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Abstract:- Novel anthropomorphic robotic systems 

increasingly employ variable impedance actuation with a view 

to achieving robustness against uncertainty, superior agility 

and improved efficiency that are hallmarks of biological 

systems. Control- ling and modulating impedance profiles 

such that they are optimally tuned to the controlled plant is 

crucial in realizing these benefits. In this work, we propose a 

methodology to generate optimal control commands for 

variable impedance actuators under a prescribed tradeoff of 

task accuracy and energy cost. We employ a supervised 

learning paradigm to acquire both the plant dynamics and its 

stochastic properties. This enables us to prescribe an optimal 

impedance and command profile (i) tuned to the hard-to-

model plant noise characteristics and (ii) adaptable to 

systematic changes. To evaluate the scalability of our 

framework to real hardware, we designed and built a novel 

antagonistic series elastic actuator (SEA) characterized by a 

simple mechanical architecture and we ran several evaluations 

on a variety of reach and hold tasks. These results highlight, 

for the first time on real hardware, how impedance 

modulation profiles tuned to the plant dynamics emerge from 

the first principles of stochastic optimization, achieving clear 

performance gains over classical methods that ignore or are 

incapable of incorporating stochastic information.    

 

Keywords:- Antagonistic actuator, dynamics learning, 

equilibrium point control, impedance control, stochastic optimal 

control  

 

1. INTRODUCTION 

Humans have remarkable abilities in controlling their limbs 

in a fashion that outperforms most artificial systems in 

terms of versatility, compliance and energy efficiency. The 

fact that biological motor systems suffer from significant 

noise, sensory delays and other sources of stochasticity 

(Faisal et al. 2008) makes their performance even more 

impressive. Therefore, it comes as no surprise that biologi- 

cal motor control is often used as a benchmark for robotic 

systems. On the one hand, biological motor control charac- 

teristics are a result of the inherent biophysical properties 

of human limbs, and on the other hand, they are achieved 

through a framework of learning and adaptation processes 

(Wolpert et al. 1995; Kawato 1999; Davidson and Wolpert 

2005). These concepts can be transferred to robotic systems 

by (i) developing appropriate anthropomorphic hardware 

and (ii) by employing learning mechanisms that support 

motor control in the presence of noise and perturbations 

(Mitrovic et al. 2008). 

In this paper, we focus on issues related to adaptive motor 

control of antagonistically actuated robots. Antagonistic 

actuator designs are based on the biological principle of 

opposing muscle pairs. Therefore, the joint torque motors, 

for example, of a robotic arm are replaced by opposing 

actuators, typically using mechanical springs (Pratt and 

Williamson 1995). Such series elastic actuators (SEA) have 

had increasing attention in the last few decades (Van- 

derborght et al. 2009) as they provide several beneficial 

properties over classic joint torque actuated systems: 

 

1. Impedance control and variable compliance: Through 

the use of antagonistic actuation, the system is able to 

vary co-contraction levels, which in turn change the sys- 

tem’s mechanical properties: this is commonly referred 

to as impedance control (Hogan 1984). Impedance in  a 

mechanical system is defined as a measure of force 

response to a motion exerted on the system and is   

composed of components such as inertia, damping 

and stiffness. In general SEAs can only vary 

stiffness of a system and achieving variable 

damping is technically challenging (e.g. Laffranchi 

et al. 2010). Consequently, in this paper, when we 

refer to impedance control, we will solely address a 

change in stiffness and ignore vari- able damping or 

variable inertia. Antagonistic actuation introduces 

an additional degree of freedom in the limb 

dynamics, i.e. the same joint torque can be 

achieved  by different muscle activations. This 

means low co- contraction leads to low joint 

impedance whereas high co-contraction increases 

joint impedance. This degree of freedom can be 

used beneficially in many motion tasks, especially 

those involving manipulation or inter- action with 

tools. It has been shown through many neu- 

rophysiological studies (e.g. Burdet et al. 2001) 

that humans are capable of modulating this 

impedance in an optimal way with respect to the 

task requirements, trading off selectively against 

energy consumption. For example, when you use a 

drill to drill holes in a wall, you learn how to co-

contract your muscles such that the random 

perturbations of the drilling have a mini- mal 

impact. Furthermore, the ability to vary compliance 

plays a crucial role in robot safety (Zinn et al. 

2004). In general, impedance modulation is an 

efficient way to control systems that suffer from 

noise, disturbances or sensorimotor delays. 
2. Energy efficiency and energy storage: By appropriately 

controlling the SEA, one can take into account the passive 
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properties of the springs and produce control strategies 

with low energy requirements. A well-known example is 

walking, where the spring properties com- bined with an 

ideal actuation timing can be used to produce energetically 

efficient gaits (Collins and Ruina 2005; Collins and Kuo 

2010). Furthermore, an SEA has impressive energy storage 

and fast discharge capabili- ties, enabling “explosive” 

behavior such as throwing a ball (Wolf and Hirzinger 

2008), which is quite hard to achieve with regular joint 

torque controllers. Therefore, series elasticity can amplify 

power and work output of an actuator, which is important in 

the fabrication of lightweight but powerful robotic or 

prosthetic devices (Paluska and Herr 2006). 

