
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract: 

To reduce the cost of test data generation in 
the context of mutation testing, this paper 
has proposed an evolutionary approach 
based on Ant Colony Optimization. Inspired 
by Bottaci, they have defined and 
implemented a fitness function. This 
function measures how close a test case is to 
kill a mutant. To better guide the search for 
continuous input parameters the Ant Colony 
Optimization based approach is enhanced by 
a probability density estimation technique. 
The enhanced Ant Colony Optimization 
approach performed significantly better than 
Genetic Algorithm, Hill Climbing and Random 
Search in terms of attained mutation score 
as well as computational cost.  
 
For the better evaluation of the approach, it 
should be compared to an enhanced Genetic 
Algorithm that will involve the probability 
density estimation technique. Further 
improvements of the approach will also be 
achieved by considering other types of  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
inputs and predicate expressions using 
strings, arrays and Booleans.  
 

1. Introduction 
Ant Colony Optimization is an example of 

Swarm Intelligence (SI is the collective 

behaviour of decentralized, self organized 

systems, natural or artificial).  

Ant Colony Optimization (ACO) is a 

paradigm for designing metaheuristic 

algorithms for combinatorial optimization 

problems. The essential trait of ACO 

algorithms is the combination of prior 

information about the structure of a 

promising solution with later information 

about the structure of previously obtained 

good solutions.  

 

Metaheuristic algorithms are algorithms 

which, in order to escape from local optima, 

drive some basic heuristic: either a 

constructive heuristic starting from a null 

solution and adding elements to build a good 

complete one, or a local search heuristic 

starting from a complete solution and 

iteratively modifying some of its elements in 

order to achieve a better one. The 

metaheuristic part permits the low-level 

heuristic to obtain solutions better than those 
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it could have achieved alone, even if iterated. 

Usually, the controlling mechanism is 

achieved either by constraining or by 

randomizing the set of local neighbour 

solutions to consider in local search (as is the 

case of simulated annealing), or by 

combining elements taken by different 

solutions (as is the case of evolution 

strategies and genetic algorithms) [2]. 

Keywords: Swarm Intelligence, Met heuristic 

algorithms 

 

1.1 Advantages Of Ant Colony 

Optimization  
1. Inherent parallelism is possible 

2. Positive feedback accounts for rapid 

discovery of good solutions 

3. Efficient for traveling salesman problem 

and similar other problems 

4. ACO can be used in dynamic applications 

(adapts to changes such as new distances, 

etc) 

 

1.2 Disadvantages Of Ant Colony 

Optimization  

1. Theoretical analysis is difficult in ACO. 

2. Sequences of random decisions are not 

possible.  

3. Probability distribution changes by 

iteration. 

4. Research is experimental rather than 

theoretical. 

5. Time to convergence is uncertain but 

convergence is guaranteed [4]. 

  

1.2 Software Analysis 
Software testing accounts for more than 40-

50% of the total development costs in many 

software organizations. In any software 

project, software testing and test case 

generation are among the most manual labor 

intensive and technically difficult activities. 

Indeed, thorough testing is often unfeasible 

because of the potentially infinite execution 

space or high cost with respect to tight 

budget limitations.  

A set of test cases is more adequate if it kills 

a larger number of mutants than another set 

of test cases. On the other hand, a test suite is 

preferred over others if it contains fewer test 

cases and is closer to the adequacy criterion, 

i.e., has the highest mutation score. 

Intuitively, mutation testing promotes high 

quality test suites and has high potential for 

automation. 

 

1.3 Ant System  
Ant Colony Optimization is a class of 

algorithms, whose first member is called as 

The Ant System which was initially proposed 

by Colorni, Dorigo and Maniezzo. The main 

underlying idea, loosely inspired by the 

behavior of real ants, is that of a parallel 

search over several constructive 

computational threads based on local 

problem data and on a dynamic memory 

structure containing information on the 

quality of previously obtained result. The 

collective behavior emerging from the 

interaction of the different search threads has 

proved effective in solving combinatorial 

optimization (CO) problems. 

