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Abstract: Beams are defined by considering their boundary conditions. 

This paper focused on the Free Vibration Analysis of SiC aluminium-

reinforced composite beams by considering four boundary conditions 

i.e. clamped-free, clamped-clamped, clamped-simply supported, and

simply supported. The study utilized the Euler-Bernoulli beam theory

to obtain the frequency equation and numerical simulations on the

ANSYS Workbench to analyze the free vibration behaviour. The

results obtained for SiC aluminium-reinforced composite are

compared with those of Aluminium and steel material. The study

demonstrates that boundary conditions affect the dynamic response of

the composite beams, with clamped-clamped boundary conditions

yielding higher natural frequencies, followed by clamped-simply

supported, simply supported, and clamped-free boundary conditions

yielding low natural frequencies. Furthermore, the natural

frequencies of SiC/Aluminium composite beams are higher than those

of unreinforced Aluminium and steel beams. The study found that the

natural frequency of vibrations increases linearly with an increase in

the cross-section area of the beam. Finally, the study found that the

natural frequency of vibrations increases with an increase in the

specific modulus of the material.

Keywords: Natural frequency, Boundary Conditions, SiC/Aluminium 

composites, Free Vibration Analysis, Euler-Bernoulli Theory, Finite 

Element Analysis. 

(A). INTRODUCTION 

With the advances in technology, composite materials have become 

the preferred choice for constructing mechanical equipment and 

structures. Silicon Carbide (SiC) reinforced Aluminium composites 

are among the best lightweight composites used in high-

performance applications. These composites are low in density but 

have high strength and stiffness, making them suitable for 

applications in the aerospace industry and lightweight structures. In 

that connection, the study of the vibration characteristics of 

composite beams is a significant and distinctive area of focus in the 

field of mechanical engineering. It is particularly essential to 

quantify the impact of dynamic loading on structures such as tall 

buildings, long bridges, and industrial machinery. Dynamic loading 

can lead to fatigue and the initiation of cracks, which are major 

contributors to accidents and failures in industrial machinery. 

Lu et. al. [1] investigated the effect of the vibration frequency on 

the fatigue of strength of 6061-T6 Al Alloys through two stress 

analysis methods namely nominal and hot-spot stress. Mufazzal et 

al [2] explored the effect of material and surface cracks on the free 

vibration of the cantilever beam. Agarwallaa and Parhib [3] 

highlighted that, at the point where cracks appear, the vibration 

frequency is high. The study was conducted experimentally and 

with the help of Fine Element software. 

Nikhil and Jeyashree [4] investigated the dynamic response of a 

cracked beam to free vibration. The study utilized ANSYS the 

effects of cracks at different locations and depths in cantilever 

beams, fixed-fixed beams, and simply supported beams. Mia 

et.al.[5] studied the natural frequency and mode shapes of 

transverse vibration on the cracked and uncracked cantilever 

beams. The analysis was extended to find the impact of crack 

opening size and mesh refinement. Gawande and More [6] 

performed free vibration analysis to investigate the effect of the 

notch on the dynamics of cantilever beams using ANSYS and 

experiment. The study accounted for the depth and position of the 

notch in the beam. 

Kuppast et al [7] used ANSYS and experimental modelling to 

investigate the vibration properties of aluminium alloys. The study 

simulates the effect of increasing copper and silicon content in 

aluminium alloys. Abdellah et al. [8] investigate the vibration 

behaviour of aluminium and its alloys. The samples were designed 

as cantilever plates with and without holes. The analysis was 

performed with Ansys. Derkach et al. [9] analyzed the effect of the 

notch on the fundamental mode of vibration for composite 

cantilever beams using the Finite element analysis.  

Quila et al. [10] studied the free vibration analysis of an uncracked 

and cracked fixed beam using ANSYS. Ferreira and Neto [11] 

modelled active Ni-Ti filament-reinforced hybrid adaptive 

composite beams under free-free boundary conditions to study 

vibration modes and their frequencies. Avcar [12] investigates the 

free vibration of square cross-sectioned Aluminium beams both 

analytically and numerically under four different boundary 

conditions. Haskul and Kisa [13] investigate the free vibration of a 
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double-tapered beam with linearly varying thickness and width 

using finite element and component mode synthesis methods. 

