
Analyzing The Behaviour And Propagation Traffic Generated By Active

Worms
M. Shashidar

1
, K. Indraneel

2
, Nagaraju Mamillapally

3

1
M.Tech(CSE), Sri Kottam Tulasi Reddy Memorial College of Engineering, Kondair, Andhra Pradesh, India

2
Asso.Professor, Sri Kottam Tulasi Reddy Memorial College of Engineering, Kondair, Andhra Pradesh, India

3
Asst.Professor, Adarsh PG College of Computer Sciences, Mahabubnagar, Andhra Pradesh, India

Abstract

 Because of the ability of self propagation,

active worms cause major threats to the computers

connected over the internet. In an automated

fashion these worms continuously propagates over

the internet causes the computers to compromise

and pose major security threats. There is a

necessity of identifying such worms at some stage,

stop its propagation and destruction causing by

them. This can be done by studying its behaviour

and implementing certain detection schemes.

In this paper we analyze various computer

worms with their behaviour and the propagation

traffic generated by them.

1. Introduction

Computer worms are self-propagating

malicious codes spread themselves without any

human interaction and launch the most destructive

attacks against computer networks like launching

massive Distributed Denial-of-Service attacks that

disrupt the Internet utilities, access confidential

information that can be misused through large-

scale traffic sniffing, key logging etc., They destroy

data that has a high monetary value, and distribute

large-scale unsolicited advertisement emails or

software.

Due to the substantial damage caused by

worms in the past years, there have been significant

efforts on developing detection and defense

mechanisms against worms. A network-based

worm detection system plays a major role by

monitoring, collecting, and analyzing the scan

traffic (messages to identify vulnerable computers)

generated during worm attacks. In this system, the

detection is commonly based on the self-

propagating behavior of worms that can be

described as follows: After a worm-infected

computer identifies and infects vulnerable

computers on the Internet, this newly infected

computer will automatically and continuously scan

several IP addresses to identify and infect other

vulnerable computers. As such, numerous existing

detection schemes are based on a tacit assumption

that each worm-infected computer keeps scanning

the Internet and propagates itself at the highest

possible speed. Furthermore, it has been shown that

the worm scan traffic volume and the number of

worm-infected computers exhibit exponentially

increasing patterns.

After an introductory terminology is presented,

worm characteristics during target finding and

worm transferring phases are identified. Depending

on where the detection is implemented, they may

construct different views of worm propagation

behaviours, so there may be differences in the

scope of their defences.

Such a technology have been identified various

phases like activation, false alarm, false positive,

false negative, infection, target finding, threshold,

transfer of worms life makes them to detect.

In this paper we study and analyze the

behaviour of various worms like C-Worm, Morris

Worm, Code-Red Worm and Slammer Worm and

also identified their life cycle based on their

propagation over the internet.

2. Background and Related Work

Computer Active worms are similar to

biological viruses in terms of their infectious and

self-propagating nature. They propagate into

computers in the botnet which are identified as

vulnerable, infect them and the worm-infected

computers propagate the infection further to other

vulnerable computers. In order to understand worm

behavior, we first need to model it. With this

understanding, effective detection and defense

schemes could be developed to mitigate the impact

of the worms.

After many Internet-scale worm incidents in

recent years, it is clear that a simple self-

propagating worm can quickly spread across the

Internet and cause severe damage to our society.

Facing this great security threat, we need to build

an early detection system that can detect the

presence of a worm in the Internet as quickly as

possible in order to give people accurate early

warning information and possible reaction time for

counteractions. based on the idea of ―detecting the

trend, not the burst‖ of monitored illegitimate

traffic, we present a ―trend detection‖ methodology

to detect a worm at its early propagation stage by

using Kalman filter estimation, which is robust to

background noise in the monitored data. In

965

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60435

addition, for uniform-scan worms such as Code

Red, we can effectively predict the overall

vulnerable population size, and estimate accurately

how many computers are really infected in the

global Internet based on the biased monitored data.

