

 Analysis of Three Formal Methods-Z, B and VDM

Dr.(Mrs.) Arvinder Kaur

Associate Professor,
University School of

Information & Communication
Technology,

Guru Gobind Singh
Indraprastha University,

Dwarka, Sector-16C,
Delhi, India

Ms.Samridhi Gulati
M.Tech. Student

University School of
Information & Communication

Technology,
Guru Gobind Singh

Indraprastha University,
Dwarka, Sector-16C,

Delhi, India

Ms. Sarita Singh
M.Tech. Student

University School of
Information & Communication

Technology,
Guru Gobind Singh

Indraprastha University,
Dwarka, Sector-16C,

Delhi, India

Abstract

Formal methods provide a much needed solid software

engineering foundation for the ‘art’ of programming

computers. Formal specifications can be used to

provide an unambiguous and consistent supplement to

natural language descriptions and can be rigorously

validated and verified leading to the early detection of

specification errors. Most of the software is delivered

with some bugs, with lack of complete functionality and

sometimes with cost overrun. Formal methods can be a

silver bullet for software industry for solving these

problems. This paper compares and contrasts the

strengths and weaknesses of the model oriented formal

specification languages such as Z, B and Vienna

Development Method (VDM) basis of various factors.

1. Introduction
Formal methods are mathematically based

techniques that can be applied throughout the

development of a system to precisely describe a system

and involve the use of refinement techniques and proof

obligation at each stage to ensure the correctness,

completeness and consistency of specification. The

formal specification languages are based on set theory

and first order predicate calculus, but this mathematical

background was initially not fully formalized.[1]

 In this paper we describe formal specification

language and different formal specification styles in

Section 2. In Section 3, Z, B and VDM are compared

on the basis of factors such as characteristics,

concurrency, object oriented concept, tool support, and

code conversion. Conclusions are presented in Section

4.

2. Formal Specification Languages

This section describes an overview of formal

specification languages.

The representation used in formal methods is called

a formal specification language. The language is

“formal” in the sense that it has a formal semantics and

as a result can be used to express specifications in a

clear and unambiguous manner. A formal specification

language can be used to specify the task at hand in a

clear and concise manner. As formal methods and

formal specification language has sound mathematical

basis, it provides the means of proving that

specification is realizable, complete, consistent and

unambiguous. Even the most complex systems can be

modeled using relatively simple mathematical objects,

such as sets, relations and functions [1].

A formal specification language is usually

composed of three primary components or in

mathematical term we can say that it consists of two

sets syntax and semantics and a set of relation. [1]

The specific notation with which specification is

represented is defined by syntactic domain or syntax.

Formal techniques can have considerably different

semantic domain. Semantics helps to define a “universe

of objects” that will be used to describe the system. Set

of relations defines the rules that indicate which objects

properly satisfy the specification. Formal specification

languages use mathematics as their basis. Most

complex systems can be modelled using simple

mathematical objects, such as sets, relations and

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

1www.ijert.org

functions. A mathematical statement is unambiguous

and precise, which provides a way to give convincing

arguments to justify ones solutions, and allows proving

that an implementation satisfies the mathematical

specification [1].

Types of Formal Specification Styles

2.1 Model Based Languages

There are a number of different ways to write a

precise specification. One approach is model based

languages. In it the specification is expressed as a

system state model. This state model is constructed

using well understood mathematical entities such as

sets, relations, sequences and functions. Operations of a

system are specified by defining how they affect the

state of the system model. Operations are also

described by the predicates given in terms of pre and

post conditions [2].

The most widely used notations for developing

model based languages are Vienna Development

Method (VDM) [4], Zed (Z) [3] and B [5].

2.2 Algebraic Specification
System behaviour is formally specified using a

software engineering technique called, algebraic

specification. These languages uses methods derived

from abstract algebra or category theory to specify

information systems. For the definition of abstract data

types interface, algebraic approach was originally

designed. Type operation is specified in order to define

the type rather than the type representation. Ex

LARCH, ASL, OBJ [6].

2.3Process Oriented
Concurrent systems are described using process

oriented formal specification language. A specific

implicit model for concurrency is the basis for these

languages. In these languages processes are denoted

and built up by expressions and elementary

expressions, respectively, which describe particularly

simple processes by operations which combine

processes to yield new potentially more complex

processes. Ex Communicating Sequential Processes

(CSP) [7].