A disadvantage of antagonistic actuation is that it 

imposes higher demands on the redundancy resolution 

capabilities of a motor controller. Optimality principles 

have successfully been used in biological (Flash and Hogan 

1985; Scott 2004; Todorov 2004) and in artificial systems 

(Nakamura and Hanafusa 1987; Cortes et al. 2001) as a 

principled strategy to resolve redundancies in a way that is 

beneficial for the task at hand. More specifically, stochas- 

tic optimal control (SOC) (Stengel 1994; Bertsekas 1995; 

Todorov 2006) appears to be an especially appealing the- 

ory as it studies optimality principles under the premise of 

noisy and uncertain dynamics. Another important aspect 

when studying stochastic systems is how the information, 

for example, about noise or uncertainty is obtained with-

 

out

 

prior

 

knowledge.

 

Supervised

 

learning

 

methods

 

can

 

pro-

 

vide a viable solution to this problem as they can be used to 

extract information from the plant’s sensorimotor data 

directly.

 

Here, we propose a control strategy for

 

antagonistic

 

sys-

 

tems that is based on stochastic optimal

 

control

 

theory

 

under the premise of minimal energy cost.

 

We propose

 

to

 

extend

 

SOC

 

by

 

learning

 

the

 

dynamic

 

model

 

of

 

the

 

plant,

 

which enables us (i) to adapt to systematic changes

 

of

 

the

 

plant

 

and

 

(ii)

 

extract

 

its

 

stochastic

 

properties.

 

Stochastic

 

properties or stochastic information refers to noise

 

or

 

ran-

 

dom perturbations of the controlled system that

 

cannot

 

be

 

modeled deterministically. By incorporating

 

this

 

stochas-

 

tic information into the optimization process,

 

we

 

show

 

how 

impedance modulation and

 

co-contraction

 

behavior

 

emerges

 

as

 

an

 

optimal

 

control

 

strategy

 

from

 

first

 

principles.

 

In the next section, we present a new

 

antagonistic

 

actua-

 

tor, 

which serves as our implementation testbed

 

for

 

study-

 

ing 

impedance control in the presence of

 

stochasticity

 

and

 

which, compared to previous antagonistic

 

designs, has

 

a

 

much

 

simpler

 

mechanical

 

design.

 

In

 

Section

 

3,

 

we

 

introduce

 

the

 

basic

 

concepts

 

of

 

optimal

 

control

 

and

 

propose

 

an

 

exten-

 

sion

 

that

 

uses

 

a

 

learned

 

dynamic

 

model.

 

This

 

supervised

 

learning methodology allows us to adapt online

 

to

 

changes

 

in

 

the

 

dynamics

 

as

 

well

 

as

 

to

 

extract

 

localized

 

stochastic

 

information from movement data. We then propose

 

a

 

sys-

 

tematic

 

methodology

 

for

 

incorporating

 

deterministic

 

and

 

stochastic plant dynamic information into the

 

optimal

 

con-

 

trol

 

framework,

 

resulting

 

in

 

a

 

scheme

 

that

 

improves

 

per-

 

formance

 

significantly

 

by

 

exploiting

 

the

 

antagonistic

 

redun-

 

dancy

 

of our plant. Our claims are supported by

 

a

 

number

 

of experimental evaluations on real hardware in Section 4.

 

We conclude the paper with a discussion and an outlook.

 

 

2.

 

A Novel Antagonistic Actuator Design for 

Impedance

 

Control

 

To study impedance control, we developed an antagonistic 

joint with a simple mechanical setup. Our design is based 

on

 

the

 

SEA

 

approach

 

in

 

which

 

the

 

driven

 

joint

 

is

 

connected 

via spring(s) to a stiff actuator (e.g. a servomotor). A vari-

 

ety

 

of

 

SEA

 

designs

 

have

 

been

 

proposed

 

(for

 

a

 

recent

 

review 

see Vanderborght et al. (2009)), which we here classify into 

pseudo-antagonistic and antagonistic setups. Pseudo-

 

antagonistic SEAs have one or multiple elastic elements, 

which are connected between the driving motor and the 

driven joint. The spring tension and therefore, the joint 

stiffness, is regulated using a mechanism equipped with    a 

second actuator. Antagonistic SEAs have one motor per 

opposing spring and the stiffness is controlled through a 

combination

 

of

 

both

 

motor

 

commands.

 

Therefore,

 

in

 

antag-

 

onistic designs, the relationship between motor commands 

and stiffness must be resolved by the controller. This addi-

 

tional computational cost is the tradeoff for a biologically 

plausible

 

architecture.

 

Fig. 1. Schematic of the variable stiffness actuator. The robot’s 

dimensions are: a = 15 mm, L =  26 mm, d  =  81 mm, h  =  

27 mm. The spring rest length is s0 = 27 mm.

For antagonistic SEAs, non-linearity of the springs is 

essential to obtain variable compliance (van Ham et al. 

2009). Because forces produced through springs with lin-

ear tension-to-force characteristics tend to cancel out in an 

antagonistic setup, an increase in the tension of both springs 

(i.e. co-contraction) does not change the stiffness of the 

system. Commercially available springs usually have lin-

ear tension-to-force characteristics and consequently most 

antagonistic SEAs require relatively complex mechanical

structures to achieve a non-linear tension- -force curve 
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(Hurst et al. 2004; Migliore et al. 2005; Tonietti et al.