For monitoring a non uniform scan worm,

especially a sequential-scan worm such as Blaster,

we show that it is crucial for the address space

covered by the worm monitoring system to be as

distributed as possible.

Active worms use various scan mechanisms to

propagate themselves efficiently. The basic form of

active worms can be categorized as having the Pure

Random Scan (PRS) nature. In the PRS form, a

worm-infected computer continuously scans a set

of random Internet IP addresses to find new

vulnerable computers. Other worms propagate

themselves more effectively than PRS worms using

various methods, e.g., network port scanning,

email, file sharing,

Peer-to-Peer (P2P) networks and Instant

Messaging (IM). In addition, worms use different

scan strategies during different stages of

propagation. In order to increase propagation

efficiency, they use a local network or hit list to

infect previously identified vulnerable computers at

the initial stage of propagation. They may also use

DNS, network topology, and routing information to

identify active computers instead of randomly

scanning IP addresses. They split the target IP

address space during propagation in order to avoid

duplicate scans and studied a divide-conquer

scanning technique that could potentially spread

faster and stealthier than a traditional random-

scanning worm. Ha and Ngo formulated the

problem of finding a fast and resilient propagation

topology and propagation schedule for Flash

worms. Yang et al. studied the worm propagation

over the sensor networks.

Figure 1: A Generic Worm Monitoring System

Worm detection has been intensively studied

in the past and can be generally classified into two

categories: ―host based‖ detection and ―network-

based‖ detection. Host based detection systems

detect worms by monitoring, collecting, and

analyzing worm behaviours on end-hosts. Since

worms are malicious programs that execute on

these computers, analyzing the behaviour of worm

executables plays an important role in host-based

detection systems. In contrast, network-based

detection systems detect worms primarily by

monitoring, collecting, and analyzing the scan traffic

(messages to identify vulnerable computers) generated

by worm attacks.

In order to rapidly and accurately detect

Internet-wide large-scale propagation of active

worms, it is imperative to monitor and analyze the

traffic in multiple locations over the Internet to

detect suspicious traffic generated by worms. The

widely adopted worm detection framework consists

of multiple distributed monitors and a worm

detection center that controls the former.

3. Analyze Worms Behaviour

In this section we look at one of the new class

of active self propagation worm, the Camouflaging

worm (C-Worm) and then discuss four more recent

Internet worms: Morris, Code Red, and Slammer

based on their characteristics.

3.1 Camouflaging Worm

Different from the above worms, which

attempt to accelerate the propagation with new scan

schemes, the C-Worm studied in this paper aims to

elude the detection by the worm defense system

during worm propagation. Closely related, but

orthogonal to our work, are the evolved active

worms that are polymorphic, in nature.

Polymorphic worms are able to change their binary

representation or signature as part of their

propagation process. This can be achieved with

self-encryption mechanisms or semantics-

preserving code manipulation techniques.

The C-Worm also shares some similarity with

stealthy port-scan attacks. Such attacks try to find

out available services in a target system, while

avoiding detection. It is accomplished by

decreasing the port scan rate, hiding the origin of

attackers, etc. Due to the nature of self propagation,

the C-Worm must use more complex mechanisms

to manipulate the scan traffic volume over time in

order to avoid detection.

The C-Worm camouflages its propagation by

controlling scan traffic volume during its

propagation. The simplest way to manipulate scan

traffic volume is to randomly change the number of

worm instances conducting port-scans.

In order to effectively evade detection, the

overall scan traffic for the C-Worm should be

comparatively slow and variant enough to not show

any notable increasing trends over time. On the

other hand, a very slow propagation of the C-Worm

is also not desirable, since it delays rapid infection

damage to the Internet. Hence, the C-Worm needs

to adjust its propagation so that it is neither too fast

to be easily detected, nor too slow to delay rapid

damage on the Internet. To regulate the C-Worm

scan traffic volume, we introduce a control

parameter called attack probability P(t) for each

966

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60435

worm-infected computer. P(t) is the probability that

a C-Worm instance participates in the worm

propagation (i.e., scans and infects other

computers) at time t. Our C-Worm model with the

control parameter P(t) is generic.