3. Comparison between Z, B and VDM
Z notation is a formal specification language that

works at a high level of abstraction so that even

complex behavior can be described precisely and

concisely and it was originally proposed by Jean-

Raymond Abrial in 1977 and was developed further at

the Programming Research Group at Oxford University

[8], whereas the B formal method is the method of

software development based on B, a tool-supported

formal method based around an abstract machine

notation, used in the development of computer software

and was originally developed by Jean-Raymond Abrial

in France and the UK [9]. One of the longest-

established Formal Methods for the development of

computer-based systems is termed as Vienna

Development Method (VDM).It was originated at

IBM's Vienna Laboratory [10] in the 1970s.The Z, B

and VDM are model based languages, which usually

model a system by representing its state as a collection

of state variables, their values and some operations that

can change its state. All are based on set theory and

mathematical logic. VDM was used in programming

language description and compiler design. The main

goal was to develop the language's fundamental

features and to establish some formal semantics. Z

notation is a strongly typed [11] mathematical,

specification language. It is not an executable notation;

it cannot be interpreted or compiled into a running

program. Compared to Z, B is slightly more low level

and more focused on refinement to code rather than just

formal specification hence it is easier to correctly

implement a specification written in B than one in Z.

3.1 Characteristics

The following table distinguishes Z, B and VDM

based on different characteristics [12], [13], [14]

Comparison

Factor

Z B VDM

Formal

Method Style

Model -

Oriented

Model -

Oriented

Model -

Oriented

Mathematical

Basis

Set Theory

First order

predicate

Calculus

Set Theory

First order

predicate

Calculus

Set

Theory

First

order

predicate

Calculus

Appearance

Difference

Key Word

oriented

(eg, PRE,

THEN ,

END,

INVARIA

NT)

Boxes or

Schemas

Keyword

oriented

(e.g. pre-

, post-,

invariant

s)

Structuring Abstract

Machine

Notation

Schema

Calculus

which

allows

various

schemas to

None

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

2www.ijert.org

be

combined

to form

new

schemas

Specification

of State

Changes

None Before:

undecorate

d variables

After:

primed

variables

• Before:

hooked

variables

•After:

unhooke

d

variables

Identification

of Inputs and

Outputs

Input and

output

parameters

are given

by an

operation

header:

Output<--

Operation_

Name(Inpu

ts)

Inputs:

variable

names

ending in

“?”

• Outputs:

variable

names

ending in

“!”

No

explicit

way of

specifyin

g

Table 1. Comparison on the basis of Characteristics

3.2 Concurrency
Concurrency is a property used in distributed system

that enables software systems to be served in large-

scale distributed systems. This property allows

several computations to execute simultaneously, and

potentially interact with each other.

Z B VDM

No support

for concurrency

control

No support

for concurrency

control

Provide

support for

concurrency

control using

VDM++

Table 2. Comparison on the basis of Concurrency

3.3 Object Oriented Concept
The object oriented concepts such as inheritance,

polymorphism, and encapsulation are supported by

some formal specification languages. Object oriented

programming is an approach for developing software

system based on the concepts of classes and objects.

[15], [16]

Z B VDM

Support object

oriented concepts

such as

polymorphism,

inheritance and

encapsulation

Using Object

Z.

No

support for

object

oriented

concept

Support object

oriented concepts

such as

polymorphism,

inheritance and

encapsulation

Using

VDM++.

Table 3. Comparison on the basis of Object Oriented

Concept

3.4 Tool Support
There are variety of robust commercially available

tools that provide support for writing specification,

proof obligation, refinement, syntax checking, type

checking, editing, creating, proving theorems and many

others. The table given below describes different types

of tools and their features supported by Z, B and VDM.

[17], [18], [19], [20], [21].

Z B VDM

Z Word

Z/Eves

Fastest

AtlierB

ProB

SpecBox

Overture

VDM tools

Table 4. Comparison on the basis of Tool Support

3.5 Code Generation
Some formal specification languages support

generation of computer source code from requirement

specification.

Z B VDM

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

3www.ijert.org

Software

requirement

specification

cannot be

automatically

converted into

computer source

code.

Software

requirement

specification

can be

automatically

converted into

computer source

code.

