

Abstract:

To reduce the cost of test data generation in
the context of mutation testing, this paper
has proposed an evolutionary approach
based on Ant Colony Optimization. Inspired
by Bottaci, they have defined and
implemented a fitness function. This
function measures how close a test case is to
kill a mutant. To better guide the search for
continuous input parameters the Ant Colony
Optimization based approach is enhanced by
a probability density estimation technique.
The enhanced Ant Colony Optimization
approach performed significantly better than
Genetic Algorithm, Hill Climbing and Random
Search in terms of attained mutation score
as well as computational cost.

For the better evaluation of the approach, it
should be compared to an enhanced Genetic
Algorithm that will involve the probability
density estimation technique. Further
improvements of the approach will also be
achieved by considering other types of

inputs and predicate expressions using
strings, arrays and Booleans.

1. Introduction
Ant Colony Optimization is an example of

Swarm Intelligence (SI is the collective

behaviour of decentralized, self organized

systems, natural or artificial).

Ant Colony Optimization (ACO) is a

paradigm for designing metaheuristic

algorithms for combinatorial optimization

problems. The essential trait of ACO

algorithms is the combination of prior

information about the structure of a

promising solution with later information

about the structure of previously obtained

good solutions.

Metaheuristic algorithms are algorithms

which, in order to escape from local optima,

drive some basic heuristic: either a

constructive heuristic starting from a null

solution and adding elements to build a good

complete one, or a local search heuristic

starting from a complete solution and

iteratively modifying some of its elements in

order to achieve a better one. The

metaheuristic part permits the low-level

heuristic to obtain solutions better than those

Ant Colony Optimization : Algorithms of Mutation Testing

Mohit Tiwari

M.Phil(IT)/MCA/B.Sc (PCM)

Dr. Vaibhav Bansal

Ph.D(CSE)/M.Tech(IT)/B.E.Hons(CSE)

Arti Bajaj

MCA/B.Sc (Computer Application)

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012
ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

it could have achieved alone, even if iterated.

Usually, the controlling mechanism is

achieved either by constraining or by

randomizing the set of local neighbour

solutions to consider in local search (as is the

case of simulated annealing), or by

combining elements taken by different

solutions (as is the case of evolution

strategies and genetic algorithms) [2].

Keywords: Swarm Intelligence, Met heuristic

algorithms

1.1 Advantages Of Ant Colony

Optimization
1. Inherent parallelism is possible

2. Positive feedback accounts for rapid

discovery of good solutions

3. Efficient for traveling salesman problem

and similar other problems

4. ACO can be used in dynamic applications

(adapts to changes such as new distances,

etc)

1.2 Disadvantages Of Ant Colony

Optimization

1. Theoretical analysis is difficult in ACO.

2. Sequences of random decisions are not

possible.

3. Probability distribution changes by

iteration.

4. Research is experimental rather than

theoretical.

5. Time to convergence is uncertain but

convergence is guaranteed [4].

1.2 Software Analysis
Software testing accounts for more than 40-

50% of the total development costs in many

software organizations. In any software

project, software testing and test case

generation are among the most manual labor

intensive and technically difficult activities.

Indeed, thorough testing is often unfeasible

because of the potentially infinite execution

space or high cost with respect to tight

budget limitations.

A set of test cases is more adequate if it kills

a larger number of mutants than another set

of test cases. On the other hand, a test suite is

preferred over others if it contains fewer test

cases and is closer to the adequacy criterion,

i.e., has the highest mutation score.

Intuitively, mutation testing promotes high

quality test suites and has high potential for

automation.

1.3 Ant System
Ant Colony Optimization is a class of

algorithms, whose first member is called as

The Ant System which was initially proposed

by Colorni, Dorigo and Maniezzo. The main

underlying idea, loosely inspired by the

behavior of real ants, is that of a parallel

search over several constructive

computational threads based on local

problem data and on a dynamic memory

structure containing information on the

quality of previously obtained result. The

collective behavior emerging from the

interaction of the different search threads has

proved effective in solving combinatorial

optimization (CO) problems.

