Argument Estimates Of Strongly Close-to-star Functions In A Sector

[†]T.N.Shanmugam, [‡]C.Ramachandran, [†]R.Ambrose Prabhu [†]Department of Mathematics,

College of Engineering Guindy, Anna University, Chennai - 600 025, Tamilnadu, India [‡]Department of Mathematics,

University College of Engineering Villupuram, Villupuram - 605 602, Tamilnadu, India

October 30, 2012

Abstract

In the present investigation, we obtain some sufficient condition for a normalized strongly close-to-star functions in the open disk $\mathbb{U} = \{z \in C : |z| < 1\}$ to satisfy the condition

$$-\frac{\pi}{2}\beta \le \arg\left\{\frac{f(z)}{g(z)}\right\} \le \frac{\pi}{2}\alpha, \quad 0 \le \alpha, \ \beta \le 1.$$

The aim of this paper is to generalize a result obtained by N.E.Cho and S.Owa.

2010 AMS Subject Classification: Primary 30C45.

Key words and Phrases: Analytic functions, Strongly Close-to-Star functions, convex functions, Starlike functions.

1 Introduction

Let \mathcal{A} denote the class of functions of the form :

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad z \in \mathbb{U},$$
(1.1)

which are analytic in the open unit disk $\mathbb{U} = \{z \in C : |z| < 1\}$. Let \mathcal{S} be the subclass of \mathcal{A} consisting of all univalent functions. Let us denote $\mathcal{S}^*, \mathcal{K}$ and \mathcal{C} be the subclasses of \mathcal{A} , consisting of functions which are respectively starlike, convex and close-to-convex in \mathbb{U} .

Let f(z) and g(z) be analytic functions in \mathbb{U} . We say that f(z) is subordinate to g(z) if there exist analytic function w(z) such that w(0) = 0, |w(z)| < 1 with f(z) = g(w(z)) and is denoted by $f \prec g$.

Let

$$\mathcal{S}^* \left[A, B \right] = \left\{ f \in \mathcal{A} : \frac{z f'(z)}{f(z)} \prec \frac{1 + Az}{1 + Bz}, \quad z \in \mathbb{U} - 1 \le B < A \le 1 \right\}$$

and

$$\mathcal{K}\left[A,B\right] = \left\{ f \in \mathcal{A} : 1 + \frac{zf''(z)}{f'(z)} \prec \frac{1 + Az}{1 + Bz}, \quad z \in \mathbb{U} - 1 \leq B < A \leq 1 \right\}$$

The class $S^*[A, B]$ and related classes were studied by Janowski[1] and Silverman and Silvia [4] proved

that a function f(z) is in $\mathcal{S}^*[A, B]$ iff

$$\left| \frac{zf'(z)}{f(z)} - \frac{1 - AB}{1 - B^2} \right| < \frac{A - B}{1 - B^2} \quad (z \in \mathbb{U}; B \neq -1)$$
 (1.2)

and
$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > \frac{1-A}{2} \quad (z \in \mathbb{U}; B = -1)$$
 (1.3)

Lemma 1.1. [3] Let p(z) be analytic in \mathbb{U} with p(0) = 1 and $p(z) \neq 0$. If there exists two points $z_1, z_2 \in \mathbb{U}$ such that $|z_1| = |z_2|$

$$-\frac{\pi}{2}\beta = \arg p(z_1) < \arg p(z) < \arg p(z_2) = \frac{\pi}{2}\alpha, \quad \alpha, \ \beta > 0 \ \ and, for |z| < |z_1| = |z_2|,$$

then we have

$$\begin{split} \frac{z_1p'(z_1)}{p(z_1)} &= i\left(\frac{\alpha+\beta}{2}\right)m \\ &\quad and \\ \frac{z_2p'(z_2)}{p(z_2)} &= i\left(\frac{\alpha+\beta}{2}\right)m \\ where &\quad m \geq \frac{1-|\delta|}{1+|\delta|} \quad and \quad \delta = itan\left(\frac{\alpha-\beta}{\alpha+\beta}\right). \end{split}$$

Theorem 1.1. Let $f \in A$. If

$$\left| arg \left\{ \left(\frac{f'(z)}{g'(z)} \right)^a \left(\frac{f(z)}{g(z)} \right)^b \right\} \right| \leq \frac{\pi}{2} \delta$$

 $for\ some$

$$g(z) \in \mathcal{K}[A, B]$$
,

then

$$\left| arg\left(\frac{f(z)}{g(z)} \right) \right| < \frac{\pi}{2} \alpha$$

where $\alpha(0 < \alpha \le 1)$ is the solution of the equation

$$\delta = \begin{cases} (a+b)\alpha + \frac{2}{\pi}atan^{-1} \frac{m\alpha sin\frac{\pi}{2}(1-t(A,B))}{\frac{1+A}{1+B} + m\alpha cos\frac{\pi}{2}(1-t(A,B))} & , B \neq -1 \\ (a+b)\alpha & , B = -1 \end{cases}$$

where $t(A, B) = \frac{2}{\pi} sin^{-1} \left(\frac{A - B}{1 - AB} \right)$.

