Argument Estimates Of Strongly Close-to-star Functions In A Sector

${ }^{\dagger}$ T.N.Shanmugam, ${ }^{\ddagger}$ C.Ramachandran, ${ }^{\dagger}$ R.Ambrose Prabhu
${ }^{\dagger}$ Department of Mathematics,
College of Engineering Guindy, Anna University, Chennai - 600 025,Tamilnadu,India
${ }^{\ddagger}$ Department of Mathematics, University College of Engineering Villupuram, Villupuram - 605 602,Tamilnadu,India

October 30, 2012

Abstract

In the present investigation, we obtain some sufficient condition for a normalized strongly close-to-star functions in the open disk $\mathbb{U}=\{z \in C:|z|<1\}$ to satisfy the condition $$
-\frac{\pi}{2} \beta \leq \arg \left\{\frac{f(z)}{g(z)}\right\} \leq \frac{\pi}{2} \alpha, \quad 0 \leq \alpha, \beta \leq 1
$$

The aim of this paper is to generalize a result obtained by N.E.Cho and S.Owa. 2010 AMS Subject Classification: Primary 30C45. Key words and Phrases: Analytic functions,Strongly Close-to-Star functions, convex functions,Starlike functions.

1 Introduction

Let \mathcal{A} denote the class of functions of the form :

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad z \in \mathbb{U} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z \in C:|z|<1\}$. Let \mathcal{S} be the subclass of \mathcal{A} consisting of all univalent functions. Let us denote $\mathcal{S}^{*}, \mathcal{K}$ and \mathcal{C} be the subclasses of \mathcal{A}, consisting of functions which are respectively starlike,convex and close-to-convex in \mathbb{U}.
Let $f(z)$ and $g(z)$ be analytic functions in \mathbb{U}. We say that $f(z)$ is subordinate to $g(z)$ if there exist analytic function $w(z)$ such that $w(0)=0,|w(z)|<1$ with $f(z)=g(w(z))$ and is denoted by $f \prec g$.

Let

$$
\mathcal{S}^{*}[A, B]=\left\{f \in \mathcal{A}: \frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+A z}{1+B z}, \quad z \in \mathbb{U}-1 \leq B<A \leq 1\right\}
$$

and

$$
\mathcal{K}[A, B]=\left\{f \in \mathcal{A}: 1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \frac{1+A z}{1+B z}, \quad z \in \mathbb{U}-1 \leq B<A \leq 1\right\}
$$

The class $\mathcal{S}^{*}[A, B]$ and related classes were studied by Janowski[1] and Silverman and Silvia [4] proved
that a function $f(z)$ is in $\mathcal{S}^{*}[A, B]$ iff

$$
\begin{align*}
& \left|\frac{z f^{\prime}(z)}{f(z)}-\frac{1-A B}{1-B^{2}}\right|<\frac{A-B}{1-B^{2}} \quad(z \in \mathbb{U} ; B \neq-1) \tag{1.2}\\
& \text { and } \quad \operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\frac{1-A}{2} \quad(z \in \mathbb{U} ; B=-1) \tag{1.3}
\end{align*}
$$

Lemma 1.1. [3] Let $p(z)$ be analytic in \mathbb{U} with $p(0)=1$ and $p(z) \neq 0$. If there exists two points $z_{1}, z_{2} \in \mathbb{U}$ such that $\left|z_{1}\right|=\left|z_{2}\right|$

$$
-\frac{\pi}{2} \beta=\arg p\left(z_{1}\right)<\arg p(z)<\arg p\left(z_{2}\right)=\frac{\pi}{2} \alpha, \quad \alpha, \beta>0 \text { and }, \text { for }|z|<\left|z_{1}\right|=\left|z_{2}\right|
$$

then we have

$$
\begin{aligned}
& \frac{z_{1} p^{\prime}\left(z_{1}\right)}{p\left(z_{1}\right)}=i\left(\frac{\alpha+\beta}{2}\right) m \\
& \frac{z_{2} p^{\prime}\left(z_{2}\right)}{p\left(z_{2}\right)}=i\left(\frac{\alpha+\beta}{2}\right) m
\end{aligned}
$$

