International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
ETRASCT" 14 Conference Proceedings

Application of DCT in image processing

Nitesh Agarwal

Department of Computer Science
Jodhpur Institute of Engineering & Technology
Jodhpur, India
niteshagarwal.234@rediffmail.com

Abstract—Discrete Cosine Transform (DCT) is an important
technique or method to convert a signal into elementary
frequency component. It is widely used in image compression
techniques like in JPEG compression. It converts each pixel value
of an image into its corresponding frequency value. The present
paper deals with the study of transformation of an 8 bit (b/w)
image into its frequency domain through DCT technique.

1. Introduction

DCT convert an image into its equivalent frequency
domain by partitioning image pixel matrix into blocks of size
N*N, N depends upon the type of image. For example if we
used a black & white image of 8 bit then all shading of black
& white color can be expressed into 8 bit hence we use N=8,
similarly for color image of 24 bit we can use N=24 but using
block size N=24 time complexity may increase hence we
operate DCT on individual color component for a color image.
Color image consist of 8 bit red + 8 bit green + 8 bit blue
hence we apply DCT on each color component (Red, Green,
Blue) using block size N=8.

1.1 One-Dimensional DCT

If we have one-D sequence of signal value of length-N
then its equivalent DCT can be expressed as

N - m(2x +1)u
f —_ 1
x:O [2N } ()
for u =0,1,2,....N -1.
& inverse transformation is defined as
N-1
x):Za(u)c(u)cos[%})
x=0

Where f(x) is signal value at point X & oc(u) is
transform coefficient for value u.

i foru=0
n ®)
\/:foru;to

N

a(u) =

www.ijert.org

Dr. A.M. Khan

Department Of Applied Sciences
Jodhpur Institute of Engineering & Technology
Jodhpur, India
arif.khan@yjietjodhpur.com

It is clear from 1) for u=0,

”z‘lf (4)

i.e. 1% transformation coefficient is the average value of
sample sequence, this coefficient known as DC
coefficient & all other coefficient known as AC
coefficient.

1.2 Two — Dimensional DCT

An image is 2-D pixel matrix where each position (i,j)
represents a color value for that particular point or
position. Hence to transform an image into its equivalent
DCT matrix we use 2-D DCT.

2-D DCT can be defined as

duv)=du) o(v)g::gfxycos[{2])u} s[ﬂ(zzygj)v} (5
for u,v=012,..N -1

& inverse transformation is defined as

fxy) —%Nioiu) aV)duy) cos[(ZXNJ)U} {ﬂ(2y+])v} 6

u=0 v=0 2N

Where C(u,v) represents frequency value for U,V &
f (X, y) represents pixel color value at position (X, Y).

%for u=0

a=1'" (7)
\/:foru;to
N
,/% for v=0

a()=1'" ®)
\/:forv;to
N

185

2. Main Results

2.1 Implementation of DCT

This paper describe how a b/w image is convert into
equivalent frequency domain using DCT.

Steps involved in this implementation

1.

211

Create pixel matrix of the image & divided it into
blocks of size 8*8

Apply FDCT (Forward Discrete Cosine Transform) on
each 8*8 block of pixel matrix to get equivalent 8*8
DCT blocks.

To get Original image we apply IDCT (Inverse
Discrete Cosine Transform) on each 8*8 block DCT
& get its equivalent 8*8 IDCT block.

Using 8*8 IDCT blocks we create original pixel
matrix to get original image.

Algorithm 1
Get_8*8_blocks (image)
{
n=8, k=0;
width=width of image;
height=height of image;
for (i=0;i < width/n; i++)

{
for (j=0; j < height/n; j++)

{
Xpos =i *n;
ypos =j*n;
for (a=0; a<n; a++)
{
for (b=0; b <n; b++)
{ color = color at position(xpos+a, ypos+b);
block[k][a][b]=color-128;
} /lend of for loop b
k=k+1;
} /lend of for loop a
} /l end of for loop j

} /I end of for loop i

}/ end of Get_8*8 blocks

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181

ETRASCT" 14 Conference Proceedings

2.1.2 Algorithm 2

FDCT (block [1 [1 [

{ width=width of image, N=8;
height=height of image;
g=(width/8)*(height/8)
for (i=0;i < q; i++)
{ for (u=0; u< N; u++)

{ for (v=0; v< N; v++)

{ if(u==0) {

- Z|I—‘

sum=0;
for(x=0;x<N;x++)
{ for(y=0;y<N;y++)
{ sum= sum + Dblock[i][X][ly] *

cos [”(ZXH)U} * o8 [M}

2N 2N
} /1 end of for loop y
} // end of for loop x
deti][i]Tk]=(o (u) * er(v) *sum);
} /1 end of for loop v
} // end of for loop u
} //'end of for loop i

www.ijert.org 186

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
ETRASCT" 14 Conference Proceedings

Y/end of FDCT } // end of IDCT
2.1.3 Algorithm 3 2.1.4 Algorithm 4
IDCT(dct [111 1D Get_Image(pixmat [] [1[1)
{ width=width of image, N=8; { k=0;
height=height of image; width=width of image;
g=(width/8)*(height/8) height=height of image;
for (i=0;i <q; i++) for (i=0; i < width; i++) {
{ for (x=0; X< N; x++) for (j=0; j < height; j++) {
{for (y=0; y< N; y++) Xpos =i * n;
{ Ypos = j *n;
sum=0; for (a=0; a<n; a++)
for(u=0;u<N;u++) { for (b=0; b <n; b++)
{ for(v=0;b<N;v++) {
{if (u==0) { color=(int)pixmat[k][a][b];
1 set color at position (xpos+a, ypos+h);
a(u)= N Y/ end of loop b
} } // end of loop a

k++;
} /1 end of loop j
a(u)= 3 }// end of loop i
N Y/ end of Get_Image

}
if (v==0){ 2.2 Outputs
1. Convert pixel matrix into blocks of size 8*8
a(v) =,
8*8 8*8
} block 1 block 2
else { =
8*8 8*8
a(v) == block 3 block 4
} Input Image of size Output blocks of size
sum= sum +a(U)*a(V) *det[i]ullv] * 16*16 8*8
2x+1)u .
cos [”(25)} ™ cos {%} 2. Transform Input image into equivalent DCT image