Proof. Let
$$p(z) = \frac{f(z)}{g(z)}$$
, $q(z) = \frac{zg'(z)}{g(z)}$

by differentiating logarithmically, we have

$$\frac{p'(z)}{p(z)} = \frac{f'(z)}{f(z)} - \frac{g'(z)}{g(z)}$$

A simple computation shows that

$$\left(\frac{f'(z)}{g'(z)}\right)^a \left(\frac{f(z)}{g(z)}\right)^b = \left(p(z)\right)^a + b\left(1 + \frac{1}{q(z)}\frac{zp'(z)}{p(z)}\right)^a$$

Since $g(z) \in \mathcal{K}[A, B], \ g(z) \in \mathcal{S}^*[A, B].$

If we take $q(z)=\rho e^{i}\frac{\pi}{2}\phi, \ \ z\in\mathbb{U},$ then it follows from (1.2) and (1.3) that

$$\begin{split} \frac{1-A}{1-B} < \rho < \frac{1+A}{1+B}, & -t(A,B) < \phi < t(A,B), ifB \neq -1, \\ and \frac{1-A}{2} < \rho < \infty, & -1 < \phi < \infty, ifB = -1, \\ where & t(A,B) = \frac{2}{\pi} sin^{-1} \left(\frac{A-B}{1-AB}\right). \end{split}$$

Let $p(z) = \frac{f(z)}{g(z)}$, $f \in \mathcal{A}$ and $g \in \mathcal{A}$. If there exists two points $z_1, z_2 \in \mathbb{U}$ such that

$$-\frac{\pi}{2}\beta = \arg p(z_1) < \arg p(z) < \arg p(z_2) = \frac{\pi}{2}\alpha, \quad \alpha, \ \beta > 0 \ \ and, for |z| < |z_1| = |z_2|,$$

then by lemma(1.1), we have

$$\frac{z_1 p'(z_1)}{p(z_1)} = -i \left(\frac{\alpha + \beta}{4}\right) \left(\frac{1 + t_1^2}{t_1}\right) m$$

and

$$\frac{z_2 p'(z_2)}{p(z_2)} = i \left(\frac{\alpha + \beta}{4}\right) \left(\frac{1 + t_2^2}{t_2}\right) m. \tag{1.4}$$

where

$$e^{-i\frac{\pi}{2}\left(\frac{\alpha-\beta}{\alpha+\beta}\right)}(p(z_1))^{\left(\frac{2}{\alpha+\beta}\right)} = -it_1$$

and

$$e^{-i\frac{\pi}{2}\left(\frac{\alpha-\beta}{\alpha+\beta}\right)}(p(z_2))^{\left(\frac{2}{\alpha+\beta}\right)} = it_2, \ t_1, t_2 > 0.$$
(1.5)

and

$$m \ge \frac{1 - |\delta|}{1 + |\delta|} \tag{1.6}$$

Let us put $z = z_2$. Then from (1.4),(1.5) and (1.6), we have

$$arg\left\{ \left(\frac{f'(z_{2})}{g'(z_{2})} \right)^{a} \left(\frac{f(z_{2})}{g(z_{2})} \right)^{b} \right\} = (a+b)argp(z_{2}) + aarg\left\{ 1 + \frac{1}{q(z_{2})} \frac{z_{2}p'(z_{2})}{p(z_{2})} \right\}$$

$$= (a+b)\frac{\pi}{2}\alpha + a \ arg\left(1 + \frac{e^{-i\frac{\pi}{2}\phi}}{\rho} i \left(\frac{\alpha+\beta}{4} \right) \left(\frac{1}{t_{2}} + t_{2} \right) m \right)$$

$$= \frac{\pi}{2}\alpha(a+b) + a \ arg\left(\rho + me^{i\frac{\pi}{2}(1-\phi)} \left(\frac{\alpha+\beta}{4} \right) \left(t_{2} + \frac{1}{t_{2}} \right) \right)$$

$$= \frac{\pi}{2}\alpha(a+b) + a \ arg\left(\rho + m \left(\frac{\alpha+\beta}{4} \right) \left(t_{2} + \frac{1}{t_{2}} \right) \cos \frac{\pi}{2} (1-\phi) + i \sin \frac{\pi}{2} (1-\phi) \right) \right)$$

$$\geq \frac{\pi}{2}\alpha(a+b) + a \ tan^{-1} \left\{ \frac{m \left(\frac{\alpha+\beta}{4} \right) \left(t_{2} + \frac{1}{t_{2}} \right) \sin \frac{\pi}{2} (1-\phi)}{\rho + m \left(\frac{\alpha+\beta}{4} \right) \left(t_{2} + \frac{1}{t_{2}} \right) \cos \frac{\pi}{2} (1-\phi)} \right\}$$