Ant System was the first algorithm inspired 

by real ant’s behavior. Ant System was 

initially applied to the solution of the 

traveling salesman problem but was not able 

to compete against the state-of-the art 

algorithms in the field. On the other hand he 

has the merit to introduce ACO algorithms 

and to show the potentiality of using 

artificial pheromone and artificial ants to 

drive the search of always better solutions 

for complex optimization problems.  

The next researches were motivated by two 

goals:  

1. The first was to improve the 

performance of the algorithm  

2. The second was to investigate and 

better explain its behavior. 
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Figure 1.3: Ant System 

 

1.4 Mutation Testing  

A method of software testing, that involves 

modifying programs source code or byte 

code in small ways is called Mutation 

Testing. It is also called mutation analysis or 

program mutation. A test suite which does 

not detect and reject the mutated code can be 

considered defective. These so-

called mutations are based on well-

defined mutation operators. These mutation 

operators either force the creation of valuable 

tests (such as driving each expression to zero) 

or mimic typical programming errors (such 

as using the wrong operator or variable 

name). The purpose is to help the tester 

develop effective tests or locate weaknesses 

in the test data used for the program or in 

sections of the code that are seldom or never 

accessed during execution. Mutation testing 

was originally proposed by DeMillo in 1978. 

 

Several techniques have been developed in 

the past to try to make mutation testing and 

analysis more cost-effective. In general, these 

techniques follow one of the three strategies: 

 

1. Do Fewer: The “do fewer” strategy 

looks for ways of generating and 

running fewer mutants without losing 

efficiency; among them it is worth 

mentioning selective mutation and 

mutant sampling. 

 

2. Do Smarter: The “do smarter” 

approaches look for ways to distribute 

the expensive computational phases 

over several machines or to avoid 

complete execution. For example, 

weak mutation is a strategy belonging 

to the “do smarter” approach. 

 

3. Do Faster: The “do faster” approach 

look for ways of generating and 

running each mutant as quickly as 

possible; among them are schema 

based mutation and separate 

compilation . 

 

1.4.1 Offutt’s Techniques  

This paper focuses on automatic test input 

data generation which attempts to alleviate 

deficiencies of the approaches that were used 

previously. The first general and 

implemented attempt to apply mutation 

analysis to generate adequate test input data 

for mutation testing was proposed by Offutt 

in his Ph.D. dissertation. 

There are two techniques used by Offutt 

namely: 

(i) Constraint Based Test Data Generation 

Technique 

(ii)Dynamic Domain Reduction Technique 

  

Constraint Based Test Data Generation 

Technique 

 

This technique is based on the observation 

that a test case is able to kill a mutant if 

it satisfies three conditions : 

1. The first condition is called - The 

Reachability Condition which states 

that the mutated statement must be 

reached. 

2. The second condition is called - The 

Necessary Condition which requires 

that the execution state of the mutant 
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program must differ from that of the 

original program after some execution 

of the mutated statement.  

3. The third condition is called – The 

Sufficiency Condition which requires 

that the state difference should be 

propagated to cause incorrect output.  

The constraint based satisfaction technique 

suffers from several drawbacks, partly due to 

weakness of the underlying unsophisticated 

search procedure. 

 

Dynamic Domain Reduction Technique 

 

To overcome some CBT problems this 

technique was successively developed by 

Offutt . 

The basis of this technique is the same as 

CBT although it uses a more sophisticated 

back - tracking search procedure to help 

bisection domain-splitting. 

 

While CBT and DDR are based on 

constraints resolution and input domain 

splitting, this paper advocates the use of an 

evolutionary approach to generate data that 

kill mutants in the context of mutation 

testing. In this technique, test input data 

generation is mapped into a minimization 

problem guided by a cost function, a fitness 

function inspired by Bottaci proposal.  

 

2. Algorithms of Mutation Testing 

 

2.1 Formulation Of The Problem  

Let P be a program under test and I = (x1, x2, 

. . . , xk) be the vector of its input variables. 

Each input variable xi takes its values in a 

domain Di where i = 1, 2 , . . . , k. Therefore 

the domain of the program P is the cross 

product D where D = D1 ×D2 . . .×Dk. Let us 

further assume that R is a set of mutation 

operators where each mutation operator is a 

representative of a typical programming error 

and it produces a single modification in a 

single program point giving rise to a mutated 

version of P. 

