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Abstract— An attempt is made to estimate aerodynamic 

parameters using the simulated flight data of various flight 

vehicles using Kalman filter technique. The present paper 

demonstrates application of Kalman filter for the estimation of 

ballistic coefficient of a falling body by considering the effects of 

process noise. As compared to rigid aircraft the mathematical 

model of a flexible aircraft involves larger number of stability 

derivatives. Furthermore, for a flexible aircraft, additional 

derivatives need to be included due to aero elastic effects. 

Applicability of Kalman filter for parameter estimation is 

validated on simulated flight data generated for a rigid aircraft 

as well as for a flexible aircraft. It is concluded that Extended 

Kalman Filter method can be advantageously applied to 

estimate aerodynamic parameters from flight data of a flexible 

aircraft.        

I.  INTRODUCTION 

All modern aerospace vehicles rely upon an understanding of 

dynamics and control to improve system performance. An 

understanding of dynamic elements and the trade-off between 

vehicle dynamic characteristics require for successful system 

design, control system properties and system performance. 

Aircraft parameter estimation is one of the most outstanding 

and illustrated example of the system identification 

methodologies. The success of the system identification of 

the flight vehicle has been possible due to better 

measurement techniques and data processing capabilities 

provided by digital computers. Other factors that contribute 

to system identification are the developments in the fields 

such as estimation and control theory; the design of 

appropriate flight test and well understood basic principles of 

aerodynamic modeling1,2,3.. Kalman filter is a linear, optimal 

estimator of state variables of a linear, time-varying system, 

operating in a Gaussian stochastic environment. Filtering 

approach is an extension of Kalman filter.  Optimal estimator 

here is referred to a computational algorithm that processes 

measurements to deduce a minimum error covariance of the 

state of a system combining all the information available. 

Generally, Kalman filter4, 5 is applicable and optimal for 

linear systems only. When either the system or the 

measurement equations are non-linear, the same algorithm 

can still be applied by local linearization of the system about 

the current state. Such filter applied to nonlinear systems is 

called Extended Kalman Filter (EKF)6, and it need not be 

optimal. EKF produces estimates of the parameters that 

approximately minimize the mean square error in the 

parameter estimates themselves as opposed to ML and least 

squares which minimize a cost function that is based on 

matching the output variable behavior given a specific input 

trajectory. Parameter estimation of an aircraft is done with 

many measurements like, acceleration (both linear and 

angular), angular orientation, speed, angle of attack, etc. But 

from cost effectiveness point of view, it may not be feasible 

to use many sensors for air borne vehicles that go through 

many development trials. 

 

 In the present work, EKF method is used for 

parameter estimation from flight data of air borne vehicles. 

The motivation here was to conduct a study on the 

applicability of the method in extracting aerodynamic 

parameters by processing flight data obtained for different 

class of flight vehicle/store. The method has been applied to 

flight data of a one-dimensional ballistic target, flight data of 

a rigid aircraft in longitudinal short period mode and also to 

flight data of a flexible aircraft in longitudinal short period 

mode. Any parameter estimation method requires adequate 

information about vehicle dynamics to estimate aerodynamic 

parameters correctly. Flight data of one-dimensional ballistic 

target contains very limited information regarding its 

motion/control variables. The flight data obtained through 

aircraft maneuvers contains more information regarding its 

motion and control variables. The applicability of the EKF is 

tested for these three different classes of flight data. It is 

observed that EKF can be advantageously applied on flight 

data of flexible aircraft to estimate few aerodynamic 

parameters with acceptable level of accuracy. 
 

II. KALMAN FILTER 

Kalman filter is an optimal recursive data processing 

algorithm and it incorporates all information that is available 

to the filter. It processes all available measurements, 

regardless of their precision, to estimate the current values of 

the variables of interest with use of  

- knowledge of the system and measurement device 

dynamics 

- the statistical description of the system noises, 

measurement errors, and uncertainty in the dynamic 

models  
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- any available information about initial conditions of 

the variables of interest 

 This filter performs the conditional probability 

density propagation for problems in which the system can be 

described through a linear model and in which system and 

measurement noises are white and Gaussian. The three basic 

assumptions in Kalman filter formulation are 

- the model is considered to be linear . 

