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Abstract  
 

Attempts have been made in this paper to show the 

multifractal property of the electrocardiograms. With 

the aid of the detrended fluctuation analysis (DFA), the 

multifractal nature of the electrocardiograms(ECG) 

has been studied. Normal electrocardiograms are  

acquired through the polypara module from two 

subjects, whereas the diseased electrocardiogram of 

BIDMC congestive heart failure and atrial fibrillation  

are obtained from the physionet. Both the ECG signals 

have been analysed by the Hurst exponent, the partition 

function and the singular spectrum of multifractal 

detrended fluctuation analysis (MF-DFA). There is a 

little diversification between the spectrums of the 

normal ECGs and the diseased ECGs but the results 

show a strong degree of multifractality in the time 

series of the electrocardiograms. The results are all 

implemented upon the MATLAB platform.    

 

1. Introduction  
Life is one of the most complex non-linear systems 

and heart is the core of this life-cycle system. Fractals 

are fit for signal modelling in the real world, such as 

electroencephalograms (EEG), electrocardiograms 

(ECG), as well as turbulent flows, lightning strikes, 

DNA sequences, and geographical objects which 

represent some of many natural phenomena and are 

difficult to be characterized using traditional signal 

processing theory [1-4]. Electrocardiogram (ECG) is a 

graphical representation of cardiac activity. In general, 

ECG signals have unique morphological characteristics 

(P-QRS-T complex) and it is highly significant than 

other biological signals. Physiologic signals generate 

complex fluctuations in their output signals that reflect 

the underlying dynamics [5-9]. The main features of 

this physiologic time series such as ECG are non-

stationarity, non-linearity and non-equilibrium 

phenomena. Human cardiac dynamics are driven by 

complex non-linear interactions of two competing 

forces: sympathetic stimulation increases the heart rate, 

whereas parasympathetic system decreases it [12]. For 

this type of intrinsically noisy system, the novel 

technique of detrended fluctuation analysis (DFA) has 

been developed to study the non-stationary behaviour 

of ECG signal [15]. Normal ECG signals have been 

acquired through the polypara module. The data of the 

diseased patient is collected from the patients suffering 

from BIDMC congestive heart failure and atrial 

fibrillation [16-17]. 

 

 

2. DFA Algorithm 
The DFA algorithm[2] quantifies fractal-like 

correlation properties by calculating the scaling 

property of the root-mean-square fluctuation of the 

integrated and detrended time series data. The steps of 

the DFA algorithm are as follows: 

Step 1: At first the ECG time series is taken which is 

denoted by {x(i)}. Then the profile {Y(i)} is 

determined.  

𝑌 𝑖 =  𝑥 𝑘 −< 𝑥 >

𝑖

𝑘=1

               (1) 

Where „<x>‟ is the mean of the record 

Step 2: The profile {Y(i)} is divided into 𝑁𝑠 ≡ [
𝑁

𝑆
] 

boxes of the same size „S‟. 

Step 3: In each box, the integrated time series is fitted 

by using a polynomial function,𝑝𝑣(𝑖), which is the 

local trend. 

Step 4: The local trend is subtracted and the detrended 

fluctuation function is given by , 

𝑌𝑠 𝑖 = 𝑌 𝑖 − 𝑃𝑣 𝑖                             (2) 

Step 5: In each box of size „S‟, the variance is 

determined, 

𝐹𝑆
2 =

1

𝑆
 {𝑌  𝑣 − 1 𝑆 + 𝑖 − 𝑃𝑣 𝑖 }2          (3)

𝑆

𝑖=1

 

Step 6: The qth order fluctuation function 𝐹𝑞(𝑆) is 

calculated, 
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𝐹𝑞 𝑆 =  
1

𝑁𝑆
 (𝐹𝑆

2 𝑣 )
𝑞

2 
𝑁𝑆
𝑣=1

𝑞
                       (4) 

Step 7: The procedure is repeated for different box 

sizes ( different  scales). 

 

3. Parameters to study MF-DFA 
DFA [3] is a well-established method for 

determining data scaling behaviour in the presence of 

possible trends without knowing their origin & shape. 

Repeating the procedure for several scales, as discussed 

above, 𝐹𝑞(𝑆) will increase with increasing „S‟. If the 

time series is of long range correlation, then 

𝐹𝑞 𝑆  ∞ 𝑆ℎ(𝑞)              (5) 

The „h(q)‟ is called the genearalized Hurst exponent 

 

3.1. Generalised Hurst Exponent  
This parameter determines whether the time series is 

monofractal or multifractal. For monofractal time series 

„h(q)‟ is constant. On the other hand, for multifractal 

time series, „h(q)‟ depends on the value of „q‟, the 

fluctuation function. Therefore, the exponent „h(q)‟ is 

called the generalized Hurst exponent [5]. 

