

Application Based Approach to Address TCP Incast Problem in Data Center

Networks
Anurag Pathak

B.E. (Computer Engineering)

Abstract

Data Center Network (DCN) typically serving millions

of data and services to the client. DCN is having a

typical architecture of clients and servers in which one

client is served by number of stripped servers which

are connected via network switch. A client is generally

expecting TCP/IP application service form DCN

servers, as client has TCP/IP based applications. But

as the data on sever is stripped and Data Center

Network has millions of data, sometimes congestion

comes to an account. This congestion is called as

TCP’s Incast Problem, which is not fully addressed yet.

This paper is trying to focus on a solution which can

be implemented at the client side by splitting RTOmin

(Retransmission Timeout) of Operating System.

1. Introduction
TCP Incast Problem is recently introduced, which

has very large impact on Data Center Networks, as

DCN is continuously serving the clients. Typical DCN

is having a structure of one client is connected to a

switch which stripes the number of severs, and the data

that client needed is also stripped on it. The

terminology is DCN servers having RTT (Round Trip

Time) which is quiet less than RTOmin of the client.

That means, for one timeout (RTO) at the client, there

might have several RTT at the server end. Hence the

whole bombarding of retransmitted TCP packets at the

switch. This scenario is quite responsible for the

congestion at the switch and this is bottleneck as shown

in following Figure 1. Therefore the performance is

drastically goes down. This problem is named as TCP

Incast behaviour. The incast behaviour can be observed

by using simple setup of client and servers as shown in

Figure 1. The client is connected to stripped server via

network switch, and requesting for block number k to

the server. This k block is stripped over the network

that means, if there are four stripped server then the

four equal parts of block k is stored on each server. In

order to complete the request, server has to respond

through the switch. As the server has very short RTT as

compare to RTO and hence congestion (TCP incast)

occurs. In this case the due to congestion the server is

unable to send the block k and until client doesn’t

receive the block k, client is going to request block

k+1. Therefore this is responsible for degradation of the

performance drastically [1].

Fig. 1: Simple Setup to observe Incast

2. Background
Business cost efficiencies mean that a vast majority

of data centers rely on off-the-shelf rack-mount servers

interconnected via high-speed Ethernet switches

(DCN). Today, entry level gigabit Ethernet switches

support up to 40 ports and switch upwards of 50

million packets per second when operating at full data

rates. Commodity 10 Gbps Ethernet is now cost-

competitive with specialized interconnects such as

Infiniband and FibreChannel, with the added benefits

of wider brand recognition [2]. To reduce costs

however, Ethernet switches often sacrifice expensive,

power hungry SRAM packet buffers, the effect of

which explore throughout this work. The desire for

commodity parts extends to transport layer as well.

Here, TCP provides a kitchen sink of protocol features,

giving reliability, retransmission, congestion control,

and inorder byte stream at the receiver. While not all

applications need all of these features [3] [4] or benefit

from more rich transport abstractions [5], TCP is

mature and well-understood by developers, leaving it as

the transport protocol of choice even in many high

performance environments. Without link level flow

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

control, TCP is solely responsible for coping with and

avoiding packet loss in (often small) Ethernet switch

egress buffers. Unfortunately, the workload examine in

the context of incast has three features that challenge

TCP’s performance: a highly parallel, synchronized

request workload; buffers much smaller than the

bandwidth delay product of the network; and low

latency that results in TCP having windows of only a

few segments.

Following tables are showing the RTOmin of

different Operating System and RTT of different

networks. [1]

Table 1: Default TCP Minimum Retransmission
Timeout Values

Operating System Default TCP RTOmin

Linux 200 ms

BSD 200 ms

Solaris 400 ms

Table 2: Typical Round Trip Time Values for
Different Networks

Network Round Trip Time

Wide Area Network 100ms

Data Center < 1ms

Storage Area Network < 0.1ms

As far as the performance is concern, it is always

measured in terms of two parameters. First is the

number of servers and second is Throughput.

3. Existing Solutions
The existing solution has been specified at the TCP

level and has quite better result. There are three

solution which are common and that address the TCP

incast behaviour up to some extent. First is Large

Switch Buffer, second is Increasing SRU (Server

Request Unit) and third is Reducing Timeout Penalty

[1].

3.1. Large Switch Buffer
This technique [2] tries to mitigate the root cause of

timeouts – packet losses – by increasing the buffer

space allocated per port on the switches. Figure 3.1

shows that doubling the size of the switch’s output port

buffer, doubles the number of servers that can

supported before the onset of incast.

Fig. 2: Simulation Result of Large Switch Buffer

Consequently, given the number of servers, incast can

be avoided with a large enough buffer space.

