Approximation of a Function f Belonging to Lip Class by ($\mathbf{N}, \mathbf{p}, q$) \mathbf{C}_{1} Means of its Fourier Series

Binod Prasad Dhakal
Central Department of Education (Mathematics), Tribhuvan University, Nepal

Abstract

An estimate for the degree of approximation of function $f \in$ Lip α class by $(N, p, q) C_{l}$ means of Fourier series has been established.

1. Definitions

The Fourier series of 2π periodic Lebesgue integrable $f(t)$ over $[-\pi, \pi]$ is given by

$$
\begin{equation*}
f(t)=\frac{1}{2} a_{o}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right) \tag{1}
\end{equation*}
$$

The degree of approximation $E_{n}(f)$ of a function f : $R \rightarrow R$ by a trigonometric polynomial t_{n} of degree n is defined by (Zygmund [1])
$E_{n}(f)=\left\|t_{n}-f\right\|_{\infty}=\sup .\left\{\left|t_{n}(x)-f(x)\right|: x \in \mathfrak{R}\right\}$.
A function $\mathrm{f} \in \operatorname{Lip} \alpha$ if,
$|\mathrm{f}(\mathrm{x}+\mathrm{t})-\mathrm{f}(\mathrm{x})|=\mathrm{O}\left(\left.\mathrm{t}\right|^{\alpha}\right)$ for $0<\alpha \leq 1$. (Dhakal [2])
Let $\sum_{\mathrm{m}=0}^{\infty} \mathrm{u}_{\mathrm{n}}$ be an infinite series such that whose $\mathrm{n}^{\text {th }}$ partial sum $\mathrm{s}_{\mathrm{n}}=\sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{u}_{\mathrm{k}}$. Write $\sigma_{\mathrm{n}}=\frac{1}{\mathrm{n}+1} \sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{S}_{\mathrm{k}}$ is $(C, 1)$ means of the sequence $\left\{S_{n}\right\}$. If $\sigma_{\mathrm{n}} \rightarrow \mathrm{S}$, as $\mathrm{n} \rightarrow \infty$ then the sequence $\left\{\mathrm{S}_{\mathrm{n}}\right\}$ is said to be summable by Cesàro method $(\mathrm{C}, 1)$ to S .

The generalized Nörlund transform (N, p, q) of the sequence $\left\{S_{n}\right\}$ is the sequence $\left\{\mathrm{p}_{\mathrm{n}}^{\mathrm{p}, \mathrm{q}}\right\}$ where $t_{n}^{p, q}=\frac{1}{R_{n}} \sum_{k=0}^{n} p_{k} q_{n-k} S_{n-k}$. If $t_{n}^{p, q} \rightarrow S$ as $n \rightarrow \infty$ then the sequence $\left\{S_{n}\right\}$ is said to be summable by generalized Nörlund method ($\mathrm{N}, \mathrm{p}, \mathrm{q}$) to S (Borwein [3]).

The ($\mathrm{N}, \mathrm{p}, \mathrm{q}$) transform of the ($\mathrm{C}, 1$) transform defines the $(N, p, q) C_{1}$ transform $\left\{\mathrm{t}_{\mathrm{n}}^{\mathrm{p}, \mathrm{q}, \mathrm{c}_{1}}\right\}$ of the partial sum $\left\{S_{n}\right\}$ of the series $\sum_{n=0}^{\infty} u_{n}$.Thus,
$\mathrm{t}_{\mathrm{n}}^{\mathrm{p}, \mathrm{q}, \mathrm{c}_{1}}=\frac{1}{\mathrm{R}_{\mathrm{n}}} \sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{p}_{\mathrm{k}} \mathrm{q}_{\mathrm{n}-\mathrm{k}} \sigma_{\mathrm{n}-\mathrm{k}} \rightarrow \mathrm{S}$, as $\mathrm{n} \rightarrow \infty$ then the sequence $\left\{S_{n}\right\}$ is said to be summable by (N, p, q) C_{1} method to S..

