
Area Efficient Reloadable FIR Filter based on

NEw Distributed Arithmetic (NEDA)

Biplab Roy
Department of Electronics and Communication Engineering

Neotia Institute of Technology, Management and Science

South 24 pgns, West Bengal, India

Abstract— This paper describes the design and

implementation of highly efficient circuit for the implementation

of FIR filter in terms of power and area keeping the speed at per

with the fully parallel DA. It is a multiplier-less FIR filter which

is designed based on new distributed arithmetic algorithm

(NEDA). This NEDA based technique consists of Multiplexers,

shifters and accumulator. Moreover in this architecture the filter

coefficients can be any time modified at once, which is certainly

an advantage over simple DA where the LUT contents need to

recomputed before the memory is rewritten. Analysis on the

performance are done using Xilinx-Sysgen and Mathworks-

Simulink. The proposed architecture provides an efficient

implementation compared to other existing structures for FIR

Filter.

Keywords— DA, NEDA, FIR filter, XILINX-Sysgen.

I. INTRODUCTION

 FIR filters are extensively used in various communication

systems mainly where phase linearity is important and have

been the primary signal processing unit. In fact any system

which changes the frequency content of the incoming signal

one way or other, generally is called the "Filter" and so its

performance improvement in terms of speed, power and area

have always been and will remain demanding forever. In

signal processing, the implementation method of filters and

many others like various transforms have been primarily

based on multipliers [1], which is the main component of the

MAC unit, the very important building block which is defined

as:

𝑦[𝑘] = ∑ 𝐴𝑘𝑥𝑘[𝑛]𝐾
𝑘=1 (1)

Where y[n] = response of network at time n, xk[n] = k-th

input variable at time n and Ak = weighting factor of k-th

input variable that is constant for all n, and so it remains time-

invariant.

Direct multiplier based implementation will be highly

expensive in terms of area and power though due to the

advent of low-power, low-cost FPGAs, which have

embedded customized DSP blocks within it and increasing

use of FPGAs in advanced systems, this problem have

been partially addressed [2]. FPGAs are gaining popularity

because of its highly parallel execution which increases the

speed many fold.

So people have been searching for alternate

implementations of MACs in FPGAs and subsequently

Distributed Algorithm evolved as a very efficient solution for

LUT-based FPGAs. Inspired by the potential of the Xilinx

FPGA look-up table architecture, the DA algorithm was

resurrected in the early 90’s and shown [3] to produce very

efficient filter designs and it is based on an efficient partition

of the function in partial terms using 2’s complement binary

representation of data. Many DSP applications use functions

like convolution, correlation and filtering where Inner product

computations are important. This inner product computation

is done using the Distributed Arithmetic principles. The

partial terms can be pre-computed and stored in LUTs. Yoo et

al. [4,5,6] observed that the requirement of memory/LUT

capacity increases exponentially with the order of the filter,

given that DA implementations need 2K – words, K being the

number of taps of the filter. This approach has another

problem in changing the filter coefficients for changing its

functional characteristic as then the LUT contents need to be

recomputed before the memory is rewritten. The problem of

exponential increment of LUT size can be partially solved by

breaking up the single LUT into many and partial addressing.

But this approach has neither been very efficient nor it can

solve the need of re-computation of LUT contents for

changing the filter characteristic.

In this work, We have tried to address both the problems by

utilizing the NEDA algorithm [7] and designing a reloadable

architecture where filter coefficients can be any time changed

without any extra effort. The results of the implementation

experiment are analyzed in terms of parameters such as area

and speed. The brief description of the distributed arithmetic

is presented in Section 2. The implementation of the FIR filter

using NEDA algorithm is discussed in Section 3. The Section

4 presents the implementation results. The last section

concludes the work and presents the future work.

II. DISTRIBUTED ARITHMETIC

 Distributed Arithmetic, along with Modulo Arithmetic, are

computation algorithms that perform multiplication with look-

up table based schemes. Indeed, DA specifically targets the

sum of products (sometimes referred to as the vector dot

product) computation that covers many of the important DSP

filtering and frequency transforming functions. Ironically,

many DSP designers have never heard of this algorithm.

Inspired by the potential of the Xilinx FPGA look-up table

architecture, the DA algorithm was resurrected in the early

90’s and shown to produce very efficient filter designs [1].

ISSN: 2278-0181

www.ijert.orgIJERTV5IS030637

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

http://www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

Vol. 5 Issue 03, March-2016

429

 The multiply-intensive nature of equation 1 can be

appreciated by observing that a single output response

requires the accumulation of K product terms. In DA the task

of summing product terms is replaced by table look-up

procedures that are easily implemented in the Xilinx

configurable logic block (CLB) look-up table architecture.