- the measurement noise and system noise are white. 

- the measurement noise and system noise are 

Gaussian. 

 The physical implications of these assumptions are 

discussed. A linear model is justifiable because when 

nonlinearities do exist, the typical engineering approach is 

to linearize about some nominal point or trajectory, 

achieving a perturbation model or error model.   

 “Whiteness” implies that the noise value is not 

correlated in time. The knowledge of the present noise value 

is no way helpful to predict the noise value of any other time. 

Whiteness also implies that the noise has equal power at all 

frequencies. A system will be driven by a wideband noise, 

noise having power at all frequencies above the system 

bandpass and essentially constant power at frequencies within 

the system bandpass. The assumption of noise as white would 

extend this constant power level out across all frequencies. 

Within the bandpass of the system of interest, the fictitious 

white noise looks identical to the real wideband noise. The 

mathematics involved in the filter is vastly simplified by 

replacing the real wideband noise with a white noise which 

from the system’s “point of view” is identical. Gaussianness 

is related with amplitude whereas whiteness is related with 

frequency. The probability density of Gaussian noise 

amplitude takes on the shape of a normal bell -shaped curve. 

This assumption is justified physically by the fact that a 

system or measurement noise is typically caused by a number 

of small sources. Mathematically, when a number of 

independent random variables are added together, the 

summed effect can be described very closely by a Gaussian 

probability density, regardless of the shape of the individual 

densities.  The first and second order statistics (mean 

and variance or standard deviation) of a noise process can be 

easily known. In the absence of any higher order statistics, 

there is no better form to assume than the Gaussian density. 

The first and second order statistics completely determine a 

Gaussian density, unlike most densities which require endless 

number of orders of statistics to specify their shape entirely. 

The Kalman filter, which propagates the first and second 

order statistics, includes all information contained in the 

conditional probability density.  

 The real world situation is described by a set of 

nonlinear differential equations to apply extended Kalman 

filter techniques. These equations are expressed in nonlinear 

state-space form as a set of first-order non linear differential 

equations as 

                                     wxfx 


                    (1)                                   

where ‘ x ’ represents system space, ‘  xf


’ is a nonlinear 

function of those states and ‘ w ’  is a random zero-mean 

process. The continuous process-noise matrix describing the 

random process w for the preceding model is given by 

                                            TwwEQ                   (2) 

The measurement equation, required for the application of 

extended Kalman filtering, is considered to be a nonlinear 

function of the states according to the equation 

                                        vxhz 


  (3) 

where ‘v’ is a zero-mean random process described by the 

measurement noise matrix [R], which is defined as  

                                           TvvER                        (4)                       

For systems in which the measurements are discrete, the 

nonlinear measurement equation is written as 

                                    kkk vxhz 


  (5) 

  The discrete measurement noise matrix  R k 

consists of a matrix of variances representing each 

measurement noise source. Since, the system equation, Eq. 

(1) and measurement equation, Eq (3) are nonlinear, a first 

order approximation is used in the continuous Riccati 

equations for the manipulation of systems dynamics matrix 

 F  and the measurement matrix  H  . The matrices are 

related to the nonlinear system and measurement equations 

according to the relations 

                                 
 

xxx

xf
F

ˆ


   (6) 

                                 
 

xxx

xh
H

ˆ


   (7) 

The fundamental matrix [ k ], required for the discrete 

Ricatti equations, can be approximated by the Taylor-series 

expansion for exp(  F  Ts) and is given by the equation 

                                           

     
   

...
! 3! 2

3322

 ss
sk

TFTF
TFI  (8) 

 

where ‘Ts’ is the sampling time and  I  is the identity matrix. 