Ant System was the first algorithm inspired

by real ant’s behavior. Ant System was

initially applied to the solution of the

traveling salesman problem but was not able

to compete against the state-of-the art

algorithms in the field. On the other hand he

has the merit to introduce ACO algorithms

and to show the potentiality of using

artificial pheromone and artificial ants to

drive the search of always better solutions

for complex optimization problems.

The next researches were motivated by two

goals:

1. The first was to improve the

performance of the algorithm

2. The second was to investigate and

better explain its behavior.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012
ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

Figure 1.3: Ant System

1.4 Mutation Testing

A method of software testing, that involves

modifying programs source code or byte

code in small ways is called Mutation

Testing. It is also called mutation analysis or

program mutation. A test suite which does

not detect and reject the mutated code can be

considered defective. These so-

called mutations are based on well-

defined mutation operators. These mutation

operators either force the creation of valuable

tests (such as driving each expression to zero)

or mimic typical programming errors (such

as using the wrong operator or variable

name). The purpose is to help the tester

develop effective tests or locate weaknesses

in the test data used for the program or in

sections of the code that are seldom or never

accessed during execution. Mutation testing

was originally proposed by DeMillo in 1978.

Several techniques have been developed in

the past to try to make mutation testing and

analysis more cost-effective. In general, these

techniques follow one of the three strategies:

1. Do Fewer: The “do fewer” strategy

looks for ways of generating and

running fewer mutants without losing

efficiency; among them it is worth

mentioning selective mutation and

mutant sampling.

2. Do Smarter: The “do smarter”

approaches look for ways to distribute

the expensive computational phases

over several machines or to avoid

complete execution. For example,

weak mutation is a strategy belonging

to the “do smarter” approach.

3. Do Faster: The “do faster” approach

look for ways of generating and

running each mutant as quickly as

possible; among them are schema

based mutation and separate

compilation .

1.4.1 Offutt’s Techniques

This paper focuses on automatic test input

data generation which attempts to alleviate

deficiencies of the approaches that were used

previously. The first general and

implemented attempt to apply mutation

analysis to generate adequate test input data

for mutation testing was proposed by Offutt

in his Ph.D. dissertation.

There are two techniques used by Offutt

namely:

(i) Constraint Based Test Data Generation

Technique

(ii)Dynamic Domain Reduction Technique

Constraint Based Test Data Generation

Technique

This technique is based on the observation

that a test case is able to kill a mutant if

it satisfies three conditions :

1. The first condition is called - The

Reachability Condition which states

that the mutated statement must be

reached.

2. The second condition is called - The

Necessary Condition which requires

that the execution state of the mutant

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012
ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

program must differ from that of the

original program after some execution

of the mutated statement.

3. The third condition is called – The

Sufficiency Condition which requires

that the state difference should be

propagated to cause incorrect output.

The constraint based satisfaction technique

suffers from several drawbacks, partly due to

weakness of the underlying unsophisticated

search procedure.

Dynamic Domain Reduction Technique

To overcome some CBT problems this

technique was successively developed by

Offutt .

The basis of this technique is the same as

CBT although it uses a more sophisticated

back - tracking search procedure to help

bisection domain-splitting.

While CBT and DDR are based on

constraints resolution and input domain

splitting, this paper advocates the use of an

evolutionary approach to generate data that

kill mutants in the context of mutation

testing. In this technique, test input data

generation is mapped into a minimization

problem guided by a cost function, a fitness

function inspired by Bottaci proposal.

2. Algorithms of Mutation Testing

2.1 Formulation Of The Problem

Let P be a program under test and I = (x1, x2,

. . . , xk) be the vector of its input variables.

Each input variable xi takes its values in a

domain Di where i = 1, 2 , . . . , k. Therefore

the domain of the program P is the cross

product D where D = D1 ×D2 . . .×Dk. Let us

further assume that R is a set of mutation

operators where each mutation operator is a

representative of a typical programming error

and it produces a single modification in a

single program point giving rise to a mutated

version of P.

By applying mutation operator r ε R to P, N

mutated copies M1,M2, . . . ,MN of P are

obtained. In other words, Mi = ri (P) with ri ε

R, ri the i
th

, i = 1, . . . ,N, a selected mutation

operator that mutates P by injecting a simple

fault at a statement sm, called the P mutated

statement.