By applying mutation operator r ε R to P, N 

mutated copies M1,M2, . . . ,MN of  P are 

obtained. In other words, Mi = ri (P) with ri ε 

R, ri the i
th

, i = 1, . . . ,N, a selected mutation 

operator that mutates P by injecting a simple 

fault at a statement sm, called the P mutated 

statement. 

The problem of test data generation in the 

context of mutation testing consists of 

finding a set of test input values that 

maximizes the number of killed mutants. The 

essential problem is to find assignments of 

values to input variables (x1, x2, . . . , xk), 

called test cases, such that when the test suite 

is executed over the set of mutants M1,M2, . . 

. ,MN it kills the highest possible number of 

mutants. 

As already mentioned, each mutant Mj , j = 1, 

. . . ,N, is killed if the three conditions 

promulgated by Offut are satisfied. The first 

condition (the reachability condition) states 

that mutated statement sm in the mutant Mj 

must be reached. The second condition 

requires the value of the mutated expression, 

once executed, in the statement sm to differ 

from its value before mutation. In other 

words, at the mutated statement sm, the state 

of the mutant is different from the original 

program’s one. The third condition (the 

sufficiency condition) requires the mutated 

value, i.e., the mutated state at sm, to 

propagate to the mutant output. In this paper, 

we refer to these conditions as the killing 

conditions. 

If an input test case t kills a mutant Mj this 

latter is said to be killed or killed by t; 

otherwise Mj is said to be still alive. 

Therefore, if T is the set of test cases killing d 

mutants, the adequacy 

of T is assessed by its mutation score M 

Score(T) given by the following formula: 

 

M Score (T) = 100  (d / N – eq) 

 

where eq is the number of equivalent mutants 

i.e., mutants that cannot be distinguished 

from P. Input variables x1, x2, . . . , xk taking 
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values in D1 ×D2 . . .×Dk are assumed to be 

either integer values or real 

values. 

 

2.2 Fitness Function 

A fitness function is a particular type 

of objective function that prescribes the 

optimality of a solution (that is, 

a chromosome) in a genetic algorithm so that 

that particular chromosome may be ranked 

against all the other chromosomes. Optimal 

chromosomes, or at least chromosomes 

which are more optimal, are allowed to breed 

and mix their datasets by any of several 

techniques, producing a new generation that 

will (hopefully) be even better. 

An ideal fitness function correlates closely 

with the algorithm's goal, and yet may be 

computed quickly. Speed of execution is very 

important, as a typical genetic algorithm must 

be iterated many, many times in order to 

produce a usable result for a non-trivial 

problem. This is one of the main drawbacks 

of Genetic Algorithms in real world 

applications and limits their applicability in 

some industries.  

Two main classes of Fitness Functions exist:  

 The first one where the fitness 

function does not change, as in 

optimizing a fixed function or 

testing with a fixed set of test 

cases 

 The second one where the fitness 

function is mutable, as in niche 

differentiation or co-evolving the 

set of test cases [7]. 

 

2.2.1 Bottaci’s Fitness Function  

 

This is defined in a way that a test case is 

able to kill a mutant if it satisfies the same 

three conditions used by Offutt in CBT, 

namely, the reachability, the necessary and 

the sufficiency conditions. Bottaci mapped 

the three conditions into three cost terms 

which goes as: The reachability cost for a 

given test case is computed as the goal path 

minus the number of nodes in the longest 

common prefix of the test case path and goal 

path. There may be several feasible “goal 

paths” and it is not important which one is 

considered to compute the cost.  

In the case of identical costs for two distinct 

test cases, Bottaci proposes adding to the first 

reachability cost component, a second cost 

component, namely the cost of satisfying the 

common failed decision node on the goal 

path. Suppose that mutation changes a 

condition e into e΄ at statement sm. The 

necessity cost is quantified as the cost of 

satisfying the predicate e ≠ e΄ by the test case 

under consideration.  

To solve the minimization problem, Ant 

Colony Optimization (ACO) is chosen as the 

metaheuristic algorithm. 

 

Reasons Justifying the Choice 
1. Evolutionary algorithms have been 

proven to be suitable approaches for 

data generation in the context of 

coverage based testing.  

2. ACO leads to implement “do smarter” 

approaches in a natural way because 

ACO intrinsically allows a parallel 

search.  