} /1 end of for loop v

} //end of for loop u
idct[i][j][K]=sum;
} /1 end of for loop y
} //'end of for loop x

} //end of for loop i

Input Image of size Output DCT Image of
16*16 size 16*16

www.ijert.org 187

3. Get original image from DCT image

IDCT

Input .DCT Image of Output Image of size
size 16*16 16*16

3. Modification in original DCT

3.1 Using sin operator rather than cos
There is a difference of @/2 between sin & cos operator
hence using sin rather than cos operator in DCT may loss
some pixel data

FDCT
Using sin
operator

Input Image of size Output DCT Image of
16*16 size 16*16

| Using sin
operator

Input Image of size Output Image of size
16*16 16*16

3.2 Change in block size

All shading of black & white image can be expressed in 8
bit of blocks hence we use block size 8*8 to perform DCT
on it. But in color image each color value of a pixel can
be expressed into 24 bit of block which contain 8 bit red +
8 bit green + 8 bit blue. To transform a color image into
its equivalent DCT format we extract each 8 bit color
component from 24 bit of block & then perform 8*8 DCT
on each color component rather than using 24*24 DCT
for 24 bit block. The main reason is that if use 24*24

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181

ETRASCT" 14 Conference Proceedings
DCT rather than 8*8 DCT the time complexity of DCT is
increases in a very large amount.

For example
For an image of size 48*48
1. 1f8*8 DCT used
Total no of blocks q=(48/8)*(48/8)=36
For FDCT
for (i=0;i < q; i++) // loop runs 36 times
{ for (u=0; u< 8; u++) // loop runs 36*8 times
{ for (v=0; v < 8; v++)// loop runs 36*8*8 times

{

}
for(x=0;x<8;x++)// loop runs 36*8*8*8 times

{ for(y=0;y<8;y++) // loop runs 36*8*8*8*8
times

} /1 end of for loop y
} // end of for loop x
} // end of for loop v
} // end of for loop u
} //end of for loop i
| Total no. of iteration = 36*8*8*8*8= 147456 |
2. 1f24*24 DCT used
Total no of blocks q=(48/24)*(48/24)=4
For FDCT
for (i=0;i < q; i++) // loop runs 4 times

{ for (u=0; u< 24; u++) // loop runs 4*24 times
{ for (v=0; v < 24; v++)// loop runs 4*24*24 times

{
}
for(x=0;x<24;x++)// loop runs 4*24*24*24 times
{
for(y=0;y<24;y++) // loop runs 4*24*24*24*24 times
{

} /1 end of for loop y

} // end of for loop x
} // end of for loop v
} /' end of for loop u

www.ijert.org 188

} //end of for loop i
| Total no. of iteration =4*24*24*24*24= 1327104

Hence 24 * 24 DCT required 1327104-147456=1179648
extra iteration to preform DCT which increases time
complexity in large amount hence DCT used with block
size 8*8.

4. Conclusion

The result presented in this document shows that

1.

2.

duy)=d) o)y S f(Xy)sin{” ((2 Hsm{z{ {2y

fl y>=§§o<u>a<v>du,v>sm{’;[n(@ety]HZ({2y

[1]
[2]

(3]

[4]

[5]

6]

It is very easy to implement DCT rather than other
transformation on image.

If DCT used with sin operator rather than cos some pixel
data may lose. But if we use DCT with sin operator as

a

2N 2N

x=0 y=0
& it’s inverse as

2N

then there is no loss of pixel data because it is equivalent
to DCT with cos operator.

If DCT used with block size 24*24 rather than block size
8*8 then time complexity of DCT is increases in very
large amount.

u=0 v=0

References

N.Ahmed, T.Natatarajan, and K.R. Rao, “Discrete Cosine Transform”,
IEEE Transactions on Computers, vol. C-32, pp. 90-93, Jan. 1974.
Maneesha Gupta and Dr.Amit Kumar Garg, “Analysis Of Image
Compression Algorithm Using DCT” International Journal of
Engineering Research and Applications (IJERA), vol.2, pp. 515-521,
Jan-Feb 2012

Andrew B. Watson, “Image Compression Using Discreter Cosine
Transform”, NASA Ames Research Centre, 4(1), pp. 81-88,1994.

Anjali Kapoor and Dr. Renu Dhir, “Image Compression Using Fast 2-D
DCT Technique”, International Journal on Computer Science and
Engineering (IJCSE), vol. 3 pp. 2415-2419, 6 June 2011.

Harley R. Myler and Arthur R. Weeks “The Pocket Handbook of Image
Processing Algorithms in C”, ISBN 0-13-642240-3 Prentice Hall P T R
Englewood Cliffs , New Jercy 07632.

lain E.G. Richardson “H.264 and MPEG-4 Video Compression: Video
Coding for Next-generation Multimedia”, ISBN 0470848375,
9780470848371, Wiley,2003.

www.ijert.org

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
ETRASCT" 14 Conference Proceedings

189