where $m \geq \frac{1-|\delta|}{1+|\delta|}$ and $\delta=\operatorname{itan}\left(\frac{\alpha-\beta}{\alpha+\beta}\right)$.
Theorem 1.1. Let $f \in \mathcal{A}$. If

$$
\left|\arg \left\{\left(\frac{f^{\prime}(z)}{g^{\prime}(z)}\right)^{a}\left(\frac{f(z)}{g(z)}\right)^{b}\right\}\right| \leq \frac{\pi}{2} \delta
$$

for some

$$
g(z) \in \mathcal{K}[A, B]
$$

then

$$
\left|\arg \left(\frac{f(z)}{g(z)}\right)\right|<\frac{\pi}{2} \alpha
$$

where $\alpha(0<\alpha \leq 1)$ is the solution of the equation

$$
\delta=\left\{\begin{array}{cc}
(a+b) \alpha+\frac{2}{\pi} a t a n^{-1} \frac{m \alpha \sin \frac{\pi}{2}(1-t(A, B))}{\frac{1+A}{1+B}+m \alpha \cos \frac{\pi}{2}(1-t(A, B))} & , B \neq-1 \\
(a+b) \alpha & , B=-1
\end{array}\right.
$$

where $t(A, B)=\frac{2}{\pi} \sin ^{-1}\left(\frac{A-B}{1-A B}\right)$.
Proof. Let $p(z)=\frac{f(z)}{g(z)}, q(z)=\frac{z g^{\prime}(z)}{g(z)}$
by differentiating logarithmically, we have

$$
\frac{p^{\prime}(z)}{p(z)}=\frac{f^{\prime}(z)}{f(z)}-\frac{g^{\prime}(z)}{g(z)}
$$

A simple computation shows that

$$
\left(\frac{f^{\prime}(z)}{g^{\prime}(z)}\right)^{a}\left(\frac{f(z)}{g(z)}\right)^{b}=(p(z))^{a}+b\left(1+\frac{1}{q(z)} \frac{z p^{\prime}(z)}{p(z)}\right)^{a}
$$

Since $g(z) \in \mathcal{K}[A, B], g(z) \in \mathcal{S}^{*}[A, B]$.

If we take $q(z)=\rho e^{i \frac{\pi}{2} \phi}, \quad z \in \mathbb{U}$, then it follows from(1.2) and (1.3) that

$$
\begin{array}{r}
\frac{1-A}{1-B}<\rho<\frac{1+A}{1+B}, \quad-t(A, B)<\phi<t(A, B), \text { if } B \neq-1 \\
\text { and } \frac{1-A}{2}<\rho<\infty,-1<\phi<\infty, \text { if } B=-1 \\
\text { where } t(A, B)=\frac{2}{\pi} \sin ^{-1}\left(\frac{A-B}{1-A B}\right) .
\end{array}
$$

Let $p(z)=\frac{f(z)}{g(z)}, f \in \mathcal{A}$ and $g \in \mathcal{A}$. If there exists two points $z_{1}, z_{2} \in \mathbb{U}$ such that

$$
-\frac{\pi}{2} \beta=\arg p\left(z_{1}\right)<\arg p(z)<\arg p\left(z_{2}\right)=\frac{\pi}{2} \alpha, \quad \alpha, \beta>0 \text { and }, \text { for }|z|<\left|z_{1}\right|=\left|z_{2}\right|
$$

then by lemma(1.1), we have

$$
\frac{z_{1} p^{\prime}\left(z_{1}\right)}{p\left(z_{1}\right)}=-i\left(\frac{\alpha+\beta}{4}\right)\left(\frac{1+t_{1}^{2}}{t_{1}}\right) m
$$

and

$$
\begin{equation*}
\frac{z_{2} p^{\prime}\left(z_{2}\right)}{p\left(z_{2}\right)}=i\left(\frac{\alpha+\beta}{4}\right)\left(\frac{1+t_{2}^{2}}{t_{2}}\right) m \tag{1.4}
\end{equation*}
$$