P(t) = 1 represents the cases for traditional

worms, where all worm instances actively

participate in the propagation. For the C-Worm,

P(t) needs not be a constant value and can be set as

a time-varying function. In order to achieve its

camouflaging behaviour, the C-Worm needs to

obtain an appropriate P(t) to manipulate its scan

traffic. Specifically, the C-Worm will regulate its

overall scan traffic volume such that:

 It is similar to non worm scan traffic in terms

of the scan traffic volume over time,

 It does not exhibit any notable trends,

 The average value of the overall scan traffic

volume is sufficient to make the C-Worm

propagate fast enough to cause rapid damage.

The basic idea is to estimate the percentage of

computers that have already been infected over the

total number of IP addresses as well as M(t),

through checking a scan attempt as a new hit (i.e.,

hitting an uninfected vulnerable computer) or a

duplicate hit (i.e., hitting an already infected

vulnerable computer). This method requires each

worm instance (i.e., infected computer) to be

marked indicating that this computer has been

infected. Thus, when a worm instance (for

example, computer A) scans one infected computer

(for example, computer B), then computer A will

detect such a mark, thereby becoming aware that

computer B has been infected. Through validating

such marks during the propagation, a C-Worm

infected computer can estimate M(t). There are

other approaches to achieve this goal, such as

incorporating the Peer-to-Peer techniques to

disseminate information through secured IRC

channels.

3.2 Morris Worm

The Morris worm was one of the first Internet

worms whose devastating effect gained the wide

attention of the media. Morris worm was launched

in November 1988 by Robert Tappan Morris, who

was a student at Cornell University at the time. It is

the first known worm to exploit the buffer overflow

vulnerability. It targeted send mail and finger

services on DEC VAX and Sun 3 hosts. Based on

the creator’s claim, the Morris worm was not

intended to cause any harm, but was designed to

discover the number of the hosts on the Internet.

The worm was supposed to run a process on each

infected host to respond to a query if the host was

infected by the Morris worm or not. If the answer

was yes, the infected host should have been

skipped; otherwise, the worm would copy itself to

the host. However, a flaw in the program caused

the code to copy itself multiple times to already

infected machines, each time running a new

process, slowing down the infected hosts to the

point that they became unusable.

The Morris worm was a mixture of

sophistication and naivety. It had a simple overall

design: look at a computer’s system configuration

to find potential neighbors, invade them, and try to

minimize the number of invasions on any machine.

The worm used heuristic knowledge about Internet

topology and trust relationships to aid its spread,

and it targeted two different machine architectures.

Its cleverness in finding potential attack targets

made it especially effective, but it also took on the

time consuming task of guessing passwords on

individual user accounts, which gave it an ―attack

in depth‖ aspect. Nonetheless, it became a victim

of its own success as it was unable to control its

exponential growth. With no global information

and no point of control, the Morris worm ran

rampant.

 It attacked one operating system, but two

different computer architectures with three

distinct propagation vectors.

 It had several mechanisms for finding both

potential nodes to infect, and information

found in user accounts.

 It traversed trusted accounts using password

guessing.

 It installed its software via a two-step ―hook

and haul‖ method that required the use of a C

compiler, link loader, and a call back network

connection to the infecting system.

 It attempted to limit the reinfection rate on

each node (but not the total number).

 It attempted to run forever on as many nodes

as possible.

3.3 Code - Red Worm

Then on July 12, 2001, the Code-Red I worm

began to exploit the aforementioned buffer-

overflow vulnerability in Microsoft’s IIS web

servers. Upon infecting a machine, the worm

checks to see if the date (as kept by the system

clock) is between the first and the nineteenth of the

month. If so, the worm generates a random list of

IP addresses and probes each machine on the list in

an attempt to infect as many computers as possible.

However, this first version of the worm uses a

static seed in its random number generator and thus

generates identical lists of IP addresses on each

infected machine.