2005). These mechanisms typically increase construction 

and maintenance effort but also can complicate the sys-

tem identification and controllability, for example, due to 

added drag and friction properties. We directly addressed 

this aspect in our design of the SEA, which aims to achieve 

variable stiffness characteristics using a simple mechanical 

setup.

Variable Stiffness with Linear Springs

Here we propose an SEA design that does not rely on com-

plex mechanisms to achieve variable stiffness but achieves 

the desired properties through a specific geometric arrange-

ment of the springs. While the emphasis of this paper is 

not on the mechanical design of actuators, we will explain 

the essential dynamic properties of our testbed. Figure 1 

shows a sketch of the robot, which is mounted horizontally 

and consists of a single joint and two antagonistic servo-

motors that are connected to the joint via linear springs. 

The springs are mounted with a moment arm offset a at 

the joints and an offset of L at the motors. Therefore, the 

spring-endpoints move along circular paths at the joints and 

at the motors. Under the assumption that the servomotors 

are infinitely stiff, we can calculate the torque τ acting on 

the arm as follows. Let s1 denote the vector from point C to

1 1 0
s1

2 2 0
s2

s1 = ⎝−d +Lcosα⎠−⎝−asinθ ⎠,

h + L sinβ
⎞ ⎛

acosθ
⎞

s2 = ⎝−d +L cosβ ⎠− ⎝ a sinθ ⎠ . (1)

A, and s2 the vector from D to B, and s1 and s2 their respec-

tive lengths. Putting the origin of the coordinate system at 

the arm joint, we have

⎛
−h − L sinα

⎞ ⎛
−a cos θ

⎞

0 0

⎛

z
=
˛

a

¸
1

s

0 0

z
=
˛

a

¸
2

s

Denoting the spring constant by κ and the rest length by s0, 

this yields forces

F  = κ( s  − s )
s1

and    F  = κ( s  − s )
s2

. (2)

Given the motor positions α and β and the arm position θ, 

the torque generated by the springs is

τ ( α, β , θ ) = ẑT( F1 × a1 + F2 × a2) , (3)

=

ˆwhere  zT   denotes  the  three-dimensional  basis  vector    

( 0, 0, 1)T. Tocalculate the equilibrium position θeq for given 

motor positions α and β, we need to solve τ ( α, β, θeq) 0, 

which in practice is by numerical optimization. At this 

position, we can calculate the joint stiffness as

= .
K( α, β)

∂
τ(α,β,θ)

∂θ θ=θeq

. (4)

= −

Note that K depends linearly on the spring stiffness κ, but 

the geometry of the arm induces a non-linear dependency 

on α and β. Figure 2 shows the computed profiles of the 

equilibrium position and stiffness, respectively.
Further, denoting the arm’s inertia around the z-axis by Iz

and a damping torque given by τ ( θ̇ )     Dθ ,̇ the dynamic

equation can be analytically written as

Izθ¨=τ(α,β,θ)−Dθ .̇ (5)

Actuator Hardware

Figure 3 depicts our prototype SEA hardware implemen-

tation of the discussed design. For actuation, we employ 

two servomotors (Hitec HSR-5990TG), each of which is 

connected to the arm via a spring mounted on two low  

friction ball bearings. To avoid excessive oscillations, the 

joint is attached to a rotary viscous damper. The servos are 

controlled using 50 Hz PWM signals by an Arduino Duemi-

lanove microcontroller board (Atmel ATmega328). That 

board also measures the arm’s joint angle θ with a contact-

free  rotary  position  encoder  (Melexis MLX90316GO),

as  well  as  its  angular  acceleration  θ̈    using  a LilyPad

accelerometer (Analog Devices ADXL330). Finally, we 

also measure the servomotor positions by feeding a signal
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Fig. 2. Left: Equilibrium position as a function of the motor positions (in degrees), with contour lines spaced at 5◦ intervals. Right: 

Stiffness profile of the arm, as calculated from Equation (4). The maximum achievable stiffness is 150% of the intrinsic spring stiffness.

150

100

50

0
0 2 4 6 8 10 12 14 16 18 20

Time [s]

150

100

50

0
0 2 4 6 8 10 12 14 16 18 20

Time [s]

Fig. 3. Photograph of our antagonistic robot. Inset panel (a): Sep-

arate servomotor mounted at the end of the arm to create stochastic 

perturbations (see Section 4.2).

from their internal potentiometer to the AD converters of 

the Arduino. While the operating frequency is limited to 50 

Hz due to the PWM control, all measurements are taken at 

a 4 higher frequency and averaged on the board to reduce 

the amount of noise, before sending the results to a PC via 

a serial connection (RS232/USB).

System Identification

Apart from measuring the exact dimensions (L    2.6 cm,  

a 1.5 cm, h 2.7 cm, d 8.1 cm) of the robot, and the 

stiffness constant of the spring (κ 424 N m−1), system 

identification consists of a series of steps, each of which 

involves a least-squares fit between known and actually 

measured quantities.