where

$$
e^{-i \frac{\pi}{2}\left(\frac{\alpha-\beta}{\alpha+\beta}\right)_{\left(p\left(z_{1}\right)\right)}\left(\frac{2}{\alpha+\beta}\right)}=-i t_{1}
$$

and

$$
\begin{equation*}
e^{-i \frac{\pi}{2}\left(\frac{\alpha-\beta}{\alpha+\beta}\right)}\left(p\left(z_{2}\right)\right)\left(\frac{2}{\alpha+\beta}\right)=i t_{2}, t_{1}, t_{2}>0 \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
m \geq \frac{1-|\delta|}{1+|\delta|} \tag{1.6}
\end{equation*}
$$

Let us put $z=z_{2}$. Then from (1.4),(1.5)and (1.6), we have

$$
\begin{aligned}
\arg \left\{\left(\frac{f^{\prime}\left(z_{2}\right)}{g^{\prime}\left(z_{2}\right)}\right)^{a}\left(\frac{f\left(z_{2}\right)}{g\left(z_{2}\right)}\right)^{b}\right\} & =(a+b) \operatorname{argp}\left(z_{2}\right)+\operatorname{aarg}\left\{1+\frac{1}{q\left(z_{2}\right)} \frac{z_{2} p^{\prime}\left(z_{2}\right)}{p\left(z_{2}\right)}\right\} \\
& =(a+b) \frac{\pi}{2} \alpha+a \arg \left(1+\frac{e^{-i \frac{\pi}{2} \phi}}{\rho} i\left(\frac{\alpha+\beta}{4}\right)\left(\frac{1}{t_{2}}+t_{2}\right) m\right) \\
& =\frac{\pi}{2} \alpha(a+b)+a \arg \left(\rho+m e^{i \frac{\pi}{2}(1-\phi)}\left(\frac{\alpha+\beta}{4}\right)\left(t_{2}+\frac{1}{t_{2}}\right)\right) \\
& =\frac{\pi}{2} \alpha(a+b)+a \arg \left(\rho+m\left(\frac{\alpha+\beta}{4}\right)\left(t_{2}+\frac{1}{t_{2}}\right)\left(\cos \frac{\pi}{2}(1-\phi)+i \sin \frac{\pi}{2}(1-\phi)\right)\right) \\
& \geq \frac{\pi}{2} \alpha(a+b)+a \tan ^{-1}\left\{\frac{m\left(\frac{\alpha+\beta}{4}\right)\left(t_{2}+\frac{1}{t_{2}}\right) \sin \frac{\pi}{2}(1-\phi)}{\rho+m\left(\frac{\alpha+\beta}{4}\right)\left(t_{2}+\frac{1}{t_{2}}\right) \cos \frac{\pi}{2}(1-\phi)}\right\}
\end{aligned}
$$

Let us take $g(x)=x+\frac{1}{x}, x>0$. Then attains the minimum value at $x=1$. Therefore, we have

$$
\begin{aligned}
\arg \left\{\left(\frac{f^{\prime}\left(z_{2}\right)}{g^{\prime}\left(z_{2}\right)}\right)^{a}\left(\frac{f\left(z_{2}\right)}{g\left(z_{2}\right)}\right)^{b}\right\} & \geq \frac{\pi}{2} \alpha(a+b)+a t a n^{-1}\left\{\frac{m\left(\frac{\alpha+\beta}{2}\right) \sin \frac{\pi}{2}(1-\phi)}{\rho+m\left(\frac{\alpha+\beta}{2}\right) \cos \frac{\pi}{2}(1-\phi)}\right\} \\
& \geq \frac{\pi}{2} \alpha(a+b)+a t a n^{-1}\left\{\frac{m\left(\frac{\alpha+\beta}{2}\right) \sin \frac{\pi}{2}(1-t(A, B))}{\frac{1+A}{1+B}+m\left(\frac{\alpha+\beta}{2}\right) \cos \frac{\pi}{2}(1-t(A, B))}\right\} \\
& =\frac{\pi}{2} \delta
\end{aligned}
$$