This version spread slowly, because each

infected machine began to spread the worm by

probing machines that were either already infected

or impregnable. On the 20th of every month, the

worm is programmed to stop infecting other

machines and proceed to its next attack phase in

which it launches a Denial-of-Service attack

967

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60435

against www.whitehouse.gov. The worm is

dormant on days of the month following the 28th.

On July 13th, Ryan Permeh and Marc Maiffret

at eEye Digital Security received logs of attacks by

the worm and worked through the night to

disassemble and analyze the worm. They

christened the worm ―Code-Red‖ both because the

highly caffeinated ―Code Red‖ Mountain Dew

beverage fueled their efforts to understand the

workings of the worm and because the worm

defaces some web pages with the phrase ―Hacked

by Chinese‖. There is no evidence either

supporting or refuting the involvement of Chinese

hackers with the Code-Red I worm. The first

version of the Code-Red worm (Code-Red I v1)

caused little damage. Although the worm’s

attempts to spread itself consumed resources on

infected machines and local area networks, it had

little impact on global resources.

The Code-Red I v1 worm is memory resident,

so an infected machine can be disinfected by

simply rebooting it. However, the machine is still

vulnerable to repeat infection. Any machines

infected by Code-Red I v1 and subsequently

rebooted were likely to be reinfected, because each

newly infected machine probes the same list of IP

addresses in the same order. At approximately

10:00 UTC in the morning of July 19th, 2001, we

observed a change in the behavior of the worm as

infected computers began to probe new hosts. At

this point, a random-seed variant of the Code-Red I

v1 worm began to infect hosts running unpatched

versions of Microsoft’s IIS web server. The worm

still spreads by probing random IP addresses and

infecting all hosts vulnerable to the IIS exploit.

Unlike Code-Red I v1, Code- Red I v2 uses a

random seed in its pseudo-random number

generator, so each infected computer tries to infect

a different list of randomly generated IP addresses

at an observed rate of roughly 11 probes per second

(pps). This seemingly minor change had a major

impact: more than 359,000 machines were infected

with Code-Red I v2 in just fourteen hours. Because

Code-Red I v2 is identical to Code-Red v1 in all

respects except the seed for its pseudo-random

number generator, the only direct damage to the

infected host is the ―Hacked by Chinese‖ message

added to top level web pages on some hosts.

However, Code-Red I v2 had a greater impact on

global infrastructure due to the sheer volume of

hosts infected and probes sent to infect new hosts.

Code-Red I v2 also wreaked havoc on some

additional devices with web interfaces. Although

these devices were not susceptible to infection by

the worm, they either crashed or rebooted when an

infected machine attempted to send them the

unusual http request.

Like Code-Red I v1, Code-Red I v2 can be

removed from a computer simply by rebooting it.

However, rebooting the machine does not prevent

reinfection once the machine is online again. On

July 19th, the number of machines attempting to

infect new hosts was so high that many machines

were infected while the patch for the vulnerability

was being applied. On August 4, 2001, an entirely

new worm, CodeRed II began to exploit the buffer-

overflow vulnerability in Microsoft’s IIS web

servers. Although the new worm is completely

unrelated to the original Code-Red I worm, the

source code of the worm contained the string

―CodeRed II‖ which became the name of the new

worm. Ryan Permeh and Marc Maiffret analyzed

CodeRed II to determine its attack mechanism.

When a worm infects a new host, it first determines

if the system has already been infected. If not, the

worm initiates its propagation mechanism, sets up a

―backdoor‖ into the infected machine, becomes

dormant for a day, and then reboots the machine.

Unlike Code-Red I, CodeRed II is not memory

resident, so rebooting an infected machine does not

eliminate CodeRed II. After rebooting the machine,

the CodeRed II worm begins to spread. If the host

infected with CodeRed II has Chinese (Taiwanese)

or Chinese (PRC) as the system language, it uses

600 threads to probe other machines. On all other

machines it uses 300 threads. CodeRed II uses a

more complex method of selecting hosts to probe

than Code-Red I. CodeRed II generates a random

IP address and then applies a mask to produce the

IP address to probe. The length of the mask

determines the similarity between the IP address of

the infected machine and the probed machine.