Software

requirement

specification

can be

automatically

converted into

computer source

code.

Table 5. Comparison on the basis of Code Conversion

4. Conclusion

Though Z, B and VDM are model based formal

specification languages used for specifying user’s

requirements in a mathematical language that can be

proved, verified and tested unambiguously. While the

journey of all three languages starts at the requirements

specification phase of the software development life

cycle (SDLC) model, but their path divides after this

phase. Z works on high level of abstraction of a system

and provides a strong base for system designing and

then testing it. However, B models the system in an

abstract machine notation that can be used further to

design system, generate its code and then refine and

test the same. VDM was used to prove the equivalence

of programming language concepts as part of compiler

correctness arguments. While specification written

using B and VDM can be used to generate computer

source code directly, Z notation doesn’t provide such

functionality. Free tool support is available for all three

languages. Z, B and VDM do not differ radically from

one another. They are similar in their foundations and

goals, and both allow the specifier to state requirements

precisely and refine these specifications into designs

correctly .Developing software with formal

specification languages takes more time and hence

money in comparison to the developing the same

software without it but this access cost can be scarified

in order to make software a reliable one and hence

increase the trust of the customer in software industry.

5. REFERENCES

[1] R. Pressman, “Software Engineering- A Practitioner’s

 Approach”, McGraw Hill, 5th edition. 2000.

[2] D. Bjorner. Pinnacles of software engineering: 25 years

 of formal methods. In Annals of Software Engineering,

 vol 10, 2000, pp. 11–66.

[3] J. Davies and J. Woodcock, Using Z: Specification,

Refinement, and Proof, In Prentice Hall, 1996.

[4] C. B. Jones, Systematic Software Development using

VDM, In Prentice Hall, 1990.

[5] S. Schneider, B Method- An Introduction Palgrave,

Cornerstones of Computing series, 2001.

[6] J. Guttag and J. J. Horning, The algebraic specification of

abstract abstract data types, Acta Inform., vol. 10, pp.

27-52, 1978.

[7] C. A. R. Hoare, Communicating Sequential Processes, In

Prentice Hall, NJ., 1985.

[8] J.R. Abrial, S. A. Schuman and B. Meyer: A Specification

 Language, in On the Construction of Programs,

Cambridge

 University Press, eds. A. M. Macnaghten and R. M.

 McKeag, 1980 (describes early version of the language).
 [9] J.R. Abrial. The B Book - Assigning Programs to

 Meanings. Cambridge University Press, 1996.

[10] D. Andrews. Report From The BSI Panel For The

 Standardisatio Of VDM (ist/5/50). In VDM '88 VDM |

 The Way Ahead. Springer Berlin/Heidelberg, 1988.

[11] J.M. Spivey, “The Z Notation,Reference Manual”, 2nd

 edition, Prentice Hall International, 1992.

 [12] J. Davies and J. Woodcock, Using Z: Specification,

 Refinement, and Proof, In Prentice Hall, 1996.

[13] C. B. Jones, Systematic Software Development using

 VDM, In Prentice Hall, 1990.

[14] S. Schneider, B Method- An Introduction Palgrave,

 Cornerstones of Computing series, 2001.

[15] B. Mahony and J. S. Dong, Timed Communicating

 Object Z, In IEEE Transactions on Software

 Engineering, vol. 26, No. 2, February 2000.

[16] Peter Gorm Larsen. VDM++ Tutorial At FM 06.

 Handout, 2006. http://fm06.mcmaster.ca/VDM++.
[17] The B-Toolkit". B-Core (UK) Limited. Archive.org.

 2004. Retrieved February 22, 2012.

[18] M. Saaltink, “The Z/EVES System,” in ZUM ’97: The Z

 Formal Specification Notation, J. Bowen, M. Hinchey

 and D. Till, Eds., 1997, pp. 72–85.

[19] URL http://sourceforge.net/projects/zwordtools/.

[20] Steria, Aix-en-Provence, France. Atelier B, User and

 Reference Manuals, 1996.Available at

 http://www.atelierb.eu/index_en.html.

[21] CSK SYSTEMS CORPORATION. VDMTools User

 Manual (VDM++) ver.1.2, 2008.
 http://www.vdmtools.jp/en/.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

4www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

5www.ijert.org