 

3.2. Partition Function 
       The partition function ζ(q) is regarded as a 

characteristic function of the fractal behaviour. The 

partition function is given by, 

                 𝜁(𝑞)  =  𝑞ℎ(𝑞) − 1                     (6) 

If ζ(q) versus q is linear, the time series is monofractal. 

If ζ(q) versus q is convex, the time series has a 

multifractal property [5].  

 

3.3. Singular Spectrum 
        The singular spectrum is also an important tool for 

fractal investigation in time series. It is denoted by 

„𝑓(𝛼)‟. In fact, the curve of the spectrum is single-

humped for a multifractal, while it reduces to a point 

for monofractal time series [6]. For a multifractal, the 

maximum of the spectrum denotes the dominant fractal 

exponent, and the width of the spectrum provides the 

range of the fractal exponents. The singular spectrum is 

calculated by Legendre Transform: 

𝛼 𝑞 =
𝑑(ζ q )

𝑑𝑞
               (7) 

                   𝑓 𝛼 = 𝑞𝛼 𝑞 − ζ q      (8) 

where 𝜁(𝑞)  =  𝑞ℎ(𝑞) − 1 is the partition function 

  

4. Results And Discussion  
     In order to study the multifractal behaviour of the 

electrocardiograms, the singular spectrum, the Hurst 

exponent and the partition function of both normal & 

diseased ECGs are studied. The diseased ECG is 

collected from the physionet. 

 
Figure 1: Normal ECG of subject1 

 

 

 
Figure 2: The generalized Hurst exponent of normal 

electrocardiograms of subject1 
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Figure 3: The partition function of the normal 

electrocardiograms of subject1 

 

 
Figure 4: The singular spectrum of normal 

electrocardiogram of subject1 

Figure 5: Normal electrocardiogram of subject 2 

 

 

 

 

 
Figure 6: The generalized Hurst exponent of normal 

electrocardiograms of subject2 
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Figure 7: The partition function of the normal 

electrocardiograms of subject2 

 

 

 
Figure 8: The singular spectrum of normal 

electrocardiogram of subject2 

 

Figure 9: Diseased electrocardiogram of BIDMC 

congestive failure (chf01) 

 

 

 
Figure 10 : The generalized Hurst exponent of 

diseased electrocardiograms (chf01) 

 

 

 
Figure 11: The partition function of diseased 

electrocardiograms (chf01) 
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Figure 12: The singular spectrum of diseased 

electrocardiograms (chf01) 

 

Figure 13: Diseased electrocardiogram of atrial 

fibrillation (n01) 

 

 

Figure 14: The generalized Hurst exponent of 

diseased electrocardiograms (n01) 

 

 

 
Figure 15: The partition function of diseased 

electrocardiograms (n01) 

 

 
Figure 16: The singular spectrum of diseased 

electrocardiograms (n01) 

 

Figure 1 shows the normal ECG signal of subject1, 

Figure 2 shows the generalized Hurst exponent of the 

normal electrocardiograms of subject1, Figure 3 shows 

the partition function of the normal electrocardiograms 

of subject1 and Figure 4 shows the singular spectrum 

of the normal electrocardiograms of subject1. 

Similarly, Figure 5, Figure 6, Figure 7 and Figure 8 

shows the respective results of normal 

electrocardiograms of subject2. The diseased 

electrocardiogram is taken from the physionet. It 

contains the data of BIDMC congestive heart failure 
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and atrial fibrillation. Figure 9 shows the diseased 

electrocardiogram of BIDMC congestive heart failure, 

Figure 10 shows the generalised Hurst exponent of the 

diseased electrocardiogram of atrial fibrillation, Figure 

11 shows the partition function of the diseased 

electrocardiogram of atrial fibrillation and Figure 12 

shows the singular spectrum of the diseased 

electrocardiogram of atrial fibrillation. Similarly, 

Figure 13 shows the diseased electrocardiograms of 

atrial fibrillation, Figure 14, Figure 15 and Figure 16 

shows the respective results of the diseased 

electrocardiograms of atrial fibrillation. 

           It is obvious from the results that the relation 

between ζ(q) and q of the normal and diseased both 

electrocardiograms is non-linear which shows that the 

ECG time series is multifractal in nature. Also, the 

singular spectrum of the normal and diseased 

electrocardiograms are more-or-less single-humped, 

which shows the multifractality of the ECG time series.     

 

5. Conclusion  
          In this paper, a detailed analysis of the fractal 

properties of the ECG time series is studied, which is 

analysed by the Hurst exponent, partition function and 

the singular spectrum. The results from all these 

methods show that the ECG time series shows 

multifractal properties both in the case of normal and 

diseased electrocardiograms. 
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