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Abstract—Curved beams have a wide variety of applications 

that include switches, clamps, suspensions, tools and other 

devices. However, the existing formulas of stress and deflection 

calculations on beams are commonly for straight beams that 

undergo small linear deflections. They are not applicable to 

curved beams. The depth of the cross section of a slender curved 

beam is small compared with its radius of curvature. It usually 

has large deformation. The load-deflection relationship of a 

slender curved beam is often nonlinear. It is much more 

challenging to analyze the deformation of a nonlinear slender 

curved beam than a linear straight beam. In this paper, the 

stress calculation formula is presented for slender curved 

beams. The nonlinear deformations of slender curved beams are 

analyzed. The deformations and stresses of slender curved 

beams are simulated. The results of this paper provide a useful 

roadmap for analyzing and designing slender curved beams. 

Keywords— Curved Beam; Slender Beam; Large 

Deformation; Stress Analysis; Simulation. 

I.  INTRODUCTION 

Curved beams have a wide variety of applications that 
include switches, clamps, suspensions, tools and many others 
[1-2]. However, the stress and deflection calculation formulas 
on beams in many textbooks of material mechanics are 
commonly for straight beams that undergo small linear 
deflections [3].  

Figure 1 shows a straight uniform beam with rectangular 
cross section that is under pure bending. The in-plane depth 
and out-of-plane width of the cantilever beam are t and b, 
respectively. The x axis is along the centroidal axis of the 
straight beam. The neutral axis of the straight beam coincides 
with its centroidal axis. The normal stress on the cross section 
from bending is along x direction and can be calculated from 
the following equation [4-5]. 

 

Fig. 1 An initially straight beam under bending. 
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I in Equation (1) is the moment of inertia of the cross 

section, which is 
12

3tb
I   for rectangular cross section. M is 

the bending moment. y is the distance of the stress element 
away from the neutral axis. This equation is often referred to 
as flexure formula. 

Figure 2 shows an initially curved beam with rectangular 
cross section that is under bending. Plane assumption holds 
for curved beams, i.e., planar cross sections before bending 
remain planar after bending. The dash-dot line is the neutral 
axis of the curved beam. The normal stress on the cross 
section from bending can be analysed as follows [4-5]. 

 

Fig. 2 An initially curved beam under bending. 

As shown in Figure 2, element AB is at a distance of y 
from the neutral axis. The angle formed by AB and its 
curvature center O of the curved beam element is θ1 before 
bending. The angle changes to θ2 after bending. The element 
on the neutral axis corresponding to AB is element CD. 
Because of plane assumption, element CD has the same initial 
and final angles as element AB. Element CD has initial and 
final radii of curvature of R1 and R2, respectively, on the 
neutral axis. 

The strain of element AB can be derived [6]. 
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The arc length of element CD is R1θ1 and R2θ2, 
respectively, before and after bending. Since CD is on the 
neutral axis, it does not change its length during bending. We 
have 2211  RR  . Equation (2) can be simplified based on 

this relationship. 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS110180

Vol. 5 Issue 11, November-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 214



11

12

)(

)(






yR

y
AB




  (3) 

Substituting 2112 RR   into Equation (3) yields the 

following equation. 
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The bending stress of element AB is normal to the cross 
section and can be calculated from AB . 

)(

)(

12

21

yRR

RRy
E




  (5) 

E in Equation (5) is Young’s modulus of the beam 
material. The stress distribution described in Equation (5) that 
is for a cross section of a curved beam is nonlinear, which 
makes the neutral and centroidal axes no longer coincide.  

The force resultant from the normal stress of pure bending 
on a cross section of a curved beam is zero, which leads to the 
following equation. 
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Let yRr  1 . Here r references the location of element 

AB from its curvature center. Substituting r equation into 
Equation (6) yields the following equation. 
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From Equation (7), the location of the neutral axis can be 
solved. 
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A is area of the cross section. For a rectangular cross 

section, we have tbrrbA  )( 12 , )ln( 12 rrb
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 . Here r1 and r2 are the minimum and 

maximum radii from the curvature center of the rectangular 
cross section. 

The bending moment M on the cross section can be 
derived from the bending stress. 
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Substituting yRr  1  and 1Rry   into Equation (9) 

yields the following equation. 
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In Equation (10), 1RArdA
A

 . Here 1R  references the 

location of the centroidal axis from its curvature center. 

Substituting Equation (8) and 1R  into Equation (10) leads to 

the following M equation. 