The problem of test data generation in the

context of mutation testing consists of

finding a set of test input values that

maximizes the number of killed mutants. The

essential problem is to find assignments of

values to input variables (x1, x2, . . . , xk),

called test cases, such that when the test suite

is executed over the set of mutants M1,M2, . .

. ,MN it kills the highest possible number of

mutants.

As already mentioned, each mutant Mj , j = 1,

. . . ,N, is killed if the three conditions

promulgated by Offut are satisfied. The first

condition (the reachability condition) states

that mutated statement sm in the mutant Mj

must be reached. The second condition

requires the value of the mutated expression,

once executed, in the statement sm to differ

from its value before mutation. In other

words, at the mutated statement sm, the state

of the mutant is different from the original

program’s one. The third condition (the

sufficiency condition) requires the mutated

value, i.e., the mutated state at sm, to

propagate to the mutant output. In this paper,

we refer to these conditions as the killing

conditions.

If an input test case t kills a mutant Mj this

latter is said to be killed or killed by t;

otherwise Mj is said to be still alive.

Therefore, if T is the set of test cases killing d

mutants, the adequacy

of T is assessed by its mutation score M

Score(T) given by the following formula:

M Score (T) = 100 (d / N – eq)

where eq is the number of equivalent mutants

i.e., mutants that cannot be distinguished

from P. Input variables x1, x2, . . . , xk taking

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012
ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

values in D1 ×D2 . . .×Dk are assumed to be

either integer values or real

values.

2.2 Fitness Function

A fitness function is a particular type

of objective function that prescribes the

optimality of a solution (that is,

a chromosome) in a genetic algorithm so that

that particular chromosome may be ranked

against all the other chromosomes. Optimal

chromosomes, or at least chromosomes

which are more optimal, are allowed to breed

and mix their datasets by any of several

techniques, producing a new generation that

will (hopefully) be even better.

An ideal fitness function correlates closely

with the algorithm's goal, and yet may be

computed quickly. Speed of execution is very

important, as a typical genetic algorithm must

be iterated many, many times in order to

produce a usable result for a non-trivial

problem. This is one of the main drawbacks

of Genetic Algorithms in real world

applications and limits their applicability in

some industries.

Two main classes of Fitness Functions exist:

 The first one where the fitness

function does not change, as in

optimizing a fixed function or

testing with a fixed set of test

cases

 The second one where the fitness

function is mutable, as in niche

differentiation or co-evolving the

set of test cases [7].

2.2.1 Bottaci’s Fitness Function

This is defined in a way that a test case is

able to kill a mutant if it satisfies the same

three conditions used by Offutt in CBT,

namely, the reachability, the necessary and

the sufficiency conditions. Bottaci mapped

the three conditions into three cost terms

which goes as: The reachability cost for a

given test case is computed as the goal path

minus the number of nodes in the longest

common prefix of the test case path and goal

path. There may be several feasible “goal

paths” and it is not important which one is

considered to compute the cost.

In the case of identical costs for two distinct

test cases, Bottaci proposes adding to the first

reachability cost component, a second cost

component, namely the cost of satisfying the

common failed decision node on the goal

path. Suppose that mutation changes a

condition e into e΄ at statement sm. The

necessity cost is quantified as the cost of

satisfying the predicate e ≠ e΄ by the test case

under consideration.

To solve the minimization problem, Ant

Colony Optimization (ACO) is chosen as the

metaheuristic algorithm.

Reasons Justifying the Choice
1. Evolutionary algorithms have been

proven to be suitable approaches for

data generation in the context of

coverage based testing.

2. ACO leads to implement “do smarter”

approaches in a natural way because

ACO intrinsically allows a parallel

search.

In our approach ants have the mission of

killing one mutant each time by searching for

a test input datum that satisfies the three

Offutt conditions. Furthermore, our ACO

algorithm is enhanced by a probability

density estimation process that automatically

guides and refines the search in promising

regions. Automatically determining which

mutants are equivalent is also an important

way to reduce the manual labors and promote

the acceptance of mutation testing.