1. Identify servomotor dynamics: The servomotors are 

controlled by sending the desired position (encoded as a 

PWM signal), which we refer to as u1 and u2 for motors 

1 and 2, respectively. Even though the servomotors we

10000

5000

0

–5000

0 2 4 6 8 10 12 14 16 18 20
Time [s]

Fig. 4. Comparison of prediction of performance of estimated 

motor dynamics (top and middle) and of arm dynamics (bottom) 

for an independent test data set.

use are very accurate, they need some time to reach  

the desired position, and therefore we model the true 

motor positions (α, β) as a low-pass filtered version of 

the commands ( u1, u2) using a finite impulse response 

(FIR) filter, i.e.

K

α[n] = ( h ∗ u1) [n] + ‹[n] = h[k]u1[n − k] + ‹[n]
k=0

(6)

and similarly for β and u2. The term ‹[t] denotes a

noise component of the true motor position that can-

not be modeled with the FIR filter. By using the inter-

nal potentiometer of the servomotors, we can measure

the actual motor positions to identify the filter coeffi-

cients hi using a least squares fit, that is, by minimizing

t ( α[n] ( h u1) [n])2 with respect to hi. We retrieved

a good fit of the motor dynamics (cf. Figure 4) using an
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FIR filter with seven steps, with estimated coefficients

h [0, 0, 0, 0.0445, 0.2708, 0.3189, 0.3658].

2. Calibrate position sensor: Tests with the position sensor 

revealed linear position characteristics. By moving the 

arm physically to several predefined and geometrically 

measured positions, we determined the sensor’s offset 

and slope.

3. Calibrate acceleration sensor: We matched the accel-

erations measured with the accelerometer with accel-

erations derived from the position sensor (using finite 

differences).

4. Collect training data and fit parameters: We carried out 

motor babbling (any excitation movements are applica-

ble) on the servos and measured the resulting arm posi-

tions, velocities and accelerations. Taking into account 

the estimated motor dynamics using the fitted filter, we

estimated the arm’sinertia (Iz kg∗m2∗
rad(−2))andvis-

cous damping (D N ∗m∗s∗rad(−1)) coefficient using 
least squares from Equation (5).

On a large independent test set of Stest 300, 000 data 

points, the motor prediction produces a Normalized Mean 

Squared Error (NMSE) of enmse    1.85%. Figure 4 shows 

an example prediction of performance for a sequence of 

random motor commands (20 s from the test set Stest) using 

the estimated dynamic model.

3. Stochastic Optimal Control

In many control scenarios it is desirable to be able to 

perform in the “best way possible”. For example, one may 

wish to move the system to a desired posture and consume 

as little energy as possible during the movement. This type 

of problem is studied in optimal control theory, the central 

ingredient of which is the minimization of an optimality 

criterion
∫ T

solving a two-point boundary difference/differential equa-

tion derived by applying Pontryagin’s minimum principle 

(Stengel 1994). In practice, in the presence of small pertur-

bations or modeling errors, the optimal open-loop sequence 

of commands  can be run on the real plant together  with   

a simple PD controller that corrects deviations from the 

planned trajectory. However, those corrections will usually 

not adhere to the optimality criterion, and the resulting cost 

J will behigher.

Alternatively, we can try to incorporate stochasticity, e.g. 

as a dynamic model

dx = f( x, u) dt + F( x, u) dξ , ξ ∼ N ( 0, I) (8) 

directly into the optimization process and minimize the

expected  cost.1  Here, dξ is a Gaussian noise process and

F( ) tells us how  strongly the noise affects each part of  

the state and control space. A well-studied example of this 

case is the LQG problem, which stands for linear dynamics 

(f( x, u) Ax Bu), quadratic cost (in both x and u), and 

Gaussian noise (F is constant). A solution to this class of 

problems is the optimal feedback controller (OFC), that is, 

a policy u   π ( x, t) that calculates the optimal command 

u based on feedback x from the real plant. In the LQG 

case, the solution is a linear feedback law u L( t) x with 

precomputed time-dependent gain matrices2 L( t) (Stengel 

1994).

Solving OFC problems for more complex systems (non-

linear dynamics, non-quadratic cost, varying noise levels

F) is a difficult computational task. A general way  to 

solve OFC problems for non-linear quadratic problems is 

Dynamic Programming (DP) (Bellman 1957). DP in its 

basic form relies on a discretization of the state and action 

space, which in practice is difficult to obtain: On the one 

hand, tiling the state–action space too sparse will lead to 

poor representation of the underlying plant dynamics. On 

the other hand, a very fine discretization leads to a com-

binatorial explosion of the problem, which is commonly

J [u] =

J [u] =

c( x( t), u( t), t) dt h( x(T)) or0

∞

c( x( t), u( t), t) dt, (7)
0

referred to as the curse of dimensionality. For example, con-
sider a discretization of 100 steps for each variable of the
state and action space. In the case of the presented SEA, 

this corresponds to a state space dimensionality n 2, for 

positions and velocities, and action space dimensionality
for a task with a finite or infinite horizon. Apart from the
optional final cost h( ), the criterion integrates a cost rate 

c( x, u) over the course of the movement. That cost may 

depend on the system’s state x, control commands u and 

on time t, where the initial state of the system is given as 

x( 0), and x( t) evolves depending on the commands u( t). 