In our approach ants have the mission of 

killing one mutant each time by searching for 

a test input datum that satisfies the three 

Offutt conditions. Furthermore, our ACO 

algorithm is enhanced by a probability 

density estimation process that automatically 

guides and refines the search in promising 

regions. Automatically determining which 

mutants are equivalent is also an important 

way to reduce the manual labors and promote 

the acceptance of mutation testing. 

 

2.3 Hill Climbing Algorithm  

In computer science, Hill Climbing is 

a mathematical optimization technique which 

belongs to the family of local search. It is an 
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iterative algorithm that starts with an 

arbitrary solution to a problem, then attempts 

to find a better solution 

by incrementally changing a single element 

of the solution. If the change produces a 

better solution, an incremental change is 

made to the new solution, repeating until no 

further improvements can be found. 

For example, hill climbing can be applied to 

the traveling salesman problem. It is easy to 

find an initial solution that visits all the cities 

but will be very poor compared to the 

optimal solution. The algorithm starts with 

such a solution and makes small 

improvements to it, such as switching the 

order in which two cities are visited. 

Eventually, a much shorter route is likely to 

be obtained. 

Hill climbing is good for finding a local 

optimum (a good solution that lies relatively 

near the initial solution) but it is not 

guaranteed to find the best possible solution 

(the global optimum) out of all possible 

solutions (the search space). 

The relative simplicity of the algorithm 

makes it a popular first choice amongst 

optimizing algorithms. It is used widely 

in artificial intelligence, for reaching a goal 

state from a starting node. Choice of next 

node and starting node can be varied to give a 

list of related algorithms. Although more 

advanced algorithms such as simulated 

annealing or tabu search may give better 

results, in some situations hill climbing 

works just as well. Hill climbing can often 

produce a better result than other algorithms 

when the amount of time available to perform 

a search is limited, such as with real-time 

systems. 

 

2.3.1 Variants Of Hill Climbing  

1. Simple Hill Climbing - In this variant the 

first closer node is chosen. 

2. Steepest Ascent Hill Climbing - In this 

variant all successors are compared and the 

closest to the solution is chosen. This is 

similar to best-first search, which tries all 

possible extensions of the current path 

instead of only one. This fails if there is no 

closer node, which may happen if there are 

local maxima in the search space which are 

not solutions.  

3. Stochastic Hill Climbing - This variant 

does not examine all neighbors before 

deciding how to move. Rather, it selects a 

neighbor at random, and decides (based on 

the amount of improvement in that neighbor) 

whether to move to that neighbor or to 

examine another. 

4. Random-Restart Hill Climbing - This 

variant is a meta-algorithm built on top of the 

hill climbing algorithm. It is also known 

as Shotgun Hill Climbing. It iteratively does 

hill-climbing, each time with a random initial 

condition x0. The best xm is kept: if a new run 

of hill climbing produces a better xm than the 

stored state then it replaces the stored state. 

Random-Restart Hill Climbing is a 

surprisingly effective algorithm in many 

cases. It turns out that it is often better to 

spend CPU time exploring the space, than 

carefully optimizing from an initial condition 

[5]. 

 

2.3.2 Problem Structure  

Hill Climbing is the simplest and probably 

best known search based algorithm. The goal 

of this paper was to simplify the task of 

comparison with Ant Colony Optimization. 

In order to kill a given mutant, Hill Climbing 

starts by choosing a random test case as an 

initial solution. The quality of the test case is 

evaluated by the same fitness function used 

in Ant Colony Optimization and Genetic 

Algorithm. Hill Climbing attempts to 

improve the current test case by moving to 

better points in a neighborhood of the current 

solution. This iterative process continues 
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until a termination criterion (e.g., mutant is 

killed or a stagnation criterion) is not met. 

The neighborhood of a test case is defined as 

the set of test case obtained by modifying the 

values of one or more input variables. Such a 

modification is accomplished by 

incrementing or decrementing the value of 

the input variable by a step. 