The CodeRed II worm is much more

dangerous than Code-Red I because CodeRed II

installs a mechanism for remote, administrator-

level access to the infected machine. Unlike Code-

Red I, CodeRed II neither defaces web pages on

infected machines nor launches a Denial-of-Service

attack. However, the backdoor installed on the

machine allows any code to be executed, so the

machines could be used as ―zombies‖ for future

attacks (Denial-of-Service or otherwise).

3.4 Slammer Worm

Slammer (sometimes called Sapphire) was the

fastest computer worm in history. As it began

spreading throughout the Internet, the worm

infected more than 90 percent of vulnerable hosts

within 10 minutes, causing significant disruption to

financial, transportation, and government

institutions and precluding any human-based

response. Slammer began to infect hosts slightly

before 05:30 UTC on Saturday, 25 January 2003,

by exploiting a buffer-overflow vulnerability in

computers on the Internet running Microsoft’s SQL

Server or Microsoft SQL Server Desktop Engine

(MSDE) 2000. David Litchfield of Next

Generation Security Software discovered this

underlying indexing service weakness in July 2002;

Microsoft released a patch for the vulnerability

968

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60435

before the vulnerability was publicly disclosed

(www.microsoft.com/security/slammer.asp).

Exploiting this vulnerability, the worm infected at

least 75,000 hosts, perhaps considerably more, and

caused network outages and unforeseen

consequences such as canceled airline flights,

interference with elections, and ATM failures.

Slammer’s most novel feature is its

propagation speed. In approximately three minutes,

the worm achieved its full scanning rate (more than

55 million scans per second), after which the

growth rate slowed because significant portions of

the network had insufficient bandwidth to

accommodate more growth. By comparison,

Slammer was two orders of magnitude faster than

the Code Red worm, which infected more than

359,000 hosts on 19 July 2001,2 and had a leisurely

37 minutes of population doubling time. While

Slammer had no malicious payload, it caused

considerable harm by overloading networks and

disabling database servers. Many sites lost

connectivity as local copies of the worm saturated

their access bandwidths. If the worm had carried a

malicious payload, attacked a more widespread

vulnerability, or targeted a more popular service, its

effects would likely have been far more severe.

4. Analyze the Propagation Traffic

In this section we study and analyze the

propagation traffic of selected active worms.

4.1 Camouflaging Worm

To analyze the C-Worm, we adopt the

epidemic dynamic model for disease propagation.

Based on existing results, this model matches the

dynamics of real-worm propagation over the

Internet quite well. For this reason, similar to other

publications, we adopt this model in our paper as

well. Since our investigated C-Worm is a novel

attack, we modified the original epidemic dynamic

formula to model the propagation of the C-Worm

by introducing the P(t)—the attack probability that

a worm-infected computer participates in worm

propagation at time t. We note that there is a wide

scope to notably improve our modified model in

the future to reflect several characteristics that are

relevant in real-world practice.

Particularly, the epidemic dynamic model

assumes that any given computer is in one of the

following states: immune, vulnerable, or infected.

An immune computer is one that cannot be infected

by a worm; a vulnerable computer is one that has

the potential of being infected by a worm; an

infected computer is one that has been infected by a

worm. The simple epidemic model for a finite

population of traditional PRS worms can be

expressed as

)]().[(.)(tMNtMtdM  

 dt

where M(t) is the number of infected computers at

time t; N(=T. P1.P2) is the number of vulnerable

computers on the Internet; T is the total number of

IP addresses on the Internet; P1 is the ratio of the

total number of computers on the Internet over T;