Rossit et al. [14] investigate the vibrational behaviour of L-shaped 

beams with cracks. The transversal displacements were described 

using the Euler-Bernoulli beam theory, while the crack was 

modelled as an elastically restrained hinge. Wang and Qiao [15] 

study the vibration behaviour of beams with arbitrary 

discontinuities and boundary conditions. Charoensuk and Sethaput 

[16] performed a vibration analysis experiment and finite element

analysis on metal plates with V-notch at multiple notch locations.

Shah et al. [17] used ANSYS to perform the free vibration of

composite beams and obtained fundamental natural frequencies.

Bozkurt et al. [18] explore analytical approximation techniques in

transverse vibration analysis of beams. The computations were

performed using the Adomian Decomposition Method (ADM), the

Variational Iteration Method (VIM), and the Homotopy

Perturbation Method (HPM). Nalbant et al. [19] investigated the

free vibration behaviour of stepped nano-beams using the

Bernoulli-Euler theory for beam analysis and Eringen's nonlocal

elasticity theory for nanoscale analysis. The system's boundary

conditions were defined as simply supported. Teggi [20] explores

the free vibration of steel beams under two different boundary

conditions: Clamped-Free (C-F) and Clamped-Clamped (C-C).

Santhosh et al. [21] conducted vibration tests on Aluminium 5083

reinforced with varying percentage weights of Silicon Carbide

(SiC) and fly ash through experimentation.

Bozkurt and Ersoy [22] investigated the vibration behaviour of

metal matrix composites (MMCs) used in the aerospace industry

using finite element analysis (FEM). The study focused on 

AA2124/SiC/25p, a particle-reinforced MMC with a homogeneous 

distribution of particles, hence commonly used in aerospace 

applications. Acharya et al. [23] analyzed the dynamic 

characteristics of Aluminium 6061 plates. Modal analysis was 

performed using both simulation and experimental methods. 

Kumar et al. [24] conducted a modal analysis of AA5083 composite 

material reinforced with multi-wall carbon nanotubes using 

analytical and Finite element methods. Taj et al. [25] studied the 

vibrational characteristics of Aluminium graphite metal matrix 

composites. The study evaluated the natural frequencies and mode 

shapes of the composites by experiments and finite element 

analysis methods. Lakshmikanthan et al. [26] performed the free 

vibration analysis of A357 Alloy reinforced with dual-particle size 

Silicon Carbide Metal Matrix composite plates using the Finite 

Element Method. The study examined the natural frequencies and 

mode shapes of the composite plates under Clamped-Clamped and 

Simply Supported-Simply Supported boundary conditions.  

In this paper, free vibration analysis on SiC/Aluminium composite 

beams will be performed. This study will focus on the effects of the 

four types of boundary conditions, namely, C-F, C-C, C-SS, and 

SS-SS, on the natural frequencies and mode shapes of the beams. 

Additionally, the effects of the mechanical properties of the 

SiC/Aluminium composite on the fundamental natural frequencies 

of vibration will also be evaluated. These results will be compared 

to the results of unreinforced aluminium and steel material 

(B). ANALYTICAL FORMULATIONS 

(i). Halpin-Tsai equation 

Since SiC/Aluminium is a particulate composite, the Halpin-

Tsai equation predicts the Young Modulus of Elasticity. The 

equation is as follows: 

EC =
Em ((1+2sqVp))

1−qVp
         (1) 

Where q =
(

Ep

Em
−1)

(
Ep

Em
+2s)

   (2) 

EC = Composite Young Modulus , Ep =

Particles Young Modulus , Em = Matrix Young Modulus, 

Vp = Particles Volume, s = Particle Aspect ratio (1 − 2 )

(ii). Rule of Mixtures

By application of the rule of mixtures, the density of the 

composite is obtained as follows: 

ρc = ρpVp + ρmVm        (3) 

ρc =Density of composite ρp=Density of SiC particles

ρm=Density of Aluminium Matrix

Vp=SiC Particles Volume Vm=Aluminium Matrix Volume

(iii). Governing Equation formulations 

Let's apply the Euler-Bernoulli Beam theory to a beam 

with length L and uniform cross-section. A is considered. 

Assuming the beam to be elastic with Young’s Modulus 

E, and the Density ρ. 