Some important particular cases of (N, p, q) C_{1} means are:
(i) $\left(\mathrm{N}, \mathrm{p}_{\mathrm{n}}\right) \mathrm{C}_{1}$ if $\mathrm{q}_{\mathrm{n}}=1 \forall \mathrm{n}$.
(ii) $\left(\overline{\mathrm{N}}, \mathrm{q}_{\mathrm{n}}\right) \mathrm{C}_{1}$ if $\mathrm{p}_{\mathrm{n}}=1 \forall \mathrm{n}$.
(iii) $(\mathrm{C}, \delta) \mathrm{C}_{1}$ if $\mathrm{p}_{\mathrm{n}}=\binom{\mathrm{n}+\delta-1}{\delta-1}, \delta>0$ andq $_{\mathrm{n}}=1 \forall \mathrm{n}$.

We shall use the following notations:
$\phi(\mathrm{t})=\mathrm{f}(\mathrm{x}+\mathrm{t})+\mathrm{f}(\mathrm{x}-\mathrm{t})-2 \mathrm{f}(\mathrm{x})$
$(N C)_{n}(t)=\frac{1}{2 \pi R_{n}} \sum_{k=0}^{n} \frac{p_{k} q_{n-k}}{n-k+1} \frac{\sin ^{2}(n-k+1) \frac{t}{2}}{\sin ^{2} \frac{t}{2}}$

2. Theorem

Theorem. If $f: R \rightarrow R$ is 2π periodic, Lebesgue integrable over $[-\pi, \pi]$ and Lip α class function, then the degree of approximation of function f by ($\mathrm{N}, \mathrm{p}, \quad \mathrm{q}) \quad \mathrm{C}_{1} \quad$ summability means, $\mathrm{t}_{\mathrm{n}}^{\mathrm{p}, \mathrm{q}, \mathrm{c}_{1}}=\frac{1}{R_{\mathrm{n}}} \sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{p}_{\mathrm{k}} \mathrm{q}_{\mathrm{n}-\mathrm{k}} \sigma_{\mathrm{n}-\mathrm{k}}$ of the Fourier series (1) is given by, for $\mathrm{n}=0,1,2 \ldots$,
$\left\|t_{n}^{\mathrm{p}, \mathrm{q}, \mathrm{c}_{1}}-\mathrm{f}\right\|_{\infty}=\mathrm{O}\left(\frac{\log (\mathrm{n}+1) \pi \mathrm{e}}{(\mathrm{n}+1)^{\alpha}}\right)$ for $0<\alpha \leq 1$,
provide $\left\{\mathrm{p}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{q}_{\mathrm{n}}\right\}$ are two sequences of positive real constants of regular generalized Nörlund method ($\mathrm{N}, \mathrm{p}, \mathrm{q}$) such that

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{p_{k} q_{n-k}}{n-k+1}=O\left(\frac{R_{n}}{n+1}\right) \forall n \geq 0 . \tag{5}
\end{equation*}
$$

3. Proof of the Theorem

Following Titchmarsh [4], $\mathrm{n}^{\text {th }}$ partial sum $\mathrm{S}_{\mathrm{n}}(\mathrm{x})$ of the Fourier series (1) at $t=x \in[-\pi, \pi]$ is given by

$$
\mathrm{S}_{\mathrm{n}}(\mathrm{x})-\mathrm{f}(\mathrm{x})=\frac{1}{2 \pi} \int_{0}^{\pi} \phi(\mathrm{t}) \frac{\sin \left(\mathrm{n}+\frac{1}{2}\right) \mathrm{t}}{\sin \frac{\mathrm{t}}{2}} \mathrm{dt} .
$$

The (C,1) transform i.e. σ_{n} of S_{n} is given by

$$
\begin{aligned}
& \frac{1}{\mathrm{n}+1} \sum_{\mathrm{k}=0}^{\mathrm{n}}\left(\mathrm{~S}_{\mathrm{k}}(\mathrm{x})-\mathrm{f}(\mathrm{x})\right)=\frac{1}{2(\mathrm{n}+1) \pi} \int_{0}^{\pi} \frac{\phi(\mathrm{t})}{\sin \frac{\mathrm{t}}{2}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \sin \left(\mathrm{k}+\frac{1}{2}\right) \mathrm{tdt} \\
& \sigma_{\mathrm{n}}(\mathrm{x})-\mathrm{f}(\mathrm{x})=\frac{1}{2(\mathrm{n}+1) \pi} \int_{0}^{\pi} \frac{\sin ^{2}(\mathrm{n}+1) \frac{\mathrm{t}}{2}}{\sin ^{2} \frac{\mathrm{t}}{2}} \phi(\mathrm{t}) \mathrm{dt}
\end{aligned}
$$