In the context of biological motor control, this theory has 

been studied for decades with the well-known examples of 

various optimality criteria such as minimum time (Bobrow 

et al. 1985), energy (Li and Todorov 2007), jerk (Flash and 

Hogan 1985) and torque change (Uno et al. 1989).

For a system with deterministic (and accurately modeled) 

dynamics x f( x, u), it is sufficient to find the open-loop 

sequence of commands u( t) and the associated trajectory 

x( t) that minimizes J , which can usually be obtained by

m 2, for the two motors.3 Even for this low-dimensional
system the possible combinations of states and actions that 

DP needs to evaluate and store in order to find the optimal 

control law are p   1004   100,000,000. One way to avoid 

the curse of dimensionality is to restrict the state space to  

a region that is close to a nominal optimal trajectory. In the 

neighborhood of such trajectories the DP problem can be 

approximated analytically using Taylor expansions of the 

dynamics and the cost function. The idea is to compute   

an optimal trajectory together with a locally valid feedback 

law and then iteratively improve this nominal solution until 

convergence. Well-known examples of such iterative meth-

ods are Differential Dynamic Programming (DDP) (Dyer 

and McReynolds 1970; Jacobson and Mayne 1970) or the 

more recent iterative Linear Quadratic Gaussian (ILQG)

+

∫
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(Todorov and Li 2005), which will serve as solution tech-

nique of choice in this paper. ILQG yields both an open-

loop sequence of commands and optimized feedback gain 

matrices, but these are not guaranteed to converge towards 

the global optimum: Depending on the initial guess of   

the trajectory, the iterative improvement might result in a 

solution with only a locally optimal expected cost J .

Modeling Dynamics and Noise through Learning

Analytical dynamic formulations, as described in Section

2.1 or in Equation (5), have the tremendous advantage of

being compact and fast to evaluate numerically, but they

also suffer from drawbacks. First, their accuracy is limited

to the level of detail put into the physical model. For exam-

ple, our model is based on the assumption that the robot is

completely symmetric, that both motors are perfectly cali-

brated, and that the two springs are identical, but in reality

we cannot avoid small errors in all of these. Second, the

analytical model does not provide obvious ways to model

changes in the dynamics, such as from wear and tear, or

more systematic changes due to the weight of an added tool.

While these problems can to some extent be alleviated

by a more involved and repeated system identification pro-

cess, the situation is more difficult if we consider the noise

model F( ), or stochastic changes to the dynamics. For

example, an arm might be randomly perturbed by tool inter-

Learning this mapping from data, we can directly account 

for asymmetries. More interestingly, when we collect data 

from the perturbed system, we  can acquire a model of   

the arm’s kinematic variability as a function of the motor 

positions.

We use this learned model f˜ in two ways: first, in (slow)

position control tasks (Section 3.2), and in conjunction with 

full analytic dynamic models for dynamic reaching tasks 

(Section 3.3).

Energy Optimal (Equilibrium) Position 

Control

Consider the task of holding the arm at a certain position 

θ ,̂ while consuming as little energy as possible. Let us fur-
ther assume that we have no feedback from the system,5

but that the arm is perturbed randomly. We can state this 

mathematically as the minimization of a cost

J = wp( f ( u) −θˆ)2 +| u| 2 , (10)

where wp is a factor that weights the importance of being 

at the right position against the energy consumption, which 

for simplicity we model by u 2. Taking into account that 

the motor commands u are deterministic, and decomposing 

the expected position error into an error of the mean plus 

the variance, we can write the expected cost J as

actions such as when drilling into a wall, with stronger 

effects for certain postures, and milder effects for others.
It is not obvious how one can model state dependent noise

J = wp .
(f ( u) ) − θ̂

Σ2

+ w
..

f ( u) −(f ( u) )
Σ2. + | u | ,

(11)

analytically.

We therefore propose to include a supervised learning 

component and to acquire both the dynamics and the noise 

model in a data-driven fashion (Figure 5). Our method of 

choice in this paper is Locally Weighted Projection Regres-

sion (LWPR) or (Vijayakumar et al. 2005), because that 

algorithm allows us to adapt the models incrementally and 

online, and it is able to reflect heteroscedastic4 noise in the

which based on the LWPR learned model becomes

J = wp( f̃ (u)−θˆ)2+wpσ2( u)+| u|2. (12)

Here f (̃ u) and σ ( u) denote the prediction and the one-

standard-deviation-based confidence interval of the LWPR 

model of f ( u). The constant wp represents the importance 

of the accuracy requirements in our task. We then can easily
minimize J with respect to u =( u , u )T numerically, taking

training data through localized confidence intervals around 1  2
◦ 6

its predictions. More details on learning with LWPR can be 

found in Appendix A.

In order to simplify the presentation as much as possi-

ble, and also due to technical challenges of operating on the 

real hardware (for details see Section 5), in this work we 

learn the stochastic mapping f ( u) from motor positions to 

joint angle θ , not taking into account velocities and accel-

erations. During stationary conditions and in the absence 

of perturbations, this mapping reflects the equilibrium posi-

tion of the arm (Figure 2, left). In correspondence to the 

general dynamic equation (8), here the state x θeq repre-

sents the current equilibrium position, u the applied motor 

action, and dx the resulting change in equilibrium position. 