The relationship between the bending moment and 

deflection can be expressed as: 

M = EI
d2y

dx2  (4) 

Where E is Young’s Modulus, I is the moment of inertia 

of the beam and y is the deflection of the beam. For a 

uniform homogenous beam, the equation of motion is 

obtained as: 
EI

ρA

d4y

dx4 +
d2y

dt2 = 0, for 0 ≤ x ≤ L         (5) 

Where ρ is Density, and A is the cross-section area of the 

beam. 

Then, 

c2 d4y

dx4 +
d2y

dt2 = 0, for 0 ≤ x ≤ L         (6) 

Where c = √
EI

ρA
  (7) 

The solution of equation (5) is obtained by the method of 

separation of variables thus, one part depends on position 

and the other part depends on time.  

y = W(x)T(t)                                         (8) 
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Where W is independent of time and T is independent of 

position. Substituting equation (8) into equation (6) and 

simplifying we get, 
c2

W(x)

d4W(x)

dx4 =
1

T(t)

d2T(t)

dt2      (9) 

The Equation (9) is expressed as two separate differential 

equations:  

Position variable: 
d4W

dx2 − β4W(x) = 0  (10) 

Where  β4 =
ω2

c2 =
ρAω2

EI
 (11) 

Time variable:  
d2T(x)

dt2 + ω2T(t) = 0   (12) 

The general solution for equation (10) is: 

W(x) = C1 sinh βx + C2 cosh βx + C3 sin βx +
C4 cos βx        (13)

C1, C2, C3, and C4 are constants, they are obtained by 

considering boundary conditions, and sinh and cosh, are 

the hyperbolic functions.  

To solve equation (13), we consider the following 

conditions: 

(a) Clamped-Free (C-F) beam

The boundary conditions are;

At x = 0, w(x) = 0  and
dw

dx
= 0       (14) 

At x = L,
d2w

dx2 = 0 and   
d3w

dx3 = 0        (15)

When the above boundary conditions are considered in 

equation (13),  

C1 = 0, C3 = 0
By simplifications, the following matrix expression is 

obtained. 

[
sinh βL + sin βL cosh βL + cos βL
cosh βL + cos βL sinh βL − sin βL

] [
c2

c4
]=[

0
0

]     (16)

For a nontrivial solution of  C2 and C4 then obtaining the

determinant of the coefficients will be zero. Then the solution 

is as follows: 

cos βL cosh βL = −1                              (17)      

The first three roots of equation (17) are determined 

numerically using the MATLAB commands code. The roots 

βL are referred to as eigenvalues.  

βL = 1.87510  for n = 1 βL = 4.69409  for n = 2 βL =
7.85340  for n = 3                                         Where n is the 

mode number.                     (18) 

(b) Clamped-Clamped (C-C) beam

The boundary conditions for the C-C beam are;

At x = 0, w(x) = 0  and 
dw

dx
= 0        (19) 

At x = L, w(L) = 0 and  
dw

dx
= 0       (20) 

When the above boundary conditions are considered in 

equation (13),  

C2 = 0, C4 = 0
By simplifications, the following matrix expression is 

obtained. 

[
sinh βL − sin βL cosh βL − cos βL
cosh βL − cos βL sinh βL + sin βL

] [
c1

c3
]=[

0
0

]         

(21) 

For a nontrivial solution of  C1 and C3 then obtaining the

determinant of the coefficients will be zero. Then the 

solution is as follows: 

cos βL cosh βL = 1           (22)      

The first three roots of equation (22) are determined 

numerically using the MATLAB commands code. The 

roots βL are referred to as eigenvalues.  

βL = 4.73004  for n = 1, βL = 7.85321  for n = 2 , 

βL = 10.9956  for n = 3         

Where n is the mode number.                       (23) 

(c) Clamped-Simply Supported (C-SS) beam

The boundary conditions for the C-SS beam are;

At x = 0, w(x) = 0  and 
dw

dx
= 0          (24) 

At x = L, w(L) = 0 and  
d2w

dx2 = 0        (25) 

When the above boundary conditions are considered in 

equation (13),  

C2 +  C3 = 0
By simplifications, the following matrix expression is 

obtained  

[
sinh βL − sin βL cosh βL − cos βL
sinh βL + sin βL cosh βL + cos βL

] [
c1

c2
]=[

0
0

]

(26) 

For a nontrivial solution of  C1 and C2 then obtaining the

determinant of the coefficients will be zero. Then the 

solution is as follows: 

tanh βL = tan βL                                (27)      

The first three roots of equation (27) are determined 

numerically using the MATLAB commands code 

provided in Appendix 1. The roots βL are referred to as 

eigenvalues.  