 

2.4 Genetic Algorithm  

A genetic algorithm (GA) is 

a search heuristic that mimics the process of 

natural evolution. This heuristic is routinely 

used to generate useful solutions 

to optimization and search problems. Genetic 

algorithms belong to the larger class 

of evolutionary algorithms (EA), which 

generate solutions to optimization problems 

using techniques inspired by natural 

evolution, such as inheritance, mutation, 

crossover, selection. In genetic 

algorithms of computing, mutation is 

a genetic operator used to maintain genetic 

diversity from one generation of a population 

of algorithm chromosomes to the next. It is 

analogous to biological mutation. 

 

2.4.1 Methodology  

In a genetic algorithm, a population of strings 

(called chromosomes), which 

encode candidate solution (called individuals, 

creatures) to an optimization problem, 

evolves toward better solutions. The 

evolution usually starts from a population of 

randomly generated individuals and happens 

in generations. In each generation, the fitness 

of every individual in the population is 

evaluated, multiple individuals 

are stochastically selected from the current 

population (based on their fitness), and 

modified (recombined and possibly randomly 

mutated) to form a new population. The new 

population is then used in the next iteration 

of the algorithm. Commonly, the algorithm 

terminates when either a maximum number 

of generations has been produced, or a 

satisfactory fitness level has been reached for 

the population. If the algorithm has 

terminated due to a maximum number of 

generations, a satisfactory solution may or 

may not have been reached. 

A typical genetic algorithm requires: 

 a genetic representation of the 

solution domain. 

 a fitness function to evaluate the 

solution domain. 

The main property that makes these genetic 

representations convenient is that their parts 

are easily aligned due to their fixed size, 

which facilitates simple crossover operations. 

Variable length representations may also be 

used, but crossover implementation is more 

complex in this case. 

The fitness function is defined over the 

genetic representation and measures 

the quality of the represented solution. The 

fitness function is always problem dependent. 

Once we have the genetic representation and 

the fitness function defined, GA proceeds to 

initialize a population of solutions randomly, 

and then improve it through repetitive 

application of mutation, crossover, inversion 

and selection operators. 

 

2.4.2 Initialization  

Initially many individual solutions are 

randomly generated to form an initial 

population. The population size depends on 

the nature of the problem, but typically 

contains several hundreds or thousands of 

possible solutions. Traditionally, the 

population is generated randomly, covering 

the entire range of possible solutions (the 

search space). Occasionally, the solutions 

may be "seeded" in areas where optimal 

solutions are likely to be found. 

 

 

 

2.4.3 Problem Domains  
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Problems which appear to be particularly 

appropriate for solution by genetic algorithms 

include timetabling and scheduling problems, 

and many scheduling software packages are 

based on Genetic Algorithms. Genetic 

Algorithms have also been applied 

to engineering. Genetic algorithms are often 

applied as an approach to solve global 

optimization problems. 

As a general rule genetic algorithms might be 

useful in problem domains that have a 

complex fitness landscape as mixing, i.e., 

mutation in combination with crossover, is 

designed to move the population away 

from local optima that a traditional hill 

climbing algorithm might get stuck in. 

Observe that commonly used crossover 

operators cannot change any uniform 

population. Mutation alone can provide 

ergodicity of the overall genetic algorithm 

process (seen as a Markov chain) [6]. 

 

2.4.4 Comparison Of Genetic Algorithm 

To ACO  
This paper compares Genetic Algorithm, 

with the proposed Ant Colony Optimization. 

Genetic Algorithm starts by creating an 

initial population of n test cases chosen 

randomly from the domain D of the program 

being tested. Each chromosome represents a 

test case and genes are values of the input 

variables. In an iterative process, Genetic 

Algorithm tries to improve the population 

from one generation to another. Test cases in 

a generation are selected according to their 

fitness in order to perform reproduction, i.e., 

crossover and /or mutation. Then, a new 

generation is constituted by the one fittest test 

cases of the previous generation and the 

offspring obtained from crossover and 

mutation. To keep the population size 

constant, we keep only the n best test cases in 

each new generation. The iterative process 

continues until a stopping criterion is met 

(e.g., mutant Mi is killed or stagnation 

criteria).The experiment performed in this 

paper chooses, crossover to be the uniform 

crossover: where in the offspring test case, 

the value of an input variable xi will be the 

value of xi in one of the parent test cases 

chosen randomly. Mutation was performed 

by a random modification of one input value 

in the test case. 
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