Therefore the reduced dynamics used here, only depends on 

the control signals, i.e.

dx = f ( u) dt + F( u) dξ , ξ ∼ N ( 0, 1). (9)

into account the box constraints 0◦ ≤ ui ≤ 180 .

Dynamic Control with Learned Stochastic 

Information

Equilibrium position control is ignorant about the dynam-

ics of the arm, that is, going from one desired position     

to the next might induce swinging movements, which are 

not damped out actively. Proper dynamic control should 

take these effect into account and optimize the command 

sequence accordingly. What follows is a description of 

how we model the full dynamics of the arm, that is, the 

combination of the dynamics of the joint and the motors.

The state vector x[k] of our system at time k consists of 

the joint angle x1[k] θ[k] and joint velocity x2[k] θ [̇k]

as well as 12 additional state variables, which represent the 

command history of the two motors, i.e. the last six motor
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∇xθ =
I ∂θ

,−D,
∂α

h2,
∂α

h3,. . . ,
∂α

h7,

βt 
( u2 − x8), 

βt 
( x8 − x9), ... 

z

Σ

. Σ

positions, velocities & 
motor commands

Fig. 5. Schematic diagram of our proposed combination of stochastic optimal control (SOC) and learning. The dynamic model used 

in SOC is acquired and constantly updated with data from the plant. The learning algorithm extracts the dynamics as well as stochastic 

information contained (noise model from confidence intervals). SOC takes into account both measures in the optimization.

commands that were applied to the system. The state vector, 

therefore, is

x[k] = ( θ[k], θ˙[k], u1[k − 1], .. . , u1[k − 6],

The gradient of θ̈ ( x) is given by the chain rule, where τ is 

the short notation for τ ( α, β, θ ). Note that θ x1, θ̇  x2, 
and α and βare calculated from x3...14:

u2[k − 1], . .. , u2[k − 6])T , (13)
¨ 1

.
∂τ ∂τ ∂τ ∂τ

motor 1, and similarly,  x9[k], . . . , x14[k] for motor 2, are

required to represent the FIR filter states of the motor 

dynamics from Equation (6). We can estimate the motor 

positions  α[k]  and  β[k]  solely  from  these  filter states
because the FIR coefficients are h0 = h1 = 0:

∂τ
h2,

∂τ
h3, . . . ,

∂τ
h7 . (20)

∂β ∂β ∂β

This only shows the second row of the Jacobian xf(x, u) 

and for brevity we omitted the others as they are trivial. The

7 7
other Jacobian ∇uf( x, u) consists of zero entries apart from

α[k] =
.

hju1[k − j+ 1] =
.

hjxj+1[k] (14)

the entry 1/βt 50 at indices ( 3, 1) and ( 9, 2).
Since the dynamics of our system is non-linear and high-

j=2
7

j=2
7 dimensional, we have to employ an iterative local optimiza-

β[k] =
.

hju2[k − j+ 1] =
.

hjxj
+7[k]. (15)

tion approach. We employ the ILQG method due to its abil-

ity to include constraints on the commands. More details of
j=2 j=2 the ILQG algorithm can be found in Appendix B.

Based on the rigid body dynamics from Equation (5) we 

can compute the acceleration from states (i.e. forward 

dynamics) as
1

θ¨[k] =
I

τ(α[k], β[k], θ[k])−Dθ˙[k] . (16)

Therefore “running” the dynamics here means account-
ing for motor dynamics by shifting the filter states, that is 

xi+1[k + 1] = xi[k] for i = 3, .. . , 7 and i = 9, . .. , 13, and

The usual ILQG formulation is based on an analytically 

given cost function (deterministic) and a stochastic dynamic 

function. Here we use a deterministic dynamics (with the 

idealized analytic model) and we propose a cost function 

that takes stochastic information into account.

c( x, u) = wp( x1 − θˆ)2 +wvx2 + we | u | 2 + wd(( u1 − x3)2

+ ( u2 − x9)2 ) +wpσ 2( u) . (21)

then Euler-integrating the velocities and accelerations:

x[k + 1] = x[k] +βt f( x[k], u[k]) (17)

= ( θ [k] + βtθ̇ [k], θ̇ [k] + βtθ̈ [k], u1[k],

x3[k], . . . , x7[k], u2[k],

x9[k], . .. , x13[k])T . (18)

Alternatively, we can drop the time index k and write the 

dynamics in compact form as

f( x, u)

.

x , ¨( x) ,
1

( u x ) ,
1

( x x ) , ,

All quantities in Equation (21) (also possibly the pre-

factors) are time-dependent, but we have dropped the time 

indices for notational simplicity. As before wp governs the 

accuracy requirement. In addition, a stability term wv gov-

erns the importance of having zero velocity and we penal-

izes energy consumption at the level of springs. The weight-

ing factor wd penalizes changes in motor commands and 

therefore energy consumption at the level of the servomo-

tor. The last term includes the learned uncertainty in our

= 2 θ

1

βt
1 − 3

1 

βt
3 − 4

ΣT

... equilibrium positions, which is here also scaled by wp. This 

is justified because, for example, for a reaching task, the 

arm will finish with the servomotors in a position such that

the arm’s equilibrium position is the desired position θ̂ ,and

, x8[k] for...where the additional state variables x3[k],

Stochastic

Optimal 

Controller

Execute control law Plant

Dynamics + Noise Dynamics data

Dynamics 

learning

Cost function

a
c
c
e
le

ra
ti
o
n
s

z

. (19)
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we have learned from data how much perturbation we can 

expect at any such configuration. The same holds true for 

slow tracking tasks, where the servos will be moved such 

that the equilibrium positions track the desired trajectory.