In our applications of extended Kalman filtering, the series is 

approximated by only the first two terms, because  k][    is 

only used for the calculation of Kalman gains and the matrix 

may not necessarily improve the performance of the filter by 

considering more terms. Therefore   k][  is given by  

     

       sk TFI     (9) 

 The matrix Ricatti equations, required for the 

computation of the Kalman gains, are given by the equations 

          k

T

kkkk QPM    1                                     (10) 

              1

 k

T

k

T

kk RHMHHMK        (11) 

           kkk MHKIP          (12) 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS100422

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 10, October-2015

383



where  kP  is the covariance matrix representing errors in 

the state estimates after an update,[Kk] is the Kalman gain and 

  kM is the covariance matrix representing errors in the state 

estimates before an update. The discrete process-noise matrix 

  kQ  can be found from the continuous process-noise 

matrix according to equation 

   

          dQQ T

T

k

s


0

          (13) 

     The preceding approximations for the 

fundamental and measurement matrices are used in the 

computation of the Kalman gains. The new state estimate kx̂  

is the old state estimate 1kx  projected forward to the new 

sampling kx  plus a gain times a residual. The residual is the 

difference between the actual measurement kz  and the 

nonlinear measurement )( kxh . 

     

 ][ˆ
kkkkk xhzKxx            (14) 

  The old estimates that have to be propagated 

forward do not have to be done with the fundamental matrix 

but instead can be propagated directly integrating the actual 

nonlinear differential equations forward at each sampling 

interval. Euler integration is applied to the nonlinear system 

of differential equations and is given by the equation 

            

skkk Txxx 11
ˆˆ

                     (15) 

where the derivative is obtained from 

)ˆ(ˆ
11   kk xfx                                                     (16) 

 In the preceding equation the sampling time Ts is 

used as an integration interval. In the problems where the 

sampling time is large, Ts would have to be replaced by a 

small integration interval, or possibly a more accurate method 

of integration has to be used.  

 

III. GENERATION OF FLIGHT DATA 

Due to the non-availability of real flight data, simulated flight 

data is generated for different class of flight vehicles for the 

purpose of parameter estimation. Mathematical models used 

to generate flight data of ballistic target (FD-BT), longitudinal 

motion of rigid aircraft (FD-RA/C) and longitudinal motion of 

flexible aircraft (FD-AE A/C1, FD-AE A/C2) are presented. 

For the generation of simulated flight data of ballistic target 

the acceleration equation governing the path of the trajectory 

was solved using Euler integration. In the case of aircraft, 

longitudinal equations of motion were solved using fourth-

order Runge -Kutta method. Subsequently, the simulated 

flight-data of the air borne vehicles is used in Kalman filter 

algorithm and processed for the estimation of aerodynamic 

parameters. The equations of motion are needed for generating 

the simulated flight data and also in the Kalman filter 

algorithm for the propagation of states from one time step to 

the other. 

IV. FLIGHT DATA OF BALLISTIC TARGET (FD-BT)8  

 Knowledge of target ballistic coefficient is used in 

advance guidance laws such as predictive guidance to relax 

the interceptor acceleration requirements. In addition, 

knowledge of the target ballistic coefficient is required for 

fire control due to the importance of accurate intercept point 

predictions in launching the interceptor on a collision course. 

Therefore, accurate estimation of ballistic coefficient of a 

target re-entering the atmosphere is very important for both 

guidance and fire control purposes. The flight data for 

simulating such a vehicle motion is modeled to investigate 

the applicability of EKF method8 in extracting parameter 

(ballistic coefficient) from flight data. 

              The one-dimensional example of a ballistic target 

falling on tracking radar is considered. The target was initially 

at 2, 00,000 ft above the radar and had a velocity of 6000 ft/s 

towards the radar, which is located in the surface of a flat 

Earth. The trajectory of the ballistic target is presented in Fig. 

18. The radar measures the altitude of the target with 25-ft 

standard deviation measurement accuracy. The radar picks 

measurements for every 0.1-sec. The simulation is done for 30 

sec.  An extended Kalman filter is built to estimate the 

altitude, velocity and ballistic coefficient.  

The two forces acting on the object are the drag force and 

the gravity force. The equation that governs the motion of the 

object is given by 

B

Bp
g

gQ
x 


                                         (17) 

where ‘ x ’ is the acceleration acting on  the object ,’ Bg ’ 

is the acceleration due to gravity  and ‘Qp’ the dynamic 

pressure and is given by the equation                                                                                                                  

    
2ˆ5.0 xQ Bp

                                           (18)                                                                      

where ‘ x ’  is the velocity of the target and the air density 

‘ B ’ in Eq.  (18) is an exponential function of altitude and is 

given by the equation 

                                                         
22000/0034.0ˆ x

B e                         (19) 