2.3 Hill Climbing Algorithm

In computer science, Hill Climbing is

a mathematical optimization technique which

belongs to the family of local search. It is an

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012
ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

iterative algorithm that starts with an

arbitrary solution to a problem, then attempts

to find a better solution

by incrementally changing a single element

of the solution. If the change produces a

better solution, an incremental change is

made to the new solution, repeating until no

further improvements can be found.

For example, hill climbing can be applied to

the traveling salesman problem. It is easy to

find an initial solution that visits all the cities

but will be very poor compared to the

optimal solution. The algorithm starts with

such a solution and makes small

improvements to it, such as switching the

order in which two cities are visited.

Eventually, a much shorter route is likely to

be obtained.

Hill climbing is good for finding a local

optimum (a good solution that lies relatively

near the initial solution) but it is not

guaranteed to find the best possible solution

(the global optimum) out of all possible

solutions (the search space).

The relative simplicity of the algorithm

makes it a popular first choice amongst

optimizing algorithms. It is used widely

in artificial intelligence, for reaching a goal

state from a starting node. Choice of next

node and starting node can be varied to give a

list of related algorithms. Although more

advanced algorithms such as simulated

annealing or tabu search may give better

results, in some situations hill climbing

works just as well. Hill climbing can often

produce a better result than other algorithms

when the amount of time available to perform

a search is limited, such as with real-time

systems.

2.3.1 Variants Of Hill Climbing

1. Simple Hill Climbing - In this variant the

first closer node is chosen.

2. Steepest Ascent Hill Climbing - In this

variant all successors are compared and the

closest to the solution is chosen. This is

similar to best-first search, which tries all

possible extensions of the current path

instead of only one. This fails if there is no

closer node, which may happen if there are

local maxima in the search space which are

not solutions.

3. Stochastic Hill Climbing - This variant

does not examine all neighbors before

deciding how to move. Rather, it selects a

neighbor at random, and decides (based on

the amount of improvement in that neighbor)

whether to move to that neighbor or to

examine another.

4. Random-Restart Hill Climbing - This

variant is a meta-algorithm built on top of the

hill climbing algorithm. It is also known

as Shotgun Hill Climbing. It iteratively does

hill-climbing, each time with a random initial

condition x0. The best xm is kept: if a new run

of hill climbing produces a better xm than the

stored state then it replaces the stored state.

Random-Restart Hill Climbing is a

surprisingly effective algorithm in many

cases. It turns out that it is often better to

spend CPU time exploring the space, than

carefully optimizing from an initial condition

[5].

2.3.2 Problem Structure

Hill Climbing is the simplest and probably

best known search based algorithm. The goal

of this paper was to simplify the task of

comparison with Ant Colony Optimization.

In order to kill a given mutant, Hill Climbing

starts by choosing a random test case as an

initial solution. The quality of the test case is

evaluated by the same fitness function used

in Ant Colony Optimization and Genetic

Algorithm. Hill Climbing attempts to

improve the current test case by moving to

better points in a neighborhood of the current

solution. This iterative process continues

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012
ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

IJ
E
R
T

until a termination criterion (e.g., mutant is

killed or a stagnation criterion) is not met.

The neighborhood of a test case is defined as

the set of test case obtained by modifying the

values of one or more input variables. Such a

modification is accomplished by

incrementing or decrementing the value of

the input variable by a step.

2.4 Genetic Algorithm

A genetic algorithm (GA) is

a search heuristic that mimics the process of

natural evolution. This heuristic is routinely

used to generate useful solutions

to optimization and search problems. Genetic

algorithms belong to the larger class

of evolutionary algorithms (EA), which

generate solutions to optimization problems

using techniques inspired by natural

evolution, such as inheritance, mutation,

crossover, selection. In genetic

algorithms of computing, mutation is

a genetic operator used to maintain genetic

diversity from one generation of a population

of algorithm chromosomes to the next. It is

analogous to biological mutation.

