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Abstract  
 

Data Center Network (DCN) typically serving millions 

of data and services to the client. DCN is having a 

typical architecture of clients and servers in which one 

client is served by number of stripped servers which 

are connected via network switch. A client is generally 

expecting TCP/IP application service form DCN 

servers, as client has TCP/IP based applications. But 

as the data on sever is stripped and Data Center 

Network has millions of data, sometimes congestion 

comes to an account. This congestion is called as 

TCP’s Incast Problem, which is not fully addressed yet. 

This paper is trying to focus on a solution which can 

be implemented at the client side by splitting RTOmin 

(Retransmission Timeout) of Operating System.    

  

 

1. Introduction  
TCP Incast Problem is recently introduced, which 

has very large impact on Data Center Networks, as 

DCN is continuously serving the clients. Typical DCN 

is having a structure of one client is connected to a 

switch which stripes the number of severs, and the data 

that client needed is also stripped on it. The 

terminology is DCN servers having RTT (Round Trip 

Time) which is quiet less than RTOmin of the client. 

That means, for one timeout (RTO) at the client, there 

might have several RTT at the server end. Hence the 

whole bombarding of retransmitted TCP packets at the 

switch. This scenario is quite responsible for the 

congestion at the switch and this is bottleneck as shown 

in following Figure 1. Therefore the performance is 

drastically goes down. This problem is named as TCP 

Incast behaviour. The incast behaviour can be observed 

by using simple setup of client and servers as shown in 

Figure 1. The client is connected to stripped server via 

network switch, and requesting for block number k to 

the server. This k block is stripped over the network 

that means, if there are four stripped server then the 

four equal parts of block k is stored on each server. In 

order to complete the request, server has to respond 

through the switch. As the server has very short RTT as 

compare to RTO and hence congestion (TCP incast) 

occurs. In this case the due to congestion the server is 

unable to send the block k and until client doesn’t 

receive the block k, client is going to request block 

k+1. Therefore this is responsible for degradation of the 

performance drastically [1].  

 
Fig. 1: Simple Setup to observe Incast 

 

 

2. Background  
Business cost efficiencies mean that a vast majority 

of data centers rely on off-the-shelf rack-mount servers 

interconnected via high-speed Ethernet switches 

(DCN). Today, entry level gigabit Ethernet switches 

support up to 40 ports and switch upwards of 50 

million packets per second when operating at full data 

rates. Commodity 10 Gbps Ethernet is now cost-

competitive with specialized interconnects such as 

Infiniband and FibreChannel, with the added benefits 

of wider brand recognition [2]. To reduce costs 

however, Ethernet switches often sacrifice expensive, 

power hungry SRAM packet buffers, the effect of 

which explore throughout this work. The desire for 

commodity parts extends to transport layer as well. 

Here, TCP provides a kitchen sink of protocol features, 

giving reliability, retransmission, congestion control, 

and inorder byte stream at the receiver. While not all 

applications need all of these features [3] [4] or benefit 

from more rich transport abstractions [5], TCP is 

mature and well-understood by developers, leaving it as 

the transport protocol of choice even in many high 

performance environments. Without link level flow 
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control, TCP is solely responsible for coping with and 

avoiding packet loss in (often small) Ethernet switch 

egress buffers. Unfortunately, the workload examine in 

the context of incast has three features that challenge 

TCP’s performance: a highly parallel, synchronized 

request workload; buffers much smaller than the 

bandwidth delay product of the network; and low 

latency that results in TCP having windows of only a 

few segments. 

Following tables are showing the RTOmin of 

different Operating System and RTT of different 

networks. [1]  

 

Table 1: Default TCP Minimum Retransmission   
Timeout Values 

Operating System Default TCP RTOmin 

Linux 200 ms 

BSD 200 ms 

Solaris 400 ms 

 

Table 2: Typical Round Trip Time Values for 
Different Networks 

Network Round Trip Time 

Wide Area Network 100ms 

Data Center < 1ms 

Storage Area Network < 0.1ms 

 

As far as the performance is concern, it is always 

measured in terms of two parameters. First is the 

number of servers and second is Throughput.  

