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Abstract  
 

 An estimate for the degree of approximation of 

function f  Lip class by (N, p, q) C1 means of 

Fourier series has been established.  

 

1. Definitions  
The Fourier series of 2 periodic Lebesgue  

integrable  f (t)  over [-, ] is given by        
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The degree of approximation En(f) of a function f: 

R→ R by a trigonometric polynomial tn of degree n 

is defined by (Zygmund [1])  
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(C,1) means of the sequence {Sn}.  If 

 nas,Sn  then the sequence {Sn} is said 

to be summable by Cesàro method (C,1) to S.  

The generalized Nörlund transform (N, p, q) of the 

sequence {Sn} is the sequence  q,p
nt where  
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  If  nasSt q,p
n then the 

sequence {Sn} is said to be summable by 

generalized Nörlund method (N, p, q) to S 

(Borwein [3]).  

The (N, p, q) transform of the (C,1) transform 

defines the (N, p, q)C1 transform { 1c,q,p
nt } of the 

partial sum {Sn} of the series 
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nu .Thus, 
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sequence {Sn} is said to be summable by (N, p, 

q)C1 method to S..  

Some important particular cases of (N, p, q)C1 

means are:  
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We shall use the following notations:  
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2. Theorem 

 Theorem. If RR:f  is 2 periodic, Lebesgue 

integrable over [-,] and Lip  class function, 

then the degree of approximation of function f by 

(N, p, q) C1 summability means, 
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given by,  for n = 0, 1, 2 …,  
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provide {pn}and {qn}are two sequences of positive 

real constants of regular generalized Nörlund 

method (N, p, q) such that 
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 3. Proof of the Theorem 

Following Titchmarsh [4], n
th

 partial sum Sn(x) of 

the Fourier series (1) at t = x  [-, ] is given by 
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The (C,1) transform i.e. σn of Sn is given by 

 

   














n

1k
2
1

0 2
t

n

0k
k dttksin

sin

)t(

)1n(2

1
)x(f)x(S

1n

1

.dt)t(
sin

)1n(sin

)1n(2

1
)x(f)x(

2
t2

2
t2

0

n 



 



 

Denoting (N, p, q) transform of n i.e. (N, p, q)C1 

transform of Sn by 1
c,q,p

nt , we have 

  






 






n

0k 2
t2

2
t2

knk

0 n

n

0k
knknk

n

dt)t(
sin

)1kn(sin

1kn

qp

R2

1
)x(f)x(qp

R

1

  )t()t(NC)x(f)x(t n

0

c,q,p
n

1  


                                                      

    dt)t()t(NCdt)t()t(NC

1n
1

1n
1

n

0

n  






  

 =I1+I2 say.             (6)  

For I1    and 
1n

1
t0


  

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T



 
2
t2

2
t2

knk
n

0kn
n

sin

)1kn(sin

1kn

qp

R2

1
)t(NC




 





                   

 
2
t2

2
t2

2knk
n

0kn sin

sin
1kn

1kn

qp

R2

1



 





       











n

1
0fornsinnnsinSince

 1knqp
R2

1
knk

n

0kn




 


                                            

                knk

n

0kn

qp
R2

1n








  

                





2

1n
 

                 .1nO                (7) 
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Now, using (7) and (8) and the fact that 

 Lip)t( , we have  

   dt)t()t(NCI n

0

1

1n

1

 


 

        dttO)1n(O
1n

1

0

 


 

      

















 



dtt)1n(O
1n

1

0

 

      
1n

1

0

1

1

t
)1n(O




















 

     
    1

1n1

1
)1n(O




  

                
 

.
1n

1
O



















            (9) 
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 ,   by Jordan’s Lemma  
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Using (8) and (10), we have      
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Collecting (6), (9), (11); we have 
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Thus, the theorem is completely established. 
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