2.4.1 Methodology

In a genetic algorithm, a population of strings

(called chromosomes), which

encode candidate solution (called individuals,

creatures) to an optimization problem,

evolves toward better solutions. The

evolution usually starts from a population of

randomly generated individuals and happens

in generations. In each generation, the fitness

of every individual in the population is

evaluated, multiple individuals

are stochastically selected from the current

population (based on their fitness), and

modified (recombined and possibly randomly

mutated) to form a new population. The new

population is then used in the next iteration

of the algorithm. Commonly, the algorithm

terminates when either a maximum number

of generations has been produced, or a

satisfactory fitness level has been reached for

the population. If the algorithm has

terminated due to a maximum number of

generations, a satisfactory solution may or

may not have been reached.

A typical genetic algorithm requires:

 a genetic representation of the

solution domain.

 a fitness function to evaluate the

solution domain.

The main property that makes these genetic

representations convenient is that their parts

are easily aligned due to their fixed size,

which facilitates simple crossover operations.

Variable length representations may also be

used, but crossover implementation is more

complex in this case.

The fitness function is defined over the

genetic representation and measures

the quality of the represented solution. The

fitness function is always problem dependent.

Once we have the genetic representation and

the fitness function defined, GA proceeds to

initialize a population of solutions randomly,

and then improve it through repetitive

application of mutation, crossover, inversion

and selection operators.

2.4.2 Initialization

Initially many individual solutions are

randomly generated to form an initial

population. The population size depends on

the nature of the problem, but typically

contains several hundreds or thousands of

possible solutions. Traditionally, the

population is generated randomly, covering

the entire range of possible solutions (the

search space). Occasionally, the solutions

may be "seeded" in areas where optimal

solutions are likely to be found.

2.4.3 Problem Domains

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012
ISSN: 2278-0181

7www.ijert.org

IJ
E
R
T

IJ
E
R
T

Problems which appear to be particularly

appropriate for solution by genetic algorithms

include timetabling and scheduling problems,

and many scheduling software packages are

based on Genetic Algorithms. Genetic

Algorithms have also been applied

to engineering. Genetic algorithms are often

applied as an approach to solve global

optimization problems.

As a general rule genetic algorithms might be

useful in problem domains that have a

complex fitness landscape as mixing, i.e.,

mutation in combination with crossover, is

designed to move the population away

from local optima that a traditional hill

climbing algorithm might get stuck in.

Observe that commonly used crossover

operators cannot change any uniform

population. Mutation alone can provide

ergodicity of the overall genetic algorithm

process (seen as a Markov chain) [6].

2.4.4 Comparison Of Genetic Algorithm

To ACO
This paper compares Genetic Algorithm,

with the proposed Ant Colony Optimization.

Genetic Algorithm starts by creating an

initial population of n test cases chosen

randomly from the domain D of the program

being tested. Each chromosome represents a

test case and genes are values of the input

variables. In an iterative process, Genetic

Algorithm tries to improve the population

from one generation to another. Test cases in

a generation are selected according to their

fitness in order to perform reproduction, i.e.,

crossover and /or mutation. Then, a new

generation is constituted by the one fittest test

cases of the previous generation and the

offspring obtained from crossover and

mutation. To keep the population size

constant, we keep only the n best test cases in

each new generation. The iterative process

continues until a stopping criterion is met

(e.g., mutant Mi is killed or stagnation

criteria).The experiment performed in this

paper chooses, crossover to be the uniform

crossover: where in the offspring test case,

the value of an input variable xi will be the

value of xi in one of the parent test cases

chosen randomly. Mutation was performed

by a random modification of one input value

in the test case.

Reference:

1. Automatic mutation test input data

generation via ant colony by K.Ayari,

S.Bouktif, G.Antoniol

2. http://www.idsia.ch/~luca/aco2004.pd

f

3. http://en.wikipedia.org/wiki/Ant_colo

ny_optimization

4. http://www.slideshare.net/pratikpodda

r05051989/ant-colony-optimization

5. http://en.wikipedia.org/wiki/Hill_clim

bing

6. http://en.wikipedia.org/wiki/Genetic_

algorithm

7. http://en.wikipedia.org/wiki/Fitness_f

unction

8. http://www.springerlink.com/content/

x3a34th2vt046mw8

9. http://en.wikipedia.org/wiki/Probabili

ty_density_function

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012
ISSN: 2278-0181

8www.ijert.org

IJ
E
R
T

IJ
E
R
T