 

 

3. Existing Solutions 
The existing solution has been specified at the TCP 

level and has quite better result. There are three 

solution which are common and that address the TCP 

incast behaviour up to some extent. First is Large 

Switch Buffer, second is Increasing SRU (Server 

Request Unit) and third is Reducing Timeout Penalty 

[1].  

 

3.1. Large Switch Buffer  
This technique [2] tries to mitigate the root cause of 

timeouts – packet losses – by increasing the buffer 

space allocated per port on the switches. Figure 3.1 

shows that doubling the size of the switch’s output port 

buffer, doubles the number of servers that can 

supported before the onset of incast.  

 
Fig. 2: Simulation Result of Large Switch Buffer 

 
Consequently, given the number of servers, incast can 

be avoided with a large enough buffer space. 

Unfortunately, switches with larger buffers tend to cost 

more, forcing system designers to choose between 

over-provisioning and hardware budgets. This suggests 

that a more cost-effective solution is needed to address 

the problem of incast. 

 

3.2. Increasing Server Request Unit  
This is another incast countermeasure discussed in [2]. 

It aims to mask incast by utilizing the spare link 

capacity of the stalled flow in transferring larger SRUs 

belonging to other flows. Figure 3.2 illustrates that 

increasing the SRU size improves the overall 

throughput. With 7 servers, the throughput for 1000KB 

SRU is two orders of magnitude greater than that of the 

256KB SRU.  

 

 
Fig. 3: Simulation Result of Increasing Server 

Request Unit 
 

TCP performs well in settings without synchronized 

reads, which can be modelled by an infinite SRU size. 

With larger SRU sizes, active servers will use the spare 

link capacity made available by any stalled flow 

waiting for a timeout event; this effectively reduces the 

ratio of the timeout times, during transfer time. 

Unfortunately, an SRU size of 1 megabyte is quite 
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impractical: most applications ask for data in small 

chunks, corresponding to an SRU size range of 1-

256KB. This is because, larger the SRU size, greater is 

the prefetching that the storage system has to commit 

to. With prefetching, the storage system needs to 

allocate pinned space in the client kernel memory, 

increasing the memory pressure at the client. This 

increased pressure at the client, often leads to a kernel 

failure. Hence it is really not advisable to use larger 

SRUs on the cluster storage system.  

 

3.3. Reducing Timeout Penalty  
This technique is proposed in [6], aims to address 

incast by reducing the time spent waiting for a timeout. 

The amount of time a flow waits before retransmitting a 

lost packet without the Fast Retransmit mechanism 

provided by the three duplicate ACKs, is determined by 

TCP’s Retransmission Timeout (RTO). Estimating the 

RTO value trades timely response to losses for 

premature timeouts. A premature timeout has two 

negative effects:  

3.3.1. It leads to a spurious retransmission and 

3.3.2. With every timeout, TCP reduces its slow start 

threshold (ssthresh) value by half and enters Slow Start 

even though no packets were lost. 

Since there is no congestion, TCP thus would 

underestimate the link capacity and throughput would 

suffer. TCP has a conservative minimum RTO 

(RTOmin) value to guard against such spurious 

retransmissions [7] [8]. 

 
Fig. 4: Simulation Result of Reducing Timeout 

Penalty 
 

Popular TCP implementations use an RTOmin value of 

200ms [9]. Unfortunately, this value is orders of 

magnitude greater than the round-trip times in Storage 

Area Network settings, which are typically around 

100μs. This large RTOmin imposes a huge throughput 

penalty because the transfer time for each data block is 

significantly smaller than RTOmin. Figure 4 show that 

reducing RTOmin from 200ms to 200μs improves 

throughput by an order of magnitude beyond 5 servers. 

In general, for any given SRU size, reducing RTOmin 

results in an order of magnitude improvement in TCP’s 

throughput. The figure also shows that even with an 

Aggressive RTOmin value of 200μs, TCP still observes 

a 30% decrease in goodput for 40 or more servers. 