Unfortunately, switches with larger buffers tend to cost

more, forcing system designers to choose between

over-provisioning and hardware budgets. This suggests

that a more cost-effective solution is needed to address

the problem of incast.

3.2. Increasing Server Request Unit
This is another incast countermeasure discussed in [2].

It aims to mask incast by utilizing the spare link

capacity of the stalled flow in transferring larger SRUs

belonging to other flows. Figure 3.2 illustrates that

increasing the SRU size improves the overall

throughput. With 7 servers, the throughput for 1000KB

SRU is two orders of magnitude greater than that of the

256KB SRU.

Fig. 3: Simulation Result of Increasing Server

Request Unit

TCP performs well in settings without synchronized

reads, which can be modelled by an infinite SRU size.

With larger SRU sizes, active servers will use the spare

link capacity made available by any stalled flow

waiting for a timeout event; this effectively reduces the

ratio of the timeout times, during transfer time.

Unfortunately, an SRU size of 1 megabyte is quite

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

impractical: most applications ask for data in small

chunks, corresponding to an SRU size range of 1-

256KB. This is because, larger the SRU size, greater is

the prefetching that the storage system has to commit

to. With prefetching, the storage system needs to

allocate pinned space in the client kernel memory,

increasing the memory pressure at the client. This

increased pressure at the client, often leads to a kernel

failure. Hence it is really not advisable to use larger

SRUs on the cluster storage system.

3.3. Reducing Timeout Penalty
This technique is proposed in [6], aims to address

incast by reducing the time spent waiting for a timeout.

The amount of time a flow waits before retransmitting a

lost packet without the Fast Retransmit mechanism

provided by the three duplicate ACKs, is determined by

TCP’s Retransmission Timeout (RTO). Estimating the

RTO value trades timely response to losses for

premature timeouts. A premature timeout has two

negative effects:

3.3.1. It leads to a spurious retransmission and

3.3.2. With every timeout, TCP reduces its slow start

threshold (ssthresh) value by half and enters Slow Start

even though no packets were lost.

Since there is no congestion, TCP thus would

underestimate the link capacity and throughput would

suffer. TCP has a conservative minimum RTO

(RTOmin) value to guard against such spurious

retransmissions [7] [8].

Fig. 4: Simulation Result of Reducing Timeout

Penalty

Popular TCP implementations use an RTOmin value of

200ms [9]. Unfortunately, this value is orders of

magnitude greater than the round-trip times in Storage

Area Network settings, which are typically around

100μs. This large RTOmin imposes a huge throughput

penalty because the transfer time for each data block is

significantly smaller than RTOmin. Figure 4 show that

reducing RTOmin from 200ms to 200μs improves

throughput by an order of magnitude beyond 5 servers.

In general, for any given SRU size, reducing RTOmin

results in an order of magnitude improvement in TCP’s

throughput. The figure also shows that even with an

Aggressive RTOmin value of 200μs, TCP still observes

a 30% decrease in goodput for 40 or more servers.

Unfortunately, setting RTOmin to such a small value

poses significant implementation challenges and raises

questions of safety too.

1) Implementation Challenges: Reducing RTOmin to

200μs requires TCP clock granularity of 100μs,

according to the standard RTO computation algorithm

[7] [8]. BSD TCP and Linux TCP implementations are

currently unable to provide this fine grained timer.

BSD implementations expect the OS to provide two

coarse-grained ―heartbeat‖ software interrupts every

200ms and 500ms, which are used to handle internal

per-connection timers [10]; Linux TCP uses a TCP

clock granularity of 10ms. A TCP timer in

microseconds needs either hardware support that does

not exist or efficient software timers [11] that are not

available in most operating systems.

2) Safety and Generality: Even if sufficiently fine

grained TCP timers were supported, reducing RTOmin

value can be harmful, especially in situations where the

servers communicate with clients in the wide-area. In

[12], the authors note that RTOmin can be used for

trading ―timely response with premature timeouts‖ but

there is no optimal balance between the two in current

TCP implementations; a very low RTOmin value

increases premature timeouts. Earlier studies of RTO

estimation in similar high-bandwidth, low-latency

ATM networks also show that very low RTOmin

values result inspurious retransmissions [13] because

variation in round-triptimes in the wide-area clash with

the standard RTO estimator’s short RTT memory.

In summary, the proposed solution in [6] should be

viewed with caution as it increases the risk of

premature timeouts.

4. Application Level Solution
The problem is at the receiver side, because whatever

the server sending data with high RTT, receiver (client)

is not capable of accepting those data packets. As we

have TCP protocol form Switch to Client.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

Fig. 5: Solution at the application level

Author names and affiliations are to be centered

beneath the title and printed in Times 12-point, non-

boldface type. Multiple authors may be shown in a two-

or three-column format, with their affiliations italicized

and centered below their respective names. Include e-

mail addresses if possible. Author information should

be followed by two 12-point blank lines.