Let us take $g(x) = x + \frac{1}{x}$, x > 0. Then attains the minimum value at x = 1. Therefore, we have

$$arg\left\{ \left(\frac{f'(z_2)}{g'(z_2)} \right)^a \left(\frac{f(z_2)}{g(z_2)} \right)^b \right\} \geq \frac{\pi}{2} \alpha(a+b) + atan^{-1} \left\{ \frac{m\left(\frac{\alpha+\beta}{2}\right) \sin\frac{\pi}{2}(1-\phi)}{\rho + m\left(\frac{\alpha+\beta}{2}\right) \cos\frac{\pi}{2}(1-\phi)} \right\}$$

$$\geq \frac{\pi}{2} \alpha(a+b) + atan^{-1} \left\{ \frac{m\left(\frac{\alpha+\beta}{2}\right) \sin\frac{\pi}{2}(1-t(A,B))}{\frac{1+A}{1+B} + m\left(\frac{\alpha+\beta}{2}\right) \cos\frac{\pi}{2}(1-t(A,B))} \right\}$$

$$= \frac{\pi}{2} \delta$$

where

$$\delta = \left\{ \begin{array}{l} (a+b)\alpha + \frac{2}{\pi}atan^{-1} \left[\frac{m\alpha sin\frac{\pi}{2}(1-t(A,B))}{\frac{1+A}{1+B} + m\alpha cos\frac{\pi}{2}(1-t(A,B))} \right] &, B \neq -1 \\ (a+b)\alpha &, B = -1 \end{array} \right. ,$$

$$t(A,B) = \frac{2}{\pi}sin^{-1} \left(\frac{A-B}{1-AB} \right) ,$$

$$m = \frac{1-|\delta|}{1+|\delta|}, \ and \ \delta = itan\left(\frac{\alpha-\beta}{\alpha+\beta} \right) .$$

This contradicts the assumption of the theorem. For the case $z = z_1$, applying the same method as above, we have

$$arg\left\{ \left(\frac{f'(z_1)}{g'(z_1)}\right)^a \left(\frac{f(z_1)}{g(z_1)}\right)^b \right\} \leq -\frac{\pi}{2}\beta(a+b) - atan^{-1}\left\{ \frac{m\left(\frac{\alpha+\beta}{2}\right)sin\frac{\pi}{2}(1-\phi)}{\rho+m\left(\frac{\alpha+\beta}{2}\right)cos\frac{\pi}{2}(1-\phi)} \right\}$$

This contradiction completes the proof of the theorem.

Taking $\alpha = \beta = 1$ in theorem (1.1), we have the result obtained by NAK Euncho and Shigeyoshi owa [2] By setting $a = 1, b = 0, \delta = 1, A = 1$ and B = -1 in theorem (1.1), we have

Corollary 1.1. Every close- to- convex function is close-to-star in U. ie,

$$\left| arg\left(\frac{f'(z)}{g'(z)} \right) \right| < \frac{\pi}{2}$$

ie,

$$Re \left(\frac{f'(z)}{g'(z)}\right) \ge 0$$

$$or$$

$$Re \left(\frac{f'(z)}{g'(z)}\right) \prec \frac{1+z}{1-z}.$$

If we put g(z) = z in theorem (1.1), then by letting $B \to A(A < 1)$, we obtain

Corollary 1.2. If $f \in A$ and

$$\left| arg \left\{ \left(f'(z) \right)^a \left(\frac{f(z)}{z} \right)^b \right\} \right| < \frac{\pi}{2} \delta \ (a > 0, b \in \mathbb{R}, 0 < \delta \le 1)$$

then

$$|argf'(z)| < \frac{\pi}{2}\delta$$

where $\alpha(0 < \alpha \le 1)$ is the solution of the equation:

$$\delta = (a+b)\alpha + \frac{2}{\pi}a \ tan^{-1}(\alpha).$$

References

- [1] W.Janowski, some extremal problems for certain families of analytic functions, Bull.Acad.Polon.Sci.ser.Sci.Phys.Astronom.21(1973), 17-25
- [2] Nak Eun Cho and Shigeyoshi owa., on the Fekete Zsego and Argument Inequalities for strongly close-t-star functions, Mathematical Inequalities and Applications.5(2002), 697-705
- [3] Nunokowa, M.Owa, S.Saitoh, Cho, N.e and Takahosai, N., Some properties of analytic functions at extremal points for arguments. (Preprint)
- [4] H.Silverman and E.M.Silvia, Subclass of star like functions Subordinate to convex Functions, Canad.J.Math.37(1985), 48-61.