P2 is the ratio of total number of vulnerable

computers on the Internet over the total number of

computers on the Internet;  =S/V is called the pair

wise infection rate; and S is the scan rate defined as

the number of scans that an infected computer can

launch in a given time interval. We assume that at

t=0, there are M(0) computers being initially

infected and N-M(0) computers being susceptible

to further worm infection. The C-Worm has a

different propagation model compared to

traditional PRS worms because of its P(t)

parameter. Consequently, (1) needs to be rewritten

as

)]().[().(.)(tMNtPtMtdM  

 dt

Recall that P(t) = M
~

C/M(t) , _M (t) is the

estimation of M(t) at time t, and assuming that M(t)

= (1+).M(t), where  is the estimation error, the

(2) can be rewritten as

)](.[
~

.)(tMNcMtdM  

)(1)(ttd 

We can derive the propagation model for the C-

Worm as M(t)= N-e
- cM

~
. /1+(t).t

(N-M(0), where

M(0) is the number of infected computers at time 0.

Assume that the worm detection system can

monitor Pm(Pm[0,1]) of the whole Internet IP

address space. Without loss of generality, the

probability that at least one scan from a worm-

infected computer (it generates S scans in unit time

on average) will be observed by the detection

system is 1-(1-Pm)
P(t).S

. We define that MA(t) is the

number of worm instances that have been observed

by the worm detection system at time t, then there

are M(t)-MA(t) unobserved infected instances at

time t. At the worm propagation early stage, M(t)-

MA(t) M(t). The expected number of newly

observed infected instances at t+ (where  is the

interval of monitoring) is (M(t)-MA(t)).[1- (1-

Pm)
P(t).S

]  M(i)[1-(1-Pm)
P(t).S

]. Thus, we have

MA(t+) = MA(t)+M(t)[1-(1-Pm)
P(t).S

 Using simple

mathematical manipulations, the number of worm

instances observed by the worm detection system at

time t is

MA(t) = P(t).M(t).Pm = Pm.Mc/1+e(t)

969

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60435

4.2 Morris Worm

Once launched, the worm moved from node to

node using only itself and the infected node’s local

information. The worm did not receive information

from other worms. This simplicity was probably a

blessing and a curse, because it minimized the

prerequisites for gaining a foothold, but it also

made the worm difficult to control. Worms like the

Morris follow these steps to establish a graph link.

a. Choose an endpoint.

b. Choose a vulnerable application.

c. Compute authentication information (if

necessary).

d. Establish a network connection.

e. Control the new, remote worm instance using

the remote application vulnerability to

propagate the worm software by sending

―hook‖ software source code and completion

instructions, wait for the ―haul‖ network

connection from the endpoint, send worm

body as binary load modules, and wait for the

remote system to construct the worm and call

back.

f. Go on to the next endpoint.

The worm needed software vulnerabilities to

infect a new node, and it also needed to find likely

targets for infection. The worm had the interesting

property of being able to use two different

vulnerabilities, one hidden in an email application.

It also had a method for breaking into user accounts

and spreading to sites trusted by those users.

Figure 2: Propagation of Morris Worm

Figure 3: Sensitivity of attack to P2P System

Size.

4.3 Code - Red Worm

Analysis of the Code-Red I worm covers the

spread of the worm between July 4, 2001 and

August 25, 2001. Before Code-Red I began to

spread, we were collecting data in the form of a

packet header trace of hosts sending unsolicited

TCP SYN packets into our /8 network. When the

worm began to spread extensively on the morning

of July 19, we noticed the sudden influx of probes

into our network and began our monitoring efforts

in earnest.

Early on July 20, the filter was removed and

we resumed packet header data collection.

Although we collected data through October, we

include data through August 25, 2001 in this study.

No significant changes were observed in Code-Red

I or CodeRed II activity between August 2001 and

the pre-programmed shutdown of CodeRed II on

October 1, 2001.

4.4 Slammer Worm

The worm’s spreading strategy uses random

scanning—it randomly selects IP addresses,

eventually finding and infecting all susceptible

hosts. Random-scanning worms initially spread

exponentially, but their rapid new-host infection

slows as the worms continually retry infected or

immune addresses.

Figure 4: Background level of unsolicited SYN

probes, beginning of Code-Red I worm

spread.