The term ‘  ’ in Eq. (17) is the ballistic coefficient and is 

expressed as 

0Dref

B

CS

W
                                                (20) 

where ‘WB ’ is the weight of the ballistic target, ‘ refS  ‘ is 

the reference area of the object and ‘ 0DC ’ is the coefficient 

of drag. The acceleration acting on the object is expressed as 

the nonlinear second order differential equation as 
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B

x

B g
eg

x 


2

0034.0 22000/

                       (21) 

V. SIMULATED FLIGHT DATA OF RIGID AIRCRAFT (FD-

RA/C) 

In most cases, longitudinal maneuvers predominantly excite 

the short period mode and not the phugoid mode. In short 

period mode the flight velocity is essentially constant during 

the maneuver. 3-2-1-1 control (elevator) input is considered 

for the excitation of short period mode. The example aircraft 

is chosen for the present study. Trim flight conditions 

correspond to straight and level cruise flight at an altitude of 

1500m and at a Mach number of 0.6. The rigid body short 

period longitudinal response to a given elevator input was 

simulated for 8 seconds. The short period longitudinal 

response was simulated using the following equations.                                                                            

muSCq L 2                                        (22)                             

 Ym IScCuq 22                                          (23)    

The equations that define coefficient of lift (CL ) and pitching 

moment coefficient (Cm ) in Eq. (22) and Eq. (23) to describe 

the aerodynamic model are presented in Eq. (24) and Eq. (25) 

 

                                             

eLLqLLL e
C

u

cq
CCCC   

2
0                (24) 

                                        

emmqmmm e
C

u

cq
CCCC   

2
0               (25)                  

The pitching moment coefficient (Cm) is with reference to the 

center of gravity. The Eq. (4) and Eq. (5) were solved using 

fourth-order Runge-Kutta algorithm with a time step of 0.001 

sec to obtain simulated flight data. The contribution due to 

aeroelastic effect was neglected for rigid aircraft case. The 

flight data used for parameter estimation is pictorially 

presented in Fig. 1 and Fig. 2. This flight data will be referred 

to as FD-RA/C for further purpose. The elevator input (3-2-1-

1) used to generate this flight data is shown in Fig. 3. 

 

Fig. 1    Simulated   response from the flight data FD-RA/C 

 

Fig. 2   Simulated q – response from flight data FD-RA/C 

 

Fig. 3.   3-2-1-1 Elevator Control Input, 

 rad10471.0max   

VI. SIMULATED FLIGHT DATA OF FLEXIBLE AIRCRAFT FD-

AE A/C1 & FD-AE A/C2) 

 

The non linear equations of motion for a flexible aircraft 

are considered which are obtained from Ref. 7.  

      

 







 



n

i

iLiLeLLqLL ucCCC
V

cq
CCCmuSq

iie

1

0 2
2

2  
 

         (26) 

            

 







 



n

i

imimemmqmY ucCCCuqcCCIScuq
iie

1

2 222  
 

 

       (27) 

 where angle of attack  , pitch rate q and control 

input  e  represent the perturbations and i  and  i  are the 

generalized displacement coordinates and their 

derivatives. LC , LqC , 
eLC  , mC , mqC , 

emC  , 
iLC  , 

iLC  , 
imC   and 

imC  are the aerodynamic coefficients as 

defined  in Ref. 7. The second order differential equation that 

is satisfied by the generalized displacement coordinates and its 

derivatives is given in Eq. 28. The additional term iii 2  

representing the structural damping is also included 
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 







 



n

j

jjqiiiiiii ucCCCuqcCCMScun ii

j

i

j

iii

1

22 2222 














   

        (28) 

where i , i  and Mi are the in-vacuo frequency, 

modal damping, and modal generalized mass respectively and 

iC


 , i

qC


, iC


 , i

j
C



 and ii

j
C



  represent the generalized 

force derivatives due to coupling in elastic and aerodynamic 

degrees of freedom.   Eq. (26), Eq. (27) and Eq. (28) are 

integrated to generate motion variables   and q . The 

elevator control input is 3-2-1-1 and is presented in Fig. 3. The 

aerodynamic model incorporating aero elastic effects is 

presented in Eq.(29) and Eq.(30) 

  



4

1

0 22
i

iLiLeLLqLLL ucCCCuqcCCCC
iie
 


                (29) 

      

  



4

1

0 22
i

imimemmqmmm ucCCCuqcCCCC
iie
 


                   

        (30) 

 The flight data obtained for this case is pictorially presented 

in Fig. 4 and Fig. 5. To study the effect of flexibility of the 

structure on parameter estimation, two cases are considered. 