4.1. TCP’s Default Recovery Mechanism
In Figure 6, there are 3 duplicate ACKS’s for only one

packet loss. That will be more penalties to server in

order to retransmit the packets.

Fig. 6: TCP’s default packet loss recovery

mechanism

In Figure 6, there are 3 duplicate ACKS’s for only one

packet loss. That will be more penalties to server in

order to retransmit the packets. If all the packets were

lost then TCP protocol comes one by one sending of

packets on the link. It is more time consuming because

it is considering that the problem with link.

4.2. How to minimize Duplicate ACK to

improve TCP throughput at the time of Incast?

The above question is valid as far as the link

performance is concern, In order to fix the problem we

can use following architecture as shown in Figure 7. If

we divide the RTOmin of the client into some timeslots

then the client can save the link idleness. It can be

possible and shown in following Figure 8

Fig. 7: Architecture of Solution at the application
level

In Figure 8, in first TCP communication there is an

acknowledgement of only last packets, so here it says

that the client had also received the first packet. Similar

in second case, after complication of timeslot, it is been

check that any packet is receiving or not. If there is no

packet received then it automatically sends an

acknowledgement of received packet. And in third case

there is only acknowledgement of packet that is lost.

Fig. 8: TCP’s recovery mechanism after timeslots

5. Conclusion
TCP Incast problem really affects the TCP Throughput

in Data Center Network. Receiver TCP link is weak as

far as performance is concern. This solution is dealing

with the Retransmission Timeout of client to avoid link

idleness. And it can be done by taking Linux operating

system into the consideration that TCP operation can be

handle very effectively into open source system. Hence

to improve TCP performance, application level

modification is kind of solutions to establish an Incast

Congestion free Data Center Network.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

6. References
[1] Santosh Kulkarni and Prathima Agrawal, ―A Probabilistic

Approach to Address TCP Incast in Data Center Networks‖,

2011 31st International Conference on Distributed

Computing Systems Workshops, IEEE, Location, Date, pp.

26-33.

[2] A. Phanishayee, E. Krevat, V. Vasudevan, D. G.

Andersen, G. R. Ganger, G. A. Gibson, and S. Seshan,

―Measurement and analysis of tcp throughput collapse in

cluster-based storage systems,‖ in FAST’08: Proceedings of

the 6th USENIX Conference on File and Storage

Technologies. Berkeley, CA, USA: USENIX Association,

2008, pp. 1–14.

[3] E. Kohler, M. Handley, and S. Floyd, ―Designing dccp:

Congestion control without reliability,‖ 2003.

[4] S. Raman, H. Balakrishnan, and M. Srinivasan, ―Itp: An

image transport protocol for the internet,‖ 2000.

[5] B. Ford, ―Structured streams: a new transport

abstraction,‖ SIGCOMM Comput. Commun. Rev., vol. 37,

no. 4, pp. 361–372, 2007.

[6] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G.

Andersen, G. R. Ganger, G. A. Gibson, B. Mueller, and P.

Inc, ―Safe and effective fine-grained tcp retransmissions for

datacenter communication.‖

[7] V. Jacobson and M. J. Karels, ―Congestion

avoidance and control,‖ 1988.

[8] V. Paxson and M. Allman, ―Rfc 2988: Computing

tcp’s retransmissiontimer,‖ November 2000.

[9] P. Sarolahti and A. Kuznetsov, ―Congestion control

in linux tcp,‖ in In Proceedings of USENIX. Springer,

2002, pp. 49–62.

[10] M. Aron and P. Druschel, ―Tcp implementation

enhancements for improving webserver performance,‖

1999.

[11] ——, ―Soft timers: Efficient microsecond software

timer support for network processing,‖ in In Proc. of

the 17th Symp. on Operating Systems Principles, 1999.

[12] M. Allman and V. Paxson, ―On estimating end-to-

end network path properties,‖ 1999.

[13] A. Romanow and S. Floyd, ―Dynamics of tcp

traffic over atm networks,‖ IEEE JOURNAL ON

SELECTED AREAS IN COMMUNICATIONS, vol.

13, pp. 79–88, 1994.

[14] Yan Zhang, Student Member, IEEE, and Nirwan

Ansari, Fellow, IEEE ―On Mitigating TCP Incast in

Data Center Networks. Advanced Networking

Laboratory, Department of Electrical and Computer

Engineering, New Jersey Institute of Technology,

Newark, NJ 07012, United States, 2011‖

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

