Analysis of Tool Geometry of Single Point Miranda Tool with Pointed Tip

To find and compare the cutting forces of a single point Miranda tool with pointed tip for a solid cylindrical job with materials wood and MS.

Bhavya Ramakrishnan Mechanical Design D.Y. Patil College of Engineering, Akurdi, Pune, India – 411044

Abstract— In this paper, we find the cutting tool force and other parameters of a single point Miranda tool with a pointed tip. We analyse the heat generated and stresses produced in the Miranda tool for both cases of the job (wood and MS)

Keywords—Miranda tool; tool geometry; cutting force; semi circular tip; pointed tip

I. INTRODUCTION

We have a simple tool room production lathe, with parallel cone pulley drive and back gears, which has parallel jaw bench vice and a lever clamp on the tool carriage with a compound rest (fixture) tool post. We take a simple turning operation where the MS/ wooden cylindrical job is mounted on the headstock using a 3 piece chuck and a chalk method is used for centering the job using the tailstock dead center and analyse and compare the parameters produced analytically.

II. ASSUMPTIONS

- 1. Chip area is either rectangular or triangular for simplicity purposes and is assumed to be equal to area of contact.
- 2. Assuming countershaft speed is the same as motor speed which is 1500 rpm.
- 3.Depth of cut is assumed 1 mm and chip thickness is assumed 0.2mm/rev.

III. PROBLEM STATEMENT

Lathe - Simple tool room electric motor driven cone pulley belt drive and countershaft lathe with tool carriage along bed of length 135 - 180 cm using a manual wheel, with a cross slide lever handle for motion across the bed, where tool post (which can swivel the whole tool diagonally using a tool post slide) is mounted on the carriage with a simple bench vice double plate lever clamp.

Operation - Turning

Motion of Job - Rotary

Material of Job - MS or wood

Dimensions of Job - Cylindrical solid with 50mm diameter and 60 mm height

Motion of cutting tool - Orthogonal forward translation

Type of cutting tool - 1. Miranda single point MS

Dimensions of cutting tool - 13 cm x 1 cm x 1 cm

Manual Feed f= 1.04 mm/rev

Feed rate $F = f^*N = 300 \times 1.04 \text{ mm/min} = 5.2 \text{ mm/s}$

Motor speed - 1500 rpm (standard)

Rake angle a - (single point) $\arctan[(D1 - D2)/(2 \times 60)] = 27.5$ degrees

Cutting speed - pi*50*N/1000 = 47 m/min = 0.78 m/s

Spindle speed N - 300 rpm Countershaft speed - 1500 rpm Pulleys Diameters 75 mm and 15 mm (open belt) Pulley speed (big) = 15/75 * 1500 = 300 rpm Depth of cut d - 1mm

Volume of cut in 1 pass of job length (rectangular cross section chip area) = 9236.28 mm^3

Volume of cut in 1 pass of job length (triangular cross section chip area) = 4618.14 mm^3

Area of chip (rectangular) = $t^*d = 1^*0.2 = 0.2 \text{ mm}^2$

Area of chip (tringular) = $t^*d = 1^*0.2^*0.5 = 0.1 \text{ mm}^2$

Cutting chip thickness t = 0.2 mm/rev

Feed = sq.root $(0.2^{2} + 1^{2}) = 1.04 \text{ mm} (\text{approx})$

Cutting force Fc = Kc. Achip(rectangular)

= 2000*0.2 (MS)

= 400 N

Cutting force Fc = Kc. Achip(triangular)

= 200 N

Cutting force Fc = Kc. Achip(rectangular)

= 500 * 0.2 (wood)

= 100 N

Cutting force Fc = Kc. Achip(triangular)

= 500*0.1 (wood)

= 50 N

IJERTV13IS120036

Shear Force Sc = Fc/2

- = 200 N (rectangular MS)
- = 100 N (triangular MS)
- = 50 N (rectangular wood)

= 25 N (triangular wood)

VI. REFERENCES

V. ACKNOWLEDGMENT

I would like to thank my colleagues and professors at my

university (Mumbai and Pune) for taking the time to teach me.

Heat Generated Q = Sc. Vc - 0.3*Sc.Vc

= 200 N * 0.78 * 0.7(rectangular MS) = 109.2 W

= 100 N* 0.78 * 0.7 (triangular MS) = 54.6 W

= 50 N * 0.78 * 0.7(rectangular wood) = 27.3 W

= 25 N * 0.78 * 0.7(triangular wood) = 13.65 W

IV.	TABLES

Heat Generated (W)	Chip Area Triangle	Chip Area Rectangle	
Job Material (wood)	13.65	27.3	
Job Material (MS)	54.6	109.2	9

Parameter	Value
Feed Rate	5.2 mm/s
Rake Angle	27.5 degrees
Spindle Speed	300 r.p.m
Cutting Speed	0.78 m/s

Shear Force (N)	Chip Area Triangle	Chip Area Rectangle
Job Material (wood)	25	50
Job Material (MS)	100	200

- S. K. Hajra Choudhury, A.K. Hajra Choudhury, and Nirjhar Roy, "Elements of Workshop Technology Vol.2.", pg 53-182, 397-451
 R.S. Khurmi, J.K. Gupta, "Theory of Machines", pg.309.