown in

Table 1. In FHM, we first calculate Total Period

Utility (PTO) of each period. Our running example has

three periods (0, 1, 2). Total Period Utility of a period

is defined as the summation of TU (- and +) of

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS090079
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 09, September-2023

www.ijert.org
www.ijert.org

transactions in which that period appears. For example

period 0th PTO is 5(-2 for T1 + 7 for T2). In FHM, we

calculate TWU for all items and for all periods. Each

TWU is divided by that corresponding period’s PTO.

This value can be used for comparing with user-

defined Minimum Utility threshold value (minutil) for

discovering HUI.

Fig.2. TWU Calculation using Utility-Bin Array

3.3.2 HANDLING NEGATIVE UNIT PROFIT

In high utility mining, items are not allowed to have

negative unit profit, but in real-life transaction

databases, items are often sold at a loss. FHM integrate

new ideas to handle negative items more efficiently. In

FHM, first, we calculate two types of TU, TU (+) is

calculated with the only positive utility of items and

TU (- and +) is with both positive and negative utility

of items. While calculating TWU, we use TU (+)

because if we use the negative utility of an item then

that item can’t be explored, but there may be a chance

to miss itemset which can give HUI. Likewise while

calculating Total Period Utility and transaction

merging (for comparing items to find identical items)

we used TU (- and +).

3.4 PSEUDOCODE OF FHM

In this subsection, we present the FHM algorithm,

which combines all the ideas presented in the previous

section. The main procedure (Algorithm 1) takes as

input a transaction database and the minutil threshold.

The algorithm initially considers that the current

itemset α is the empty set (line 1). The algorithm then

scans the database once to calculate the local utility of

each item w.r.t. α and positive and negative unit profit,

using a utility-bin array (line 2). Note that in the case

where α = ϕ, the local utility of an item is its TWU

which is divided by PTO (h) h represents

corresponding period. Then, the local utility of each

item is compared with minutil to obtain the secondary

items w.r.t to α that is items that should be considered

in extensions of α (line3). Then, these items are sorted

by ascending order of TWU and that order is thereafter

used as the x order (line 4). The database is then

scanned once to remove all items that are not

secondary items w.r.t to α since they cannot be part of

any high-utility itemsets (line 5). At the same time,

items in each transaction are sorted according to x, and

if a transaction becomes empty, it is removed from the

database. Then, the database is scanned again to sort

transactions by the xT order to allow O(nw)

transaction merging, thereafter (line6). Then, the

algorithm scans the database again to calculate the

sub-tree utility of each secondary item w.r.t. α, using a

utility-bin array (line 7 and 8).Thereafter, the

algorithm calls the recursive procedure Search to

perform the depth-first search starting from α (line 9).

The Search procedure (Algorithm 2) takes as

parameters the current itemset to be extended, the α

projected database, the primary and secondary items

w.r.t α and the minutil threshold. The procedure

performs a loop to consider each single-item extension

of α of the form β = α U {i}, where i is a primary item

w.r.t α (line 1 to 9). For each such extension β, a

database scan is performed to calculate the utility of β

and at the same time construct the β projected database

(line 3). Note that transaction merging is performed at

the same time the β projected database is constructed.

If the utility of β is no less than minutil, β is output as

a high-utility itemset (line 4). Then, the database is

scanned again to calculate the sub-tree and local utility

w.r.t β of each item z that could extend β (the

secondary items w.r.t to α), using two utility-bin arrays

(line 5). This allows determining the primary and

secondary items of β (line 6and 7). Then, the Search

procedure is recursively called with β to continue the

depth-first search by extending β (line 8). Based on

properties and theorems presented in previous sections,

it can be seen that when FHM terminates, all and only

the high-utility itemsets have been output.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS090079
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 09, September-2023

www.ijert.org
www.ijert.org

4. EXPERIMENTAL RESULT

We performed several experiments to evaluate the

performance of the proposed FHM algorithm.

Experiments were carried out on a computer with 64-

bit Core i7 processor running Windows 7 and 4 GB of

RAM. Algorithms were implemented in Java and

memory measurements were done using the standard

Java API. Experiments were performed using a

standard dataset used in the FOSHU literature for

evaluating FHM algorithm which is downloaded from

SPMF open-source data mining library details shown

in Table4. Subsection 4.1 gives the influence of user-

specified minimum utility threshold and 4.2 gives time

and space complexity of FHM algorithm.

4.1 INFLUENCE OF MINIMUM UTILITY

THRESHOLD USER SPECIFIED (MINUTIL)

Table 5 shows the results for minutil (0.65, 0.75, 0.

85), we can observe that while minutil value increases

the number of HUIs generated was reduced.

4.2 TIME AND SPACE COMPLEXITY

The time complexity of FHM is O(lnw), where n and

w is respectively the number of transactions and the

average length of transactions, finally, l is a number of

itemsets in the search space. Space complexity is

O(Ih)+O(lnw), wherein O(Ih) I and h means total items

and period, Ih gives space requirement of bin-array to

calculate TU and TWU and O(lnw) is space

requirement for projected database because the number

of projected databases is determined by the number of

itemsets in the search space l.

Table.4. Dataset - mushroom

Table.5. Results

5. CONCLUSION

High Utility mining is an important task in many

applications. But still, it has some drawbacks like not

considering negative or positive unit profit value with

an on-self period. The EFIM algorithm uses some

unique techniques to reduce the time and memory

required to discover HUIs but not handled negative

profit and the on-self period. So, for analyzing

customer data (for example, transactions represents

purchasing behavior of customers) we presented an

algorithm called FHM with on-self period and negative

unit profit of items. FHM uses the techniques in EFIM

with some modifications for handling periods and

negative unit profit values, like using TU(+), TU(- and

+), PTO for each period and TWU which is used by

dividing with respect to corresponding period’s PTO.

REFERENCES

[1] J. Han, J. Pei, and Y. Yin. “Mining frequent patterns without

candidate generation,” in Proc. of the ACM-SIGMOD Int'l Conf. on

Management of Data, pp. 1-12, 2000.

[2] V.S. Tseng, B.-E. Shie, C.-W. Wu and P.S. Yu. “Efficient Algorithms

for Mining High Utility Itemsets from Transactional Databases,” in

IEEE Trans. Knowl.Data Eng, 25(8):1772{1786, 2013.

[3] M. Liu and J. Qu. “Mining High Utility Itemsets without Candidate

Generation,” in Proc. 21st ACM Intern. Conf. Inform. Known.

Management, pp. 55{64, 2012.

[4] Zida S, Fournier-Viger P et al.” EFIM: A Highly Efficient Algorithm

for High-Utility Itemset Mining,” in Proceedings of the 14th Mexican

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS090079
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 09, September-2023

www.ijert.org
www.ijert.org

international conference on artificial intelligence, 9413, Springer,

Berlin, pp. 530{546, 2015.

[5] G.-C. Lan, T.-P. Hong and V.S. Tseng. “Discovery of high utility

itemsets from on-shelf time periods of products,” in Expert Systems

with Applications,”.38:5851{5857, 2011.

[6] G.-C. Lan, T.-P. Hong, J.-P. Huang and V.S. Tseng. “On-shelf utility

mining with negative item values,” in Expert Systems with

Applications,”.41:3450{3459, 2014.

[7] C.-Y. Li, J.-S. Yeh, C.-C. Chang. “Isolated items discarding strategy

for discovering high utility itemsets,” in Data & Knowledge

Engineering, 64(1): 198{217, 2008.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS090079
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 09, September-2023

www.ijert.org
www.ijert.org