Denoting (N, p, q) transform of σ_{n} i.e. $(\mathrm{N}, \mathrm{p}, \mathrm{q}) \mathrm{C}_{1}$ transform of S_{n} by $t_{n}^{p, q, c_{1}}$, we have

$$
\begin{align*}
& \frac{1}{\mathrm{R}_{\mathrm{n}}} \sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{p}_{\mathrm{k}} \mathrm{q}_{\mathrm{n}-\mathrm{k}}\left\{\sigma_{\mathrm{n}-\mathrm{k}}(\mathrm{x})-\mathrm{f}(\mathrm{x})\right\}=\int_{0}^{\pi} \frac{1}{2 \pi \mathrm{R}_{\mathrm{n}}} \sum_{\mathrm{k}=0}^{\mathrm{n}} \frac{\mathrm{p}_{\mathrm{k}} \mathrm{q}_{\mathrm{n}-\mathrm{k}}}{\mathrm{n}-\mathrm{k}+1} \frac{\sin ^{2}(\mathrm{n}-\mathrm{k}+1) \frac{\mathrm{t}}{2}}{\sin ^{2} \frac{\mathrm{t}}{2}} \phi(\mathrm{t}) \mathrm{dt} \\
& \mathrm{t}_{\mathrm{n}}^{\mathrm{p}, \mathrm{q}, \mathrm{c}_{1}}(\mathrm{x})-\mathrm{f}(\mathrm{x})=\int_{0}^{\pi}(\mathrm{NC})_{\mathrm{n}}(\mathrm{t}) \phi(\mathrm{t}) \\
& =\int_{0}^{\frac{1}{\mathrm{n}+1}}(\mathrm{NC})_{\mathrm{n}}(\mathrm{t}) \phi(\mathrm{t}) \mathrm{dt}+\int_{\frac{1}{\mathrm{n}+1}}^{\pi}(\mathrm{NC})_{\mathrm{n}}(\mathrm{t}) \phi(\mathrm{t}) \mathrm{dt} \\
& =\mathrm{I}_{1}+\mathrm{I}_{2} \text { say. } \tag{6}
\end{align*}
$$

For $\mathrm{I}_{1} \quad$ and $0<\mathrm{t} \leq \frac{1}{\mathrm{n}+1}$

$$
\begin{align*}
& (N C)_{n}(t)=\frac{1}{2 \pi R_{n}} \sum_{k=0}^{n} \frac{p_{k} q_{n-k}}{n-k+1} \frac{\sin ^{2}(n-k+1) \frac{t}{2}}{\sin ^{2} \frac{t}{2}} \\
& \leq \frac{1}{2 \pi R_{n}} \sum_{k=0}^{n} \frac{p_{k} q_{n-k}}{n-k+1}(n-k+1)^{2} \frac{\sin ^{2} \frac{t}{2}}{\sin ^{2} \frac{t}{2}} \\
& \left(\text { Since } \sin n \theta \leq n \sin \theta \leq n \theta \text { for } 0<\theta<\frac{1}{n}\right) \\
& =\frac{1}{2 \pi R_{n}} \sum_{k=0}^{n} p_{k} q_{n-k}(n-k+1) \\
& \leq \frac{n+1}{2 \pi R_{n}} \sum_{k=0}^{n} p_{k} q_{n-k} \\
& =\frac{n+1}{2 \pi} \\
& =O(n+1) . \tag{7}
\end{align*}
$$