The two set of modal frequencies for the two different 

configurations. To start with aircraft with moderate flexibility 

is considered. The flight data obtained with this case will be 

referred to as FD-AE A/C. In the second case more flexibility 

is included and the flight data generated for this case is 

referred to as FD-AE A/C2.  

 Fig. 4   Simulated  response from the flight data FD-AE AC1 and FD-AE 

AC2 

 Fig. 5 Simulated q response from the flight data FD-AE AC1 and FD-AE 

AC2 

   

In this chapter, estimated parameters obtained through EKF 

method are presented. In the case of ballistic target the factors 

that affect the behavior of the filter are discussed. The 

simulated data corresponding to ballistic target (FD-BT), 

rigid aircraft (FD-RA) and flexible aircraft (FD-AE AC1 & 

FD-AE AC2) are used as the measured flight data. The 

estimated parameters are presented along with their standard 

deviations to assess the accuracy of the estimates of 

aerodynamic parameters. 

VII. ESTIMATION OF BALLISTIC COEFFICIENT FROM FLIGHT 

DATA OF BALLISTIC TARGET (FD-BT) 

The ballistic target is assumed to fall on a straight line path 

towards the surface based tracking radar. The ballistic 

coefficient (   ) is estimated through EKF method. It has 

been observed that there is a negligible change in the 

estimated value of   by the increase of terms in the Taylor 

series expansion for the approximation of fundamental matrix 

 k . This is valid because the fundamental matrix is 

actually an infinite Taylor series expansion of the product of 

sampling time ts and system dynamics matrix  F . 

  
 

 

 

True 

Value 

 

Estimated 

Value by 
2 terms 

 

Estimated 

Value by 
3 terms 

Ballistic 

Coefficient    

(Lb/Ft/ sec2 ) 

 

500 

 

497.8827 

(0.290904)* 

 

499.8196 

(0.290046)* 

           * Standard Deviation 

Table 1 Estimated ballistic coefficient without process noise  
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Fig. 6 Estimation of ballistic coefficient   without process noise 

 
Fig. 7 Error in the estimation of ballistic coefficient   without process 

noise 
 

For the same case the process noise is included assuming that 

the filter’s knowledge of the real world is in error. It has been 

observed that addition of process noise to the filter increases 

the errors in the estimates. Also there is not much difference 

by increase of number of terms in the Taylor series expansion 

for the approximation of fundamental matrix  k . From the 

Table. 1 and Table. 2  it is evident that by including process 

noise the accuracy in the estimates deteriorated. Similar 

observation can be made by comparing Fig. 6 and Fig. 7 with 

Fig. 8 and Fig. 9.  

 
Table 2 Estimation of ballistic coefficient with process noise 

 
 True 

Value 

Estimated Value 

by 
2 terms 

Estimated 

Value by 
3 terms 

 

  Ballistic Coefficient  

  ( Lb/Ft/ sec2 ) 

 

500 

 

488.9278 
(11.07214) 

 

 

488.7636 
(11.23639) 

  

 

Fig. 8 Estimation of ballistic coefficient   with process noise 

 

Fig. 9 Error in the estimation of ballistic coefficient   with process noise 

VIII. ESTIMATION OF AERODYNAMIC PARAMETERS FROM 

FLIGHT DATA OF RIGID AIRCRAFT (FD-RA/C) 

Knowledge of aerodynamic parameters is of paramount 

importance, to develop accurate mathematical model which 

represents the longitudinal dynamics of an aircraft. The 

aerodynamic parameters needed to develop the aerodynamic 

model are force derivatives LC , LqC ,
eLC    and pitching 

moment derivatives mC , mqC , 
emC  . Thus, a study was 

carried out to explore the possibility of extracting the 

parameters using EKF method.  The simulated data 

generated, FD-RA/C of the example aircraft is added with 

Gaussian noise and is used as the measured data in the EKF 

algorithm. The six aerodynamic 

parameters LC , LqC ,
eLC  , mC , mqC  and 

emC  are 

considered as state variables along with the flight variables, 

    and q . The algorithm is run for an elevator input 3-2-1-

1 for 8 seconds and the estimated aerodynamic parameters 

are tabulated along with their standard deviations in Table. 3. 