 11

2

21 )(
RR

R

RREA
M 


  (11) 

Substituting Equation (11) into Equation (5) yields the 
calculation formula on the bending stress. 
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Let 11 RRe  . Here e is the distance between the 

centroidal and neutral axes. Substituting e, yRr  1  and 

1Rry   into Equation (12) yields the following stress 

calculation equation. 
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Equations (12) and (13) represent the two forms of the 
stress calculation formula for curved beams [4-5]. The stress 
distribution on the cross section is hyperbolic. 

From Equation (11), the change in curvature of the neutral 
axis before and after bending can be determined. 
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In order to solve the bending stress by using equation (12) 
or (13), the bending moment (M) on a cross section has to be 
known. For curved beams that are mainly used for loading 
bearing such as crane hooks [6], M can be calculated based on 
initially curved shape or undeformed shape since deformation 
is small. However, slender curved beams often experience 
large deformation. It is inaccurate to use undeformed shape to 
calculate bending moment on a cross section. To have 
accurate stress and deformation analysis results, deformed 
shape has to be used for bending moment calculation. This 
makes it challenging to analyse slender curved beams. 

The in-plane depth (t) is usually much smaller than the 
radius of curvature (R1 and R2) of the neutral axis in slender 
curved beams. In Equation (4), the y part in yR 1  can be 

reasonably neglected [6], which leads to the following strain 
equation.   
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The bending stress of slender curved beams can then be 
derived from Equation (15) as follows. 
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The stress distribution on the cross section of slender 
curved beams is considered as linear as shown in Equation 
(16). The force resultant from the normal stress of pure 
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bending on a cross section of a slender curved beam is zero, 
which leads to the following equation. 
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Equation (17) shows that the neutral and centroidal axes in 
slender curved beams coincide. The bending moment M on 
the cross section of slender curved beams can be derived from 
the bending stress. 
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Rearranging Equation (18) yields the following equation. 
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The deformation or deformed shape of slender curved 
beams can be analysed based on Equation (19) in which the 
bending moment (M) has to be calculated from the deformed 
shape. 

The material of the analysed slender curved beams in the 
paper is considered as homogeneous and isotropic. Although 
slender curved beams undergo large deformations, their 
strains (  ) remain small and are within the range of elastic 

deformation. Slender curved beams are analysed in the paper 
as Euler-Bernoulli curved beams for which plane hypothesis 
holds. Because of the thin depth and beam flexibility, slender 
curved beams are considered to be inextensible in the paper 
during their deformation.  

Although it is difficult to solve the large deformation of a 
slender curved beam from Equation (19) analytically, many 
different numerical approaches have been proposed and 
published [7-12]. When R1 in Equation (19) approaches 
infinity, a slender curved beam degenerates to a slender 
straight beam. There are more publications on solving large 
deformations of slender straight beams [13-19]. 

Among the existing published papers on slender curved 
beams, most are focused on solving large deformations under 
given loadings that include concentrated, distributed or 
combined. In this paper, the analysed slender curved beams 
are under given input displacements. The corresponding large 
deformations and required input forces of analysed slender 
curved beams are to be solved. The authors of this paper are 
motived by the challenges facing slender curved beams. The 
research objective of this paper is to establish an approach and 
provide a guideline for analysing slender curved beams. 

The remainder of the paper is organized as follows. The 
deformation analysis of slender curved beams is presented in 
section II. The simulations of deformations and stresses on 
slender curved beams are provided in section III. Section IV is 
on the shape design of slender curved beams. Conclusions are 
drawn in section V. 

II. DEFORMATION ANALYSIS OF SLNDER CURVED BEAMS  

For the slender curved beam shown in Figure 3, the dashed 
curve is the undeformed shape of the beam that has a constant 
radius of curvature of R1. The solid curve is the deformed 
shape of the beam that has radius of curvature of R2 that may 
change along the curve. The left end of the curved beam is 

fixed. We assume the displacements of the right free end are 
given together with the parameters of t and b of the 
rectangular cross section of the curved beam and Young’s 
modus (E) of the beam material. The required input forces of 
Fx and Fy at the right end are to be determined in order to 
generate the desired displacements. 

Let the coordinates of an arbitrary point on the solid curve 
be (x, y). The arc length at the point is s. s meets the condition 
of Ls 0 . L here is the total arc length of the curved beam 

that is considered as inextensible during its deformation. 
0s  at the fixed end while Ls   at the free end. 

The bending moment at an arbitrary point on the solid 
curve can be derived.  

)()()( yyFxxFsM BxBy   (20) 

 

Fig. 3 An analyzed slender curved beam. 