Since, $|\mathrm{f}(\mathrm{x}+\mathrm{t})-\mathrm{f}(\mathrm{x})|=\mathrm{O}\left(|\mathrm{t}|^{\alpha}\right)$ for $0<\alpha \leq 1$,
if $\mathrm{f} \in \operatorname{Lip} \alpha$.
We have, $\phi(\mathrm{t})=\mathrm{f}(\mathrm{x}+\mathrm{t})+\mathrm{f}(\mathrm{x}-\mathrm{t})-2 \mathrm{f}(\mathrm{x})$

$$
\begin{align*}
& =[f(x+t)-f(x)]+[f(x-t)-f(x)] \\
& =O\left(t^{\alpha}\right)+O\left(t^{\alpha}\right) \\
& =O\left(t^{\alpha}\right) \tag{8}
\end{align*}
$$

Now, using (7) and (8) and the fact that $\phi(\mathrm{t}) \in \operatorname{Lip} \alpha$, we have

$$
\begin{align*}
&\left|I_{1}\right| \leq \int_{0}^{\frac{1}{n+1}}\left|(N C)_{n}(t)\right||\phi(t)| d t \\
&=\int_{0}^{\frac{1}{n+1}} O(n+1) O\left(t^{\alpha}\right) d t \\
&=O(n+1)\left[\int_{0}^{\frac{1}{n+1}} t^{\alpha} d t\right] \\
&=O(n+1)\left[\frac{t^{\alpha+1}}{\alpha+1}\right]_{0}^{\frac{1}{n+1}} \\
&= O(n+1) \frac{1}{(\alpha+1)(n+1)^{\alpha+1}} \\
&=O\left(\frac{1}{(n+1)^{\alpha}}\right) \tag{9}
\end{align*}
$$