βL = 3.9266 for n = 1, βL = 7.0686  for n = 2,  βL =
10.2102  for n = 3                                      Where n is the 

mode number.                      (28) 

(d) Simply Supported-Simply Supported (SS-SS) beam

The boundary conditions for the SS-SS beam are;

At x = 0, w(x) = 0  and  
d2w

dx2 = 0  (29) 

At x = L, w(L) = 0 and  
d2w

dx2 = 0  (30) 

When the above boundary conditions are considered in 

equation (13),  

C1 = 0, C2 = 0
By simplifications, the following matrix expression is 

obtained  

[
sinh βL sin βL
sinh βL − sin βL

] [
c3

c4
]=[

0
0

]          (31) 

For a nontrivial solution of  C3 and C4 then obtaining the

determinant of the coefficients will be zero. Then the 

solution is as follows: 

sinβLsinhβL = 0                                       (32) 
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The first three roots of equation (32) are determined 

numerically using the MATLAB commands code 

provided in Appendix 1. The roots βL are referred to as 

eigenvalues.  

βL = 3.14159  for n = 1, βL = 6.28318  for n = 2, 

βL = 9.42478  for n = 3    Where n is the mode number. 

(33) 

Equations 17, 22, 27, and 32 are called frequency 

equations. By rearranging equation 11, it can be expressed 

as follows: 

ωn = (βnL)2√
EI

ρAL4 , Where n=1,2, 3…. n modes 

numbers.  (34) 

Table 1 Properties of materials 

Properties SiC 

Particles 

Aluminium Steel 

Density 

(kg/m3) 

3210 2700 7850 

Young 

Modulus x 

109 Pa 

440 70 210 

Particle 

Volume 

(Vp) in 

Percentag

e (%) 

15 85 - 

Aspect 

ratio of 

particles 

1-2 - - 

SiC Particles and Aluminium material properties were 

adapted from Yuan et al. [27]. To obtain the Elastic 

Modulus (Ec) of the composite, the rule of mixtures is 

applied with the help of the Halpin-Tsai equation. 

q =
(

440
70

− 1)

(
440
70

+ 2(1.5))
= 0.5692 = 96.14 Gpa 

EC =
70x109

 ((1 + 2(1.5)(0.5692)(0.15)))

1 − ((0.5692)(0.15))
ρc = ρpVp + ρmVm,

ρc = (3210x0.15) + (2700x0.85) = 2777 Kg/m3

Problem: To demonstrate the vibration analysis of the 

beam, the model with the following dimensional 

characteristics is considered for evaluation: Length (L) = 

500mm, width (b) = 50mm, depth (d) = 10mm.  

(C). RESULTS AND DISCUSSION 

(i). Natural frequency across the material: 

Mode Method SiC/Aluminium Composite Aluminium Steel 

Natural Frequency ‘f’ in Hz 

Mode 1 Analytical 38.02 32.90 33.42 

Ansys 38.45 32.91 33.65 

Mode 2 Analytical 238.29 206.17 209.43 

Ansys 240.51 205.86 210.51 

Mode 3 Analytical 666.98 577.08 586.20 

Ansys 672.11 575.21 588.19 

Table 2 Natural Frequency of Clamped-Free (C-F) beam
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Table 3 Natural Frequency of Clamped-Clamped (C-C) beam 