4. Results

In this section we present results from the optimal control 

model applied to the hardware described earlier in Sec-

tion 2. We first highlight the adaptation capabilities of this 

framework experimentally and then show how the learned 

stochastic information leads to an improved control strat-

egy over solutions obtained without stochastic information. 

More specifically the new model achieves higher posi-

tional accuracy by varying impedance of the arm through 

motor co-contraction. We study position holding, trajectory 

tracking and target reaching tasks.

Experiment 1: Adaptation towards a Systematic 

Change in the System

An advantage of the learned dynamic paradigm is that it 

allows us to account for systematic changes without prior 

knowledge of the shape or source of the perturbation. To 

demonstrate such an adaptation scenario we set up a sys-

tematic change in the hardware by replacing the left spring, 

between motor 1 and the joint (i.e. between points A and C 

in Figure 1), with one that has a lower, “unknown” spring 

constant. The aim is to hold a certain equilibrium position 

using the energy optimal position controller described in

Section 3.2. As expected, the prediction about the equilib-

rium points (i.e. f̃ (u)) does not match the real, changed

system properties.

Next, we demonstrate how the system can adapt online 

and increase performance, trial by trial. We specified a tar-

get trajectory that is a linear interpolation of 200 steps
between the start position θ0  = −30◦  and the target posi-

shown by the asymmetric shape. Analyzing the motor com-

mands (Figure 6 right) shows that the optimal controller, for 

all trials, chooses the motor commands with virtually no 

co-contraction. This is a sensible choice as co-contraction 

would contradict the minimum energy cost function that we 

have specified.

The Role of Stochastic Informationfor 

Impedance Control

Because co-contraction and energy consumption are oppos-

ing properties, our controller will hardly make use of the 

redundant degree of freedom in the actuation. Even though 

minimum energy optimal control in an antagonistic system 

seems to be “unable to co-contract” it remains our favorite 

choice of performance index as it also implies compliant 

movement and as it follows the biological motivation. If we 

consider the stochastic information that would arise from  

a task involving random perturbations, we can see that the 

produced stochasticity holds valuable information about the 

stability of the system.7 If the uncertainty can be reduced 

by co-contracting it will be reflected in the data, i.e. in the 

LWPR confidence bounds. Therefore the answer to the pre-

vious question is that, given that we wish to achieve high 

task accuracy, the controller should co-contract whenever 

it can reduce the expected noise/stochasticity in the system 

(weighted with the accuracy requirement).

Suppose our system experiences some form of small

random perturbations during control. In the hardware we 

realize such a scenario by adding a perturbation motor at 

the end of the arm, which mimics, for example, a drilling 

tool (panel “a” in Figure 3). The perturbation on the arm  

is produced by alternating the servomotor positions quickly 

every 200 ms from 40◦ to 40◦. The inertia of the addi-

tional weight then produces deflections of the arm from the 

current equilibrium position. With these perturbations, we 

collected new training data and updated the existing LWPR

model f .̃ The collected data reveals that the arm stabilizes

tion θ̂ 30◦. We  tracked this trajectory by recomputing

the equilibrium positions, i.e. by minimizing Equation (12) 

at a rate of 50 Hz. At the same time we updated f (̃u)

during reaching. Due to the nature of local learning algo-

rithms, f̃ is only updated in the neighborhood of the current

trajectory and therefore shows limited generalization. To 

account for this, after each trial, we additionally updated 

the model with 400 training data points, collected from a

20 20 grid of the motor’s  range u1 u2 [0◦, 180◦].

Figure 6 depicts the outcome of this adaptation experiment. 

One can observe that the controller initially (lighter lines) 

fails to track the desired trajectory (red). However,  there  

is significant improvement between each trial, especially 

between trials 1 to 5. After about nine trials the internal 

model has been updated and manages to track the desired 

trajectory well (up to the hardware’s level of precision). The 

equilibrium position predictions in Figure 7 confirm that 

the the systematic shift has been successfully learned, as

in regions with higher co-contraction, where the stiffness 
is higher. This behavior is illustrated in Figure 8, which 

shows motion traces around θ 0◦ due to the perturbation

motor for different co-contraction levels. This information 

is contained in the learned confidence bounds (Figure 9) 

and, therefore, the optimal controller effectively tries to find 

the tradeoff between accuracy and energy consumption.