Thus, as with the Code Red worm shown in

Figure 6, Slammer’s infected-host proportion

follows a classic logistic form of initial exponential

growth in a finite system.1,2 We label this growth

behavior a random constant spread (RCS) model.

Slammer’s spread initially conformed to the RCS

model, but in the later stages it began to saturate

networks with its scans, and bandwidth

consumption and network outages caused site-

specific variations in its observed spread. Figure 10

shows a data set from the Distributed Intrusion

Detection System project (Dshield;

www.dshield.org) compared to an RCS model. The

model fits extremely well up to a point where the

probe rate abruptly levels out. Bandwidth

The Sensitivity of P2P System Size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

45 50 55 60 65 70

Time

In
fe

c
ti

o
n

 R
a
ti

o

PRS

OPSS(1000)

OPSS(5000)

OPSS(10000)

OPUS(1000)

OPUS(5000)

OPUS(10000)

Attack Performance vs. Scan Approaches

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

45 50 55 60 65 70 75

Time

In
fe

c
ti

o
n

 R
a
ti

o

PRS

OPHLS

OPSS

970

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60435

saturation and network failure (some networks shut

down under the extreme load) produced this change

in the probe’s growth rate.

Figure 5: Slammer propagation during the 12

hours after its release.

5. Conclusion

Worms pose a serious and increasing threat to

Internet security and stability. This being the case,

system administrators must study the worm

phenomenon and devise methods by which the

spread of worms can be stopped. By examining

historical and contemporary worms it becomes

clear that, from a security standpoint, they merely

represent variations on a few central themes.

Highlighting these commonalities allows for

the synthesis of a platform-agnostic model of worm

propagation that can then be systematically

analyzed to determine where security technologies

can be deployed to prevent such propagation from

occurring. This analysis has shown that all is not

lost in the fight against worms and that there are

many commonly available security technologies

that can be deployed to help prevent the spread of

worms.

As demonstrated above, worm propagation is a

multi-stage process in which a number of security

technologies can be successfully deployed at each

stage to help prevent, slow, or contain the spread of

worms. This leads to the conclusion that mass

worm outbreaks must be the result of generally lax

security policies on a global scale rather than to a

deficit in security technology.

6. References

[1]. Nagaraju Mamillapally, Venkatesh Gadege – ―

 A Behavioural Study of Various Worms and

their Detection Schemes‖, Journal of

Engineering, Computers & Applied Sciences

(JEC&AS) ISSN No: 2319-5606 Volume 1,

No.3, December 2012.

[2]. Wei Yu, Xun Wang, Prasad Calyam, Dong

Xuan, and Wei Zhao – ―Modeling and

Detection of Camouflaging Worm‖, IEEE

Transactions on Dependable and Secure

Computing, Vol. 8, No. 3, May/June 2011.

[3]. Pele Li, Mehdi Salour, And Xiao Su, San Jose

State Uuniversity, ―A Survey of Internet

Worm Detection and Containment 1ST

QUARTER 2008, Vol 10, No. 1.

 [4]. D. Moore, C. Shannon, and J. Brown, ―Code-

Red: A Case Study on the Spread and Victims

of an Internet Worm,‖ Proc. Second Internet

Measurement Workshop (IMW), Nov. 2002.

[5]. D. Moore, V. Paxson, and S. Savage, ―Inside

the Slammer Worm,‖ Proc. IEEE Magazine of

Security and Privacy, July 2003.

[6]. E. Spafford, ―The Internet Worm Program: An

Analysis,‖ Comp.Commun. Rev., 1989.

[7]. ―Morris (Computer Worm),‖ retrieved July

2007,http://en.wikipedia.org/wiki/Morris_wor

m M. Young, The Technical Writer’s

Handbook. Mill Valley, CA: University

Science, 1989.

[8]. G. P. Schaffer, ―Worms and Viruses and

Botnets, Oh My! Rational Responses to

Emerging Internet Threats,‖ IEEE Sec. &

Privacy, vol. 4, 2006, pp. 52–58.

971

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60435