Let )(s  be the angle that is from the positive x direction 

to the tangent line at a point on the solid curve. Then we have 
the following equation. 
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Substituting Equations (20) and (21) into Equation (19) 
leads to the following equation. 
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Differentiating both sides of Equation (22) with respect to 
s leads to the following equation. 
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For the solid curve, we have cosdsdx  and 

sindsdy . Substituting the expressions of dsdx  and 

dsdy  into Equation (23) and moving the terms on the right 

hand side to the left yields the following equation. 
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From Equation (24), we have 
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Equation (25) results in the following equation. 
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C in Equation (26) is an arbitrary constant. It can be 
decided by one boundary condition of the deformed curved 
beam. At the right end of the solid curve, we have Ls  , 

0)( LM , and 0
Lsds

d
. Assume the tangent angle of the 

solid curve at its right end is m . Substituting the expressions 

of dsd  and   at the right end into Equation (26) yields the 

following equation. 
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Substituting Equation (27) into Equation (26), we have 
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Taking square root on both sides of Equation (28) yields 
the following equation. 
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Rearranging Equation (29) yields the following equation. 
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Integrating Equation (30) from the left end to the right end 
of the solid curve yields the following equation. 
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Substituting Equation (30) into dsdx cos  yields the 

following equation. 
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Integrating Equation (32) from the left end to the right end 
of the solid curve yields the following equation. 
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Substituting Equation (30) into dsdy sin  yields the 

following equation. 
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Integrating Equation (34) from the left end to the right end 
of the solid curve yields the following equation. 
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m , Fy, and Fx are the three unknowns here. They can be 

solved numerically by Equations (31), (33) and (35). 

III. DEFORMATION AND STRESS SIMULATIONS 

The deformation and stress of a slender curved beam can 
be directly analyzed and simulated by finite element analysis 
(FEA) software ANSYS [20-22]. With the specified input 
displacements, the required input forces can also be directly 
obtained from ANSYS through ANSYS simulation. 

Figure 4 shows a slender curved beam with the shape of 
half a circle. The material of the beam is structural steel with 
Young’s modules (E) of 2000 GPa, Poisson’s ratio (ν) of 0.3, 
yield strength (σy) of 350 MPa. The diameter of the beam is 
150 mm. The depth (t) and width (b) of the rectangular cross 
section of the beam are 0.25 mm and 15 mm, respectively. 
The left end of the beam is fixed at the origin O of the 
coordinate system. The right free end A of the beam is on the x 
axis when the curved beam is undeformed. When A is 
displaced to A1, A2, A3 and A4, the deformed beam shape, the 
stress distribution and the input forces at A are to be 
determined by simulation in ANSYS. As shown in Figure 4, 
A1A2A3A4 forms a square with its center at the un-displaced 
point A and its length of 60 mm. 

 

Fig. 4 A slender curved beam with half a circle. 

To analyse the curved beam, the solid model of the curved 
beam is first created in the Design Modeler [23] of ANSYS. 
ANSYS Design Modeler is an ANSYS Workbench 
application that provides modeling tool. The solid model 
created in ANSYS Design Modeler is then meshed and 
analysed in ANSYS Mechanical [24] that is also an 
application of ANSYS Workbench. 

Figure 5 shows the meshing model of the analysed curved 
beam. When A is displaced to A1, the deformed shape of the 
beam is shown in Figure 6. Because of the thin depth of the 
curved beam, the deformed shape line is very light in the 
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figure. The colour map and numbers in the figure represent the 
directional deformation along the x direction. The maximum 
stress in the deformed beam is 114.61 MPa that is shown in 
Figure 7. To generate the displacements at A, the required 
input forces (Fx and Fy) are 0.42261 N and -0.01739 N, 
respectively. These input forces are the reaction forces in 
ANSYS. 

When A is displaced to A2, the deformed shape of the 
beam is shown in Figure 8. The maximum stress in the 
deformed beam is 246.69 MPa that is shown in Figure 9. The 
input forces (Fx and Fy) are -0.45321 N and 0.20784 N, 
respectively. The maximum stress in the deformed beam at A2 
is more than doubled than that at A1. 

When A is displaced to A3, the deformed shape of the 
beam is shown in Figure 10. The maximum stress in the 
deformed beam is 71.098 MPa that is shown in Figure 11. The 
input forces (Fx and Fy) are -0.11983 N and 0.00818 N, 
respectively.  

 

Fig. 5 The meshing model of the curved beam. 

 

 

Fig. 6 The deformation of the curved beam at A1. 

 

 

Fig. 7 The stress of the curved beam at A1. 