Mode Method SiC/Aluminium Composite Aluminium Steel 

Natural Frequency ‘f’ in Hz 

Mode 1 Analytical 241.95 209.34 212.65 

Ansys 246.73 210.74 215.05 

Mode 2 Analytical 666.94 577.05 586.17 

Ansys 678.04 579.12 590.95 

Mode 3 Analytical 1307.47 1131.25 1149.13 

Ansys 1324.60 1131.30 1154.43 

Table 4 Natural Frequency of Clamped-Simply Supported (C-SS) beam 

Mode Method SiC/Aluminium Composite Aluminium Steel 

Natural Frequency ‘f’ in Hz 

Mode 1 Analytical 166.74 144.26 146.54 

Ansys 168.40 145.40 147.37 

Mode 2 Analytical 540.33 467.51 474.89 

Ansys 544.72 470.78 477.71 

Mode 3 Analytical 1127.36 975.42 990.83 

Ansys 1133.80 978.74 992.08 

Table 5 Natural Frequency of Simply Supported-Simply Supported (SS-SS) beam 

Mode Method SiC/Aluminium Composite Aluminium Steel 

Natural Frequency ‘f’ in Hz 

Mode 1 Analytical 109.92 92.35 93.81 

Ansys 106.71 92.33 93.79 

Mode 2 Analytical 426.92 369.39 375.22 

Ansys 426.56 369.03 374.85 

Mode 3 Analytical 960.59 832.12 844.25 

Ansys 956.60 829.11 842.18 

SiC/Aluminium Composite presented the highest Natural 

frequency in all the modes that have been considered 

between Aluminium and Steel. This is due to the higher 

stiffness and lower density of SiC/Aluminium composite 

hence natural frequencies of the structure occur at higher 

values. Aluminium is given higher stiffness by reinforcing 

with SiC particles and this in turn improves the vibrational 

behavior of the composite. Natural frequencies for 

Aluminium are found to be less than those of 

SiC/Aluminium composite but close to that of Steel. 

Aluminium has been found to have a lower density than 

Steel but the modulus of elasticity is lower; this results in 

Aluminium and Steel materials having similar natural 

frequencies. Natural frequencies of Steel are slightly higher 

than that of the Aluminium across all modes. However, a 

comparison between Aluminium and Steel shows that the 

two are not very different, and hence have very close values 

of the vibrational frequency. 
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(ii). ANSYS Graphical results for SiC/Aluminium beam 

 

 

 Figure 1 C-F first three Mode Shapes for SiC/Aluminium beam. 

Figure 2 C-C first Mode Shapes for SiC/Aluminium beam. 

Figure 3 C-SS first Mode shapes for SiC/Aluminium beam. 

    Figure 4 SS-SS first Mode shapes for SiC/Aluminium beam. 
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(iii). Comparative analysis between Analytical and ANSYS Results – Results for SiC/Aluminium Composites are 

considered for clamped-free beam as an example. 

The differences in results obtained by the two methods are 

expressed in percentages. These percentages are obtained as 

follows. If the three modes of vibration  n = 1,2,3 , 
analytical natural frequency as fn analyticl and Ansys natural

frequency as fn ansys, then:

Percentage deviation  = (
fn analyticl−fn ansys

fn analyticl 
) × 100% 

The Analytical and Ansys natural frequencies differ by -

1.12%, -0.93%, and -0.77% under C-F boundary conditions 

beam, -1.98%, -1.66%, and -1.31% under C-C boundary 

conditions, -1.00%, -0.81% and -1.31% under C-SS 

boundary conditions and 2.92%, 0.08% and 0.42% under 

SS-SS boundary conditions. 

Figure 5 shows the close conformity of solutions obtained 

by analytical and the Ansys approaches for all the materials 

and modes. These variations include the analytical 

approximations made during analysis and would fall below 

1%. Comparing Mode 1 for the SS-SS beam, it is safe to say 

that the SiC/Aluminium composite diverged most (3.02 Hz 

or about 2.9% deviation) from the actual, probably due to 

some difficulties in accurately simulating the composite 

material. For modes 2 and 3, the difference in the analytical 

solution and the Ansys solution is lower for higher 

frequency modes indicating that the models are more 

accurate at higher modes. This could be because higher 

modes are less sensitive to the boundary condition. 

Figure 5 Percentage deviation in natural frequency obtained by Analytical and Ansys. 

(iv). Effects of boundary conditions - Results for SiC/Aluminium Composites are considered as an example. 

The results for SiC/Aluminium are extracted from Tables 2 

to 5 and populated as shown in Table 6. For the C-F 

boundary condition natural frequencies are lowest 

compared to C-C, C-SS, and SS-SS across all modes. Thus, 

the C-F condition provides more displacement at the free 

end resulting in low stiffness and consequently low natural 

frequencies.  