The measurement noise variance is 0.016 for both   and q. 

In Case A the values of diagonal elements of process noise 

matrix are same and are randomly chosen to be 0.008 and in 

Case B the values are differently chosen as an attempt to tune 

process noise. 
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Table. 3 Estimated Aerodynamic Parameters from FD-RA/C 

 
Parameters True 

Value 

No Process 

Value 

Process 

Noise Case 

A 

Process 

Noise Case 

B 

LC  
2.922 2.9096 

(0.00764) 

2.8772 

(0.06228) 

2.8887 

(0.08767) 

 LqC  
-14.7 -22.7217 

(0.75708) 

-16.6971 

(1.78776) 

-16.8602 

(1.89439) 

eLC   
0.435 0.6756 

(0.01976) 

-0.3212 

(0.13688) 

-0.2328 

(0.14417) 

mC  
-1.66 -1.6078 

(0.00166) 

-1.8501 

(0.03303) 

-1.6099 

(0.0784) 

mqC  
-34.75 -38.3583 

(6.68809) 

-39.0636 

(6.9463) 

-41.527 

(6.94662) 

emC   
-2.578 -2.25619 

(0.00289) 

-2.7122 

(0.10493) 

-2.8064 

(0.0588) 

 

 
Fig. 10 Comparison of the estimated value with that of    FD-RA/C 

 

Fig . 11 Comparison of the estimated q  value with that of FD-RA/C 

 

 Through the values listed in Table 3 it can be 

observed that by including process noise the estimated 

parameters show large variance however we can also infer 

that by proper choice of noise values the estimate of 

parameters can be improved. 
 

IX. ESTIMATION OF EQUIVALENT AERODYNAMIC 

PARAMETERS FROM FLIGHT DATA OF FLEXIBLE AIRCRAFT 

(FD-AE A/C1 & FD-AE A/C2) 

The simulated data from FD-AE A/C1 and FD-AE A/C2 is 
used in the EKF algorithm by adding Gaussian noise to the 
data. All the 4 elastic modes of the test aircraft are considered 
in the generation of the simulated data. A full order model of 
an aero elastic aircraft has too many parameters to yield 
satisfactory estimates using any of the conventional parameter 
estimation methods. In view of this, a study was carried out to 

identify a simplified model with reduced number of 
parameters, and to evaluate how the resulting parameters are 
affected by model simplifications. To start with, a rigid body 
model was assumed and parameters were estimated from 
flight data that contain the aero elastic effects. It is expected 
that the parameter estimates thus obtained would absorb the 
aero elastic effects. For the convenience of discussion, these 
parameters are referred by ‘equivalent parameters’ in Ref. 9. 
An analytical expression has been proposed to analytically 
compute the numerical values of the equivalent parameters. It 
is shown that the numerical value of analytical expression 
indicates the degree of flexibility of the aircraft, and thereby, a 
criterion based on it is suggested for deciding adequacy or 
otherwise of using simpler rigid body models in estimation 
algorithm.  In the EKF algorithm only aerodynamic 

parameters LC , LqC ,
eLC  , mC , mqC  and 

emC   are 

estimated and presented in Table. 4. 

Table 4 Equivalent Aerodynamic Parameters from FD-AE A/C1 and FD-AE 

A/C2 
 

Parameters True Value FD-AE A/C1 FD-AE A/C2 

LC  
2.922 2.4927 

(0.006445) 

1.7955 

(0.017004) 

 LqC  
-14.7 -1.5588 

(0.6973) 
-7.7374 

(2.56618) 

eLC   
0.435 0.9644 

(0.0179) 

-0.2195 

(0.06234) 

mC  
-1.66 -1.3141 

(0.0012) 
-0.4582 

(0.001378) 

mqC  
-34.75 -20.6907 

(6.6134) 

-15.2807 

(6.932) 

emC   
-2.578 -2.2514 

(0.00271) 
-1.5197 

(0.00752) 

 

For the case of FD-AE A/C 1 the measurement noise for   

and q is 0.016 but for the case of FD-AE A/C 2 the 

measurement noise is 0.09. For the case of FD-AE A/C 2 the 

aero elastic effects of more flexible aircraft are got included 

in the algorithm as measurement noise. 
 