Unfortunately, setting RTOmin to such a small value 

poses significant implementation challenges and raises 

questions of safety too. 

1) Implementation Challenges: Reducing RTOmin to 

200μs requires TCP clock granularity of 100μs, 

according to the standard RTO computation algorithm 

[7] [8]. BSD TCP and Linux TCP implementations are 

currently unable to provide this fine grained timer. 

BSD implementations expect the OS to provide two 

coarse-grained ―heartbeat‖ software interrupts every 

200ms and 500ms, which are used to handle internal 

per-connection timers [10]; Linux TCP uses a TCP 

clock granularity of 10ms. A TCP timer in 

microseconds needs either hardware support that does 

not exist or efficient software timers [11] that are not 

available in most operating systems. 

2) Safety and Generality: Even if sufficiently fine 

grained TCP timers were supported, reducing RTOmin 

value can be harmful, especially in situations where the 

servers communicate with clients in the wide-area. In 

[12], the authors note that RTOmin can be used for 

trading ―timely response with premature timeouts‖ but 

there is no optimal balance between the two in current 

TCP implementations; a very low RTOmin value 

increases premature timeouts. Earlier studies of RTO 

estimation in similar high-bandwidth, low-latency 

ATM networks also show that very low RTOmin 

values result inspurious retransmissions [13] because 

variation in round-triptimes in the wide-area clash with 

the standard RTO estimator’s short RTT memory. 

In summary, the proposed solution in [6] should be 

viewed with caution as it increases the risk of 

premature timeouts. 

 

 

4. Application Level Solution 
The problem is at the receiver side, because whatever 

the server sending data with high RTT, receiver (client) 

is not capable of accepting those data packets. As we 

have TCP protocol form Switch to Client.  
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Fig. 5: Solution at the application level 

 
Author names and affiliations are to be centered 

beneath the title and printed in Times 12-point, non-

boldface type. Multiple authors may be shown in a two- 

or three-column format, with their affiliations italicized 

and centered below their respective names. Include e-

mail addresses if possible. Author information should 

be followed by two 12-point blank lines.  

 
4.1. TCP’s Default Recovery Mechanism 
In Figure 6, there are 3 duplicate ACKS’s for only one 

packet loss. That will be more penalties to server in 

order to retransmit the packets. 

 

 
Fig. 6: TCP’s default packet loss recovery 

mechanism 

 
In Figure 6, there are 3 duplicate ACKS’s for only one 

packet loss. That will be more penalties to server in 

order to retransmit the packets. If all the packets were 

lost then TCP protocol comes one by one sending of 

packets on the link. It is more time consuming because 

it is considering that the problem with link. 

 

4.2. How to minimize Duplicate ACK to 

improve TCP throughput at the time of Incast? 

The above question is valid as far as the link 

performance is concern, In order to fix the problem we 

can use following architecture as shown in Figure 7. If 

we divide the RTOmin of the client into some timeslots 

then the client can save the link idleness. It can be 

possible and shown in following Figure 8 

 

 
 

Fig. 7: Architecture of Solution at the application 
level 

 

In Figure 8, in first TCP communication there is an 

acknowledgement of only last packets, so here it says 

that the client had also received the first packet. Similar 

in second case, after complication of timeslot, it is been 

check that any packet is receiving or not. If there is no 

packet received then it automatically sends an 

acknowledgement of received packet. And in third case 

there is only acknowledgement of packet that is lost. 

 
Fig. 8: TCP’s recovery mechanism after timeslots 

 

  

5. Conclusion 
TCP Incast problem really affects the TCP Throughput 

in Data Center Network. Receiver TCP link is weak as 

far as performance is concern. This solution is dealing 

with the Retransmission Timeout of client to avoid link 

idleness. And it can be done by taking Linux operating 

system into the consideration that TCP operation can be 

handle very effectively into open source system. Hence 

to improve TCP performance, application level 

modification is kind of solutions to establish an Incast 

Congestion free Data Center Network.  
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