-3.00% -2.00% -1.00% 0.00% 1.00% 2.00% 3.00% 4.00%

C-F

C-C

C-SS

SS-SS

Mode 3 Mode 2 Mode 1
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Table 6 Natural frequencies of SiC/Aluminium beam supported by different boundary conditions. 

Boundary 

Conditions 

Analysis Method Natural Frequency ‘f’ in Hz for SiC/Aluminium Composite Beam 

Mode 1 

C-F C-C C-SS SS-SS 

Analytical 38.02 241.95 166.74 109.92 

Ansys 38.445 246.73 168.4 106.71 

Mode 2 

Analytical 238.29 666.94 540.33 426.92 

Ansys 240.51 678.04 544.72 426.56 

Mode 3 

Analytical 666.98 1307.47 1127.36 960.59 

Ansys 672.11 1324.60 1133.80 956.60 

The C-C boundary condition provided the highest natural 

frequency across all modes. This condition provides much 

no freedom of movement of the beam hence resulting in 

high stiffness and high natural frequencies. The C-SS 

boundary condition resulted in natural frequencies higher 

than C-F and SS-SS but lower than C-C conditions. The C-

SS has one end restraint and the other end is free to rotate. 

These conditions provide intermediate natural frequencies. 

The SS-SS boundary conditions result in natural frequencies 

lower than C-SS and higher than C-F. This condition also 

permits some extent of rotation at the supports which results 

in a lower degree of stiffness as compared to C-C. Figures 

6, 7, and 8 provide graphical representations of the impact 

of boundary conditions on the natural frequencies of beams. 

Figure 6 Mode 1 natural frequencies versus boundary conditions. 

Figure 7 Mode 2 natural frequencies versus boundary conditions 
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Figure 8 Mode 3 natural frequencies versus boundary conditions. 

(v). Effects of specific modulus on natural frequencies of the beam. 

The properties of the material determine the basic associated frequencies of vibration of beams. The beam material 

has a unique property called Specific Modulus (E/ρ) which has to be considered 

Properties of Materials 

SiC/Aluminium Ec = 96.14 Gpa, ρ = 2777kg/m3 ,  
E

ρ
= 34.62x106m2/s2

Aluminium E = 70 Gpa, ρ = 2700kg/m3, 
E

ρ
= 25.93x106m2/s2

Steel E = 210 Gpa, ρ = 7850kg/m3, 
E

ρ
= 26.75x106m2/s2

Table 7 Natural frequencies versus boundary conditions at specific modulus of materials. 

Specific Modulus 

Boundary Condition 
Mode 

25.93 26.75 36.62 

Natural Frequency in Hz 

C-F

Mode 1 32.9 33.42 38.02 

Mode 2 206.17 209.43 238.29 

Mode 3 577.08 586.2 666.98 

C-C

Mode 1 209.34 212.65 241.95 

Mode 2 577.05 586.17 666.94 

Mode 3 1131.25 1149.13 1307.47 

C-SS

Mode 1 144.26 146.54 166.74 

Mode 2 467.51 474.89 540.33 

Mode 3 975.42 990.83 1127.36 

SS-SS 

Mode 1 92.35 93.81 109.92 

Mode 2 369.39 375.22 426.92 

Mode 3 832.12 844.25 960.59 

Analytical results from Tables 2 to 5 are used to generate 

Table 7 above. The data in Table 7 are used to generate 

Figure 9 below. The specific modulus is one of those 

parameters which determine the natural frequency of a 

given material. Generally, a higher value of specific 

modulus results in higher natural frequencies, because the 

material is stiffer or the structure is lighter.  SiC/Al (Specific 

Modulus = 36.62x106) used in the present study exhibits the 

highest natural frequencies across all the boundary 

conditions and modes.  Consequently, the higher specific 

modulus of the SiC/Al means higher stiffness resulting in 

higher resistance to deformation and thus, higher natural 

frequencies. Steel (Specific Modulus = 26.75 x 106) exhibits 

natural frequencies a little higher than Aluminium, but 

lower as compared to SiC/Al. Steel material has a higher 

density compared to aluminium and a relatively higher 

elastic modulus and therefore natural frequencies. 