where

$$
\delta=\left\{\begin{array}{cc}
(a+b) \alpha+\frac{2}{\pi} a t a n^{-1}\left[\frac{m \alpha \sin \frac{\pi}{2}(1-t(A, B))}{\frac{1+A}{1+B}+m \alpha \cos \frac{\pi}{2}(1-t(A, B))}\right] & , B \neq-1 \\
(a+b) \alpha & , B=-1 \\
t(A, B)=\frac{2}{\pi} \sin ^{-1}\left(\frac{A-B}{1-A B}\right) \\
m=\frac{1-|\delta|}{1+|\delta|}, \text { and } \delta=\operatorname{itan}\left(\frac{\alpha-\beta}{\alpha+\beta}\right)
\end{array}\right.
$$

This contradicts the assumption of the theorem. For the case $z=z_{1}$, applying the same method as above, we have

$$
\arg \left\{\left(\frac{f^{\prime}\left(z_{1}\right)}{g^{\prime}\left(z_{1}\right)}\right)^{a}\left(\frac{f\left(z_{1}\right)}{g\left(z_{1}\right)}\right)^{b}\right\} \leq-\frac{\pi}{2} \beta(a+b)-\operatorname{atan}^{-1}\left\{\frac{m\left(\frac{\alpha+\beta}{2}\right) \sin \frac{\pi}{2}(1-\phi)}{\rho+m\left(\frac{\alpha+\beta}{2}\right) \cos \frac{\pi}{2}(1-\phi)}\right\}
$$

This contradiction completes the proof of the theorem.
Taking $\alpha=\beta=1$ in theorem (1.1), we have the result obtained by NAK Euncho and Shigeyoshi owa [2] By setting $a=1, b=0, \delta=1, A=1$ and $B=-1$ in theorem (1.1), we have

Corollary 1.1. Every close- to- convex function is close-to-star in \mathbb{U}. ie,

$$
\left|\arg \left(\frac{f^{\prime}(z)}{g^{\prime}(z)}\right)\right|<\frac{\pi}{2}
$$

ie,

$$
\begin{array}{r}
\operatorname{Re}\left(\frac{f^{\prime}(z)}{g^{\prime}(z)}\right) \geq 0 \\
\operatorname{Re}\left(\frac{f^{\prime}(z)}{g^{\prime}(z)}\right) \prec \frac{1+z}{1-z} .
\end{array}
$$

If we put $g(z)=z$ in theorem (1.1), then by letting $B \rightarrow A(A<1)$, we obtain
Corollary 1.2. If $f \in \mathcal{A}$ and

$$
\left|\arg \left\{\left(f^{\prime}(z)\right)^{a}\left(\frac{f(z}{z}\right)^{b}\right\}\right|<\frac{\pi}{2} \delta(a>0, b \in \mathbb{R}, 0<\delta \leq 1)
$$

then

$$
\left|\arg f^{\prime}(z)\right|<\frac{\pi}{2} \delta
$$

where $\alpha(0<\alpha \leq 1)$ is the solution of the equation:

$$
\delta=(a+b) \alpha+\frac{2}{\pi} a \tan ^{-1}(\alpha) .
$$

References

[1] W.Janowski, some extremal problems for certain families of analytic functions, Bull.Acad.Polon.Sci.ser.Sci.Phys.Astronom.21(1973), 17-25
[2] Nak Eun Cho and Shigeyoshi owa., on the Fekete Zsego and Argument Inequalities for strongly close-t-star functions, Mathematical Inequalities and Applications.5(2002), 697-705
[3] Nunokowa, M.Owa, S.Saitoh, Cho, N.e and Takahosai,N., Some properties of analytic functions at extremal points for arguments. (Preprint)
[4] H.Silverman and E.M.Silvia, Subclass of star like functions Subordinate to convex Functions, Canad.J.Math.37(1985), 48-61.