When A is displaced to A4, the deformed shape of the 
beam is shown in Figure 12. The maximum stress in the 
deformed beam is 363.06 MPa that is shown in Figure 13. The 
input forces (Fx and Fy) are 0.85707 N and -0.48320 N, 
respectively. The maximum stress in the deformed beam at A4 
is the highest among all four deformed shapes of the curved 
beam, which is beyond that of the yield strength of the beam 
material. 

 

Fig. 8 The deformation of the curved beam at A2. 

 

Fig. 9 The stress of the curved beam at A2. 

 

Fig. 10 The deformation of the curved beam at A3. 

 

Fig. 11 The stress of the curved beam at A3. 
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Fig. 12 The deformation of the curved beam at A4. 

 

 

Fig. 13 The stress of the curved beam at A4. 

 

IV. SHAPE DESIGN OF SLENDER CURVED BEAMS 

As shown in Figure 13, the maximum stress within the 
deformed slender curved beam at A4 is above the yield 
strength of the beam material. This maximum stress can be 
reduced by either increasing the arc length or decreasing the 
cross section depth of the slender curved beam. Both ways 
belong to shape design of a slender curved beam that is to 
improve its performance and better meet its needs and 
requirements by changing its geometric parameters.  

The central angle of the slender circular beam analyzed 
last section is 180°. The angle is increased to 270° in this 
section while other parameters of the beam remain unchanged. 
Figure 14 shows the slender curved beam with the increased 
arc length. The meshing model of the increased curved beam 
is shown in Figure 15. 

When A of the increased curved beam is displaced to A1, 
the deformed shape of the beam is shown in Figure 16. The 
maximum stress in the deformed beam is 76.54 MPa that is 
shown in Figure 17, which is smaller than that of 114.61 MPa 
for the half a circle case shown in Figure 7. To generate the 
displacements at A, the required input forces (Fx and Fy) are 
0.01223 N and 0.10798 N, respectively.  

When A of the increased curved beam is displaced to A2, 
the deformed shape of the beam is shown in Figure 18. The 
maximum stress in the deformed beam is 65.154 MPa that is 
shown in Figure 19, which is much lower than that of 246.69 
MPa for the half a circle case in Figure 9. The input forces (Fx 
and Fy) are -0.01156 N and 0.09961 N, respectively. 

 

Fig. 14 The slender curved beam with increased length. 

 

Fig. 15 The meshing model of the increased curved beam. 

 

Fig. 16 The deformation of the increased curved beam at A1. 

When A of the increased curved beam is displaced to A3, 
the deformed shape of the beam is shown in Figure 20. The 
maximum stress in the deformed beam is 86.245 MPa that is 
shown in Figure 21, which is above that of 71.098 MPa for the 
half a circle case in Figure 10. The input forces (Fx and Fy) are 
-0.06167 N and -0.1382 N, respectively. 
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Fig. 17 The stress of the increased curved beam at A1. 

 

Fig. 18 The deformation of the increased curved beam at A2. 

 

Fig. 19 The stress of the increased curved beam at A2. 

When A of the increased curved beam is displaced to A4, 

the deformed shape of the beam is shown in Figure 22. The 

maximum stress in the deformed beam is 68.005 MPa that is 

shown in Figure 23, which is far below that of 363.06 MPa 

for the half a circle case in Figure 13. The input forces (Fx 

and Fy) are 0.039885 N and -0.12613 N, respectively. 

Among all four displacements, the maximum stress within 

the deformed curved beam with increased arc length is 

86.245 MPa, which is well below the yield strength of 350 

MPa for the beam material.  

 

 

Fig. 20 The deformation of the increased curved beam at A3. 

 

Fig. 21 The stress of the increased curved beam at A3. 

 

Fig. 22 The deformation of the increased curved beam at A4. 

 

Fig. 23 The stress of the increased curved beam at A4. 
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V. CONCLUSIONS 

When slender curved beams have much smaller depth of 
cross section than radius of curvature, their neutral and 
centroidal axes can be reasonably considered to coincide for 
stress and deformation analyses. Slender curved beams 
usually undergo large deformations and have nonlinear load-
deflection relationships. Because of the large deformation, the 
bending moment on a cross section has to be calculated from 
the deformed shape in order to have a decent accuracy. Large 
deformation might cause high bending stress within a 
deformed slender curved beam. The high bending stress can 
be significantly reduced by either increasing the beam length 
or decreasing the cross section depth. The stress and 
deformation analyses presented in the paper provide 
guidelines for analysing and designing slender curved beams. 
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