We start by defining the number format of the variable to be

2’s complement, fractional - a standard practice for fixed-

point microprocessors in order to bound number growth under

multiplication. The constant factors, Ak, need not be so

restricted, nor are they required to match the data word length,

as is the case for the microprocessor. The constants may have

a mixed integer and fractional format; they need not be

defined at this time. The variable, xk, may be written in the

fractional format as shown in equation 2:

𝑥𝑘 = −𝑥𝑘0 + ∑ 𝑥𝑘𝑏2−𝑏𝐵−1
𝑏=1 (2)

where xkb is a binary variable and can assume only values of

‘0’ and ‘1’. A sign bit of value -1 is indicated by xk0. The final

result is obtained by first substituting equation 2 into equation

1 and is:

𝑦 = ∑ 𝑥𝑘0𝐴𝑘 + ∑ ∑ 𝑥𝑘𝑏𝐴𝑘2−𝑏𝐵−1
𝑏=1

𝐾
𝑘=1

𝐾
𝑘=1 (3)

and then explicitly expressing all the product terms under the

summation symbols with

𝑦 = −[𝑥10𝐴1 + 𝑥20𝐴2 + … + 𝑥𝑘0𝐴𝑘]20

 +[𝑥11𝐴1 + 𝑥21𝐴2 + … + 𝑥𝑘1𝐴𝑘]2−1

 …

 …

 +[𝑥1(𝐵−1)𝐴1 + 𝑥2(𝐵−1)𝐴2 + … + 𝑥𝑘(𝐵−1)𝐴𝑘]2−(𝐵−1)

 (4)

Each term within the brackets of equation 4 denotes a binary

AND operation involving a bit of the input variable and all

the bits of the constant. The plus signs denote arithmetic sum

operations. The exponential factors denote the scaled

contributions of the bracketed pairs to the total sum. One can

now construct a look-up table that can be addressed by the

same scaled bit of all the input variables and can access the

sum of the terms within each pair of brackets. One such

implementation is shown in the fig 1.

Fig. 1. Example DA Architecture

III. NEW DISTRIBUTED ARITHMETIC

 DA computes the inner product of two multi-dimensional

vectors. Thus, increase in the number of dimensions increases

the memory requirement to store all the obtained products.

This is due to the reason that, increase in number of

dimensions increases the number of obtained partial products.

The elimination of increased memory requirement is possible

only if one or both of the inputs has a fixed set of coefficients.

This method is commonly known as NEw Distributed

Arithmetic (NEDA) [7]. Thus, using NEDA, distribution of

arithmetic is done on the coefficient values instead of doing

on the inputs. This results in memory-less DA architecture of

the implemented systems. Conventional NEDA based

architectures are bit-serial in nature. Depending on the

application and requirement, they can be designed as digit-

serial or bit-parallel architectures. Thus, NEDA is classified

under the family of shift-add algorithms. This can be simply

explained considering the following MAC operation:

𝑧 = ∑ 𝑐𝑖𝑥𝑖
𝑘
𝑖=0 (5)

This can be written as:

𝑧 = (𝑐1𝑐2 … 𝑐𝑘) (

𝑥1
𝑥2
.
.

𝑥𝑘

) (6)

Considering both ci and xi in two’s complement form as:

𝑐𝑖 = 𝑐𝑖
𝑀2𝑀 + ∑ 𝑐𝑖

𝑘2𝑘𝑀−1
𝑘=𝑁 (7)

where ci=0 or 1, k=N, N+1,…M-1, Ci
M is the sign bit and Ci

N

is the least significant bit. Substituting equation 7 into

equation 6 one can get the following matrix:

𝑧 = [−20 2−1 … 2−7] (
𝑐1

0… 𝑐𝑘
0

⋱
𝑐1

7… 𝑐𝑘
7
) (

𝑥1
𝑥2

⋮
𝑥𝑘

) (8)

where it is considered that the coefficients are of 8-bit in

fix_8_7 format and there are k no of coefficients. Equation 8

can be implemented as some initial additions of xk-s as the

terms of the second bracket are all either ‘1’ or ‘0’. And

finally these temporary addition results can be passed through

a shifter-adder to get the final result.

IV. FIR FILTERS DESIGNED

We have designed FIR filters based on both DA and NEDA.