Aluminium (Specific Modulus = 25.93 x 106) has the lowest 

specific modulus among the three materials resulting in the 

lowest natural frequencies. Due to it having a lower stiffness 
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the material can undergo larger deformation than the other 

two materials, which in turn lowers natural frequencies. 

From Figure 9, it was noted that the natural frequency 

increases with an increase in the Specific Modulus of the 

material. The rate of increase in natural frequency is more 

pronounced in the C-C mode 3 condition, followed by the 

C-SS mode 3 condition, and SS-SS mode 3 condition. The

intermediate increase was noted at C-C mode 2 and C-F

mode 3 conditions, followed by C-SS mode 2 condition, and

SS-SS mode 2 condition. The low increase was noted at C-

C mode 1 and C-F mode 2 condition, followed by C-SS

mode 1 condition, SS-SS mode 1 condition and C-F mode 1 

condition.  

The frequency curve of the beam at C-F mode 1 condition 

can be noted to be a horizontal line. This signifies that the 

effect of material properties on the natural frequency of the 

C-F mode 1 is insignificant. This observation portrayed the

effect of boundary conditions on the vibration of the beam.

The boundary condition does offer a different stiffness

effect to the beam; thus, the free end of the C-F beam lowers

the stiffness, hence in result lowers the natural frequencies

of vibration.

Figure 9 Natural frequencies versus Specific Modulus. 

(vi). Effects of Cross-section area of the beam on the natural frequencies of vibration. 

For the presentation of this study, a beam of the following characteristics was considered. The Length = 500mm, 

Cross-section area A1=0.0005m2, A2= 0.0008m2, A3= 0.0015m2. The Physical properties of SiC/Aluminium 

composite are Density = 2777kg/m3, and Estimated Young Modulus of Elasticity = 96.14 GPa. 
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Boundary conditions Mode ‘n’ of Vibration Natural Frequency in Hz 

A1 A2 A3 

C-F Mode 1 38.02 76.04 114.06 

Mode 2 238.29 476.56 714.79 

Mode 3 666.98 1333.91 2000.74 

C-C Mode 1 241.95 483.88 725.78 

Mode 2 666.94 1333.84 2000.64 

Mode 3 1307.47 2614.86 3922.05 

C-SS Mode 1 166.74 333.46 500.16 

Mode 2 540.33 1080.63 1620.85 

Mode 3 1127.36 2254.65 3381.76 

SS-SS Mode 1 109.92 213.46 320.17 

Mode 2 426.92 853.83 1280.66 

Mode 3 960.59 1921.11 2881.49 

From the consideration, the beam has a fixed length (L) and 

material properties, thus, Figure 10 depicts the natural 

frequency of vibrations to increase linearly with an increase 

in cross-section area. The rate of an increase in natural 

frequency is more pronounced for the C-C boundary 

condition, followed by C-SS, SS-SS, and C-F. These effects 

happen because the mode shape constant β for C-C and C-

SS are higher compared to SS-SS and C-F boundary 

conditions. This underscores the role boundary conditions 

play as the C-C condition yields the highest frequencies due 

to maximum stiffness and the C-F condition yields the 

lowest due to greater flexibility. 

Table 8 Natural frequency for Beam under four different boundary conditions versus cross-area 

(D). CONCLUSIONS 
The natural frequencies for the beam under four different 
boundary conditions were estimated analytically and 
numerically using ANSYS Workbench. The results obtained 
were consistently in agreement for both methods. It was noted 
that higher natural frequencies were achieved by SiC/
Aluminium composite beams across all four boundary 
conditions considered, followed by structural Steel and 
Aluminium beams. This is because SiC/ Aluminium 
composites have a higher specific modulus than Steel and 
Aluminium. 
 The higher natural frequency is experienced in C-C boundary 
conditions, followed by C-SS, SS-SS, and lower in C-F 
boundary conditions. The linear increase in natural frequencies 
is depicted to increase with the beam cross-sectional area when 
the  
and mass distribution of the beam are constant. The rate of 
increase in the natural frequency is more pronounced in C-C 
boundary conditions, followed by C-SS, SS-SS, and least 
under C-F boundary conditions. 

horizontal length
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Figure 10 Natural frequency versus cross-section area at different boundary conditions.
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