XI. ESTIMATION OF AERODYNAMIC PARAMETERS FROM 

FLIGHT DATA OF FLEXIBLE AIRCRAFT (FD-AE A/C1 & 

FD-AE A/C2) 
In the final case both the flight data FD-AE A/C1 and FD-

AE A/C2 are processed by the EKF algorithm. The algorithm 
includes only 15 parameters, taking into account only the first 
elastic mode.  Along with the flight variables   and q  the 

generalized displacement coordinate 1  and its derivative 1  

are also taken as the state variables. The estimated values of 
aerodynamic parameters are presented in Table. 5. It is seen 
that the estimation deteriorates as the flexibility increases. 
Thus for high flexibility aircraft such an approximation may 
not yield better results Comparison of estimated response of 
  ,q with that of the flight data FD-AE AC1 and FD-AE 

AC2 are presented  pictorially in Fig.12 to Fig. 15. Based on 
these Fig. 12 to Fig. 15 it can be easily seen that the estimated 
response ( q, ) closely matches with the simulated response. 

However, there is a large difference between these parameters; 
it can be used for simulators and control law specifications to 
initiate the analysis. 
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Fig . 12 Comparison of estimated value of   with that of FD-AE A/C1 
 

 

Fig . 13 Comparison of estimated value of q with that of FD-AE A/C1 
 

 

Fig . 14 Comparison of estimated value of   with that of FD-AE A/C2 

 

Fig . 15 Comparison of estimated value of q with that of FD-AE A/C2 

 

Table 5 Estimated Aerodynamic Parameters from flight data FD-AE AC1 

and FD-AE AC2 
 

 True Values FD-AE AC1 FD-AE AC2 

LC  

2.922 3.2861 

(0.0445) 

3.0798 

(0.03598) 

qLC
 

-14.7 -13.2036 

(1.02) 

-24.6586 

(1.7327) 

e
LC


 

0.435 0.8184 
(0.0312) 

0.2619 
(0.03821) 

mC
 

-1.66 -1.6082 

(0.0084) 

-1.8725 

(0.01857) 

qmC
 

-34.75 -32.4563 

(0.2808) 

-41.1266 

(0.49461) 

e
mC


 

-2.578 -2.565 
(0.0145) 

-2.1175 
(0.01376) 

1LC
 

0.0288 0.0556 
(0.0024) 

0.012 
(0.000479) 

1LC
 

0.0848 0.0905 

(0.0163) 

0.1792 

(0.01244) 

1mC
 

0.0025 -0.0411 

(0.0025) 

-0.0201 

(0.000129) 

1mC
 

-0.159 -0.0799 

(0.022) 

-0.1873 

(0.00451) 

1C
 

-0.014898 -0.017 

(0.0018) 

-0.0244 

(0.000281) 

q
C 1

 

-0.0949 -0.1 

(0.0186) 

-0.0672 

(0.009936) 

1

1


C
 

0.0000585 0.000062 

(0.00001 

0.000126 

(0.000002) 

1

1


C  

-0.00042 -0.000587 

(0.00007) 

-0.000842 

(0.000027) 

1
 e

C  

-0.012835 -0.0127 

(0.0012) 

-0.009864 

(0.000217) 

 

CONCLUSION 

In the present paper, EKF method has been applied to 

estimate aerodynamic parameters from simulated flight data. 

The method has been applied starting from flight data of a 

one- dimensional ballistic target to flight data of a rigid 

aircraft and then to the flight data of a flexible aircraft. It is 

observed that EKF method can be applied successfully to 

estimate the parameters from the flight data of the three 
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cases. The method also estimates equivalent aerodynamic 

parameters in which aero elastic effects get absorbed. If 

appropriate mathematical model of the system is provided 

then the method can be used advantageously to estimate force 

and moment derivatives. 
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