Both are fully parallel implementation to gain the maximum

speed. Fig 2 shows our circuit for DA based 7-tap FIR LPF.

Here we have fragmented addressing of the LUTs to minimize

the memory buildup. First the inputs are registered, then its

similar bits of the input samples are sliced out parallely by the

bitbasher circuit, LUTs are addressed to get the partial sums

parallel and finally shift- accumulated to get the final result

again parallel.

ISSN: 2278-0181

www.ijert.orgIJERTV5IS030637

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

http://www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

Vol. 5 Issue 03, March-2016

430

Fig. 2. 8-bit 7-tap FIR LPF –DA implementation

Fig 3 shows the same 7-tap FIR filter but based on NEDA.

Here also first the inputs are registered, then muxed- out if the

similar bits of the coefficients are logic ‘1’, otherwise digit ‘0’

is passed. The partial sums were calculated and shift-

accumulated to get the final result again parallely. The filter

coefficients were calculated from the FDAtool with 10kHz

sampling frequency and 2kHz cut-off and quantized into

sfix_8_7 format.

V. RESULTS

Both the circuits were tested by applying a mixture of two

sinusoids of 100Hz and 4kHz to test its low-pass behavior.

Both behaved exactly same and the output is shown in the fig

4. Following the same procedure we also designed 14-tap 8-

bit FIR LPFs for both DA and NEDA for the purpose of

comparing the resources taken when implemented in Spartan-

3an FPGA which has been calculated by the Resource

Estimator tool after they were mapped into the FPGA, as

shown in the table 1.

Fig. 3 8-bit 7-tap FIR LPF –NEDA implementation

ISSN: 2278-0181

www.ijert.orgIJERTV5IS030637

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

http://www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

Vol. 5 Issue 03, March-2016

431

Fig. 4. Simulation results-(upper) mixture of two sinusoids 100Hz and 4kHz applied, (lower) the output which is of 100Hz showing low pass behavior.

TABLE 1. Resource utilisation summery for Spartan 700an FPGA.

Resources 8-bit DA FIR 8-bit NEDA FIR

7-tap 14-tap 7-tap 14-tap

Slices 324 3024 507 1020

Multipliers 0 0 0 0

VI. CONCLUSION

From the resource table (table 1) it seems that DA is area

efficient for lower tap order but our NEDA based

implementation becomes efficient as the number of taps are

increased. Additionally our NEDA based implementation has

got the advantage that the filter coefficients can be any time

loaded into the circuit as can be seen from the figures.

ACKNOWLEDGMENT

Author acknowledges “Neotia Institute of Technology,

Management and Sciences”, WB, India, for all of its financial

support and encouragement.

REFERENCES
[1] Keshab K. Parhi, “VLSI Digital Signal Processing Systems: Design and

Implementation”, Wiley, 1999.

[2] Uwe Meyer-Baese.Digital signal processing with FPGA[M]. Beijing:
Tsinghua University Press, 2006

[3] Mintzer, L. “FIR filters with the Xilinx FPGA “ FPGA ’92

ACM/SIGDA Workshop on FPGAs pp. 129-134

[4] M.A. Soderstrand, L.G. Johnson, H. Arichanthiran, M. Hoque, and

R.Elangovan, “Reducing Hardware Requirement in FIR Filter

Design”,in Proceedings IEEE International Conference on
Acoustics, Speech,and Signal Processing 2000, Vol. 6, pp. 3275 – 3278

[5] H. Yoo, and D. Anderson, “Hardware-Efficient Distributed Arithmetic

Architecture for High-Order Digital Filters”, in Proceedings of IEEE
International Conference on Acoustics, Speech, and Signal

Processing, 2005, Vol. 5, pp. 125 – 128

[6] T.Vigneswarn and P.Subbarami Reddy”Design of Digital FIR Filter
Based on DDA algorithm” Journal of Applied Science ,2007

[7] Wendi Pan, Ahmed Shams, and Magdy A. Bayoumi, “NEDA: A NEw

Distributed Arithmetic Architecture and its Application to One
Dimensional Discrete Cosine Transform,” Proc. IEEE Workshop

on Signal Processing Syst., Oct. 1999, pp. 159 – 168.G. O. Young,

“Synthetic structure of industrial plastics (Book style with paper title
and editor),” in Plastics, 2nd ed. vol. 3, J. Peters, Ed. New York:

McGraw-Hill, 1964, pp. 15–64.

ISSN: 2278-0181

www.ijert.orgIJERTV5IS030637

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

http://www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

Vol. 5 Issue 03, March-2016

432