For I_{2} and $\frac{1}{\mathrm{n}+1}<\mathrm{t}<\pi$
$(N C)_{n}(t)=\frac{1}{2 \pi R_{n}} \sum_{k=0}^{n} \frac{p_{k} q_{n-k}}{n-k+1} \frac{\sin ^{2}(n-k+1) \frac{t}{2}}{\sin ^{2} \frac{t}{2}}$
$\leq \frac{1}{2 \pi R_{n}} \sum_{\mathrm{k}=0}^{\mathrm{n}} \frac{\mathrm{p}_{\mathrm{k}} \mathrm{q}_{\mathrm{n}-\mathrm{k}}}{\mathrm{n}-\mathrm{k}+1} \frac{\pi^{2}}{\mathrm{t}^{2}}$, by Jordan's Lemma
$=\frac{\pi}{2 \mathrm{R}_{\mathrm{n}} \mathrm{t}^{2}} \sum_{\mathrm{k}=0}^{\mathrm{n}} \frac{\mathrm{p}_{\mathrm{k}} \mathrm{q}_{\mathrm{n}-\mathrm{k}}}{\mathrm{n}-\mathrm{k}+1}$
$=\frac{\pi}{2 \mathrm{R}_{\mathrm{n}} \mathrm{t}^{2}} \mathrm{O}\left(\frac{\mathrm{R}_{\mathrm{n}}}{\mathrm{n}+1}\right)$, by the hypothesis of the theorem
$=O\left(\frac{1}{(n+1) t^{2}}\right)$.
Using (8) and (10), we have
$\left|I_{2}\right| \leq \int_{\frac{1}{n+1}}^{\pi}\left|(N C)_{n}(t)\right||\phi(t)| d t$
$=\int_{\frac{1}{n+1}}^{\pi} \mathrm{O}\left(\frac{1}{(\mathrm{n}+1) \mathrm{t}^{2}}\right) \mathrm{O}\left(\mathrm{t}^{\alpha}\right) \mathrm{dt}$
$=O\left(\frac{1}{\mathrm{n}+1}\right) \int_{\frac{1}{\mathrm{n}+1}}^{\pi} \mathrm{t}^{\alpha-2} \mathrm{dt}$
$=\left\{O\left(\frac{1}{n+1}\right)\left[\frac{t^{\alpha-1}}{\alpha-1}\right]_{\frac{1}{n+1}}^{\pi}, \quad\right.$ for $0<\alpha<1$
$O\left(\frac{1}{n+1}\right)[\log t]_{\frac{1}{n+1}}^{\pi}, \quad$ for $\alpha=1$
$=\left\{\begin{array}{l}O\left(\frac{1}{n+1}\right)\left(\frac{1}{\alpha-1}\right)\left[\pi^{\alpha-1}-\frac{1}{(n+1)^{\alpha-1}}\right], \text { for } 0<\alpha<1 \\ O\left(\frac{1}{n+1}\right)\left[\log \pi-\log \left(\frac{1}{n+1}\right)\right], \text { for } \alpha=1\end{array}\right.$
$\leq\left\{\begin{array}{l}O\left(\frac{1}{\alpha-1}\right)\left[\frac{\pi^{\alpha-1}}{n+1}+\frac{1}{(n+1)^{\alpha}}\right], \quad \text { for } 0<\alpha<1 \\ O\left(\frac{1}{n+1}\right)[\log (n+1) \pi], \quad \text { for } \quad \alpha=1\end{array}\right.$
$\leq\left\{\begin{array}{l}O\left(\frac{1}{\alpha-1}\right)\left[\frac{\pi^{\alpha-1}+1}{(n+1)^{\alpha}}\right], \quad \text { for } 0<\alpha<1 \\ O\left[\frac{\log (n+1) \pi}{(n+1)}\right], \quad \text { for } \alpha=1\end{array}\right.$
$= \begin{cases}O\left(\frac{1}{(n+1)^{\alpha}}\right), & \text { for } 0<\alpha<1 \\ O\left[\frac{\log (n+1) \pi}{(n+1)}\right], & \text { for } \alpha=1 .\end{cases}$
Collecting (6), (9), (11); we have
$\left|t_{n}^{p, q, c_{1}}(x)-f(x)\right|= \begin{cases}O\left(\frac{1}{(n+1)^{\alpha}}\right), & \text { for } 0<\alpha<1 \\ O\left(\frac{1}{n+1}\right)+O\left(\frac{\log (n+1) \pi}{(n+1)}\right), & \text { for } \alpha=1\end{cases}$
$= \begin{cases}O\left(\frac{1}{(n+1)^{\alpha}}\right), & \text { for } 0<\alpha<1 \\ O\left(\frac{\log (\mathrm{n}+1) \pi \mathrm{e}}{(\mathrm{n}+1)}\right), \quad \text { for } \alpha=1\end{cases}$
$\leq \begin{cases}O\left(\frac{\log (n+1) \pi e}{(n+1)^{\alpha}}\right), & \text { for } 0<\alpha<1 \\ O\left(\frac{\log (n+1) \pi e}{n+1}\right), & \text { for } \alpha=1\end{cases}$
$=\mathrm{O}\left(\frac{\log (\mathrm{n}+1) \pi \mathrm{e}}{(\mathrm{n}+1)^{\alpha}}, \quad\right.$ for $0<\alpha \leq 1$
Hence,

$$
\begin{aligned}
& \left\|t_{\mathrm{n}}^{\mathrm{p}, \mathrm{q}, \mathrm{c}_{1}}-\mathrm{f}\right\|_{\infty}=\sup \left\{\left|\mathrm{t}_{\mathrm{n}}^{\mathrm{p}, \mathrm{q}, \mathrm{c}_{1}}(\mathrm{x})-\mathrm{f}(\mathrm{x})\right|: \mathrm{x} \in \mathrm{R}\right\} \\
& =\mathrm{O}\left(\frac{\log (\mathrm{n}+1) \pi \mathrm{e}}{(\mathrm{n}+1)^{\alpha}}\right), \quad 0<\alpha \leq 1 .
\end{aligned}
$$

Thus, the theorem is completely established.

4. References

1) A. Zygmund (1959) "Trigonometric series,"Cambridge University Press.
2) Binod Prasad Dhakal (2010) "Approximation of functions belonging to Lipa class by Matrix Cesàro summability method," International Mathematical forum, 5(35), 1729-1735.
3) D. Borwein (1958) "On products of sequences," J. London Math. Soc., 33, 352357.
4) E. C. Titchmarsh (1939) "The Theory of functions, Second Edition", Oxford University Press.