Experiment 2: Impedance Control for 

Varying Accuracy Requirements

Based on the learned LWPR model f̃  from the previous 

section, we can demonstrate the improved control behav-

ior of the stochastic optimization with emerging impedance 

control. We formulate a task to hold the arm at the fixed

positionsθ̂ 15◦ and θ̂ 0◦, respectively. While minimiz-

ing for the cost function in Equation (12), we continuously 

and slowly increased the position penalty within the range
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Fig. 6. Visualization of the adaptation process. Left: Desired (red) and observed arm positions. Right: Motor commands for the 

corresponding trials. Darker and thinner lines indicate later stages of learning.

wp [10−2, 105]. The left column in Figure 10 summarizes 

the results we discuss next: At wp 10−2 to approximately 

wp 100 the optimization neglects position accuracy and 
minimizes  mainly  for  energy,  i.e.  u1   u2    0.  The  
actual joint positions, because of the perturbations, oscil-

late around the mean θ 0◦ as indicated by  the shaded  

area. Between wp  100  and wp   102  the position con-
straint starts to “catch up” with the energy constraint; a shift

in the mean position towards θ̂   can be observed. At about

wp 5 101, the variance in the positions increases as the 

periodic perturbation seems to coincide with the resonance 

frequency of the system. For wp > 102 the stochastic infor-

mation is weighted sufficiently such that the optimal solu-

tion increases the co-contraction and the accuracy improves 

further.

In contrast, if we run the same experiment while ignoring 

the stochastic part of the cost function, i.e. we minimize for

the deterministic cost function J wp( f̃ ( u)   θ̂ )2 u 2

only, we can can see (Figure 11) that the system does, as 

expected, not co-contract and hardly improves performance 

accuracy.

4.4. Experiment 3: ILQG-Reaching Task with a 

Stochastic Cost Function

For certain tasks, such as quick target reaching or faster 

tracking of trajectories, the system dynamics based on equi-

librium points θ f ( u) may not be sufficient, as it contains 

no information about the velocities and accelerations of the 

system. Next, we assume a full forward dynamic descrip-

tion of our system as identified in Equation (13), where the 

state consists of joint angles, joint velocities, and twelve 

motor states.

The task is to start at position θ0 = 0◦ and reach

the cost function (21) by setting the weighting terms as 

follows: the time-dependent position penalty is a mono-

tonically increasing linear interpolation of 100 steps, i.e.

wp[t] = [0.1, 0.2, .. . , 10]. The penalty for zero endpoint 

velocity was set to wv[t] = 0 for 0 < t < 80 and wv[t] = 1 

for t  ≥  80. The energy penalties are assumed constant  

we = wd = 1 during the whole movement.

By using ILQG, we then compute an optimal control 

sequence u with the corresponding desired trajectory x and 

a feedback control law L. Figure 12 depicts the reaching 

performance of the ILQG trajectory, applied in open-loop 

mode and in closed-loop mode (i.e. using feedback law L), 

where the robot has been perturbed by a manual push. The 

closed-loop scheme successfully corrects the perturbation 

and reaches the target while the open-loop controller oscil-

lates and fails to reach the target. This experiment high-

lights the benefits of closed-loop optimization which can, 

by incorporating the full dynamic description of the sys-

tem, account for such perturbations. However, the ability 

to correct perturbations is limited by the hardware control 

bandwidth (i.e. slow servomotor dynamics and 50 Hz con-

trol board frequency). If the system also suffers from feed-

back or motor delays the correction ability is limited and 

for example accounting for vibrations or noise8 is difficult 

to achieve using feedback signals only. For such stochastic 

perturbations, impedance control can improve performance 

as it changes  the mechanical  properties of the system in  

a feed-forward manner, i.e. it reduces the effects of the 

perturbations in the first place.

To realize such a scenario, we defined a tracking task

that starts at the zero position then moves away and back 
again along a sinusoidal curve for 2.5 s. The cost function 
parameters for this task are defined as follows: The time-

dependent position penalty is wp[t] = [50, 100, . . . , 4,000]

towards the target θˆ = 0.3 rad (= 17.18◦). The reaching for 0 < t < 80 and wp[t] = 4,000 for t ≥ 80. The endpoint
movement duration is fixed at 2 s, which corresponds to
T 100 discretized time steps at the hardware’s opera-

tion rate of 50 Hz. This task can be formalized based on

velocity term is wv[t] = 0 for 0  < t  < 80 and wv[t] = 10

for t  ≥  80.  The  energy  penalties  are held  constant, i.e.

we = wd = 1.

Desired
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Fig. 7. Learned position models during the adaptation process. The white numbers represent the equilibrium points.

As before, we observe the benefits of using stochastic 

information for optimization compared to a determinis-  

tic optimization (not using the LWPR confidence bounds). 

After computing the optimal control using ILQG we ran 

the optimal feedback control law (see Appendix B) con-

secutively 20 times in each condition, i.e. with and without 

stochastic optimization. Note that the perturbation motor is 

switched on at all times. Figure 13 summarizes the results: 

as expected the stochastic information in the cost function 

induces a co-activation for the reaching task, which shows 

generally better performance in terms of reduced variabil-

ity of the trajectories. Evaluating the movement variability 

where the accuracy weight is maximal, i.e. for t  > 80, the

standard deviation of the trajectories is significantly lower 

with σstoch = 0.55◦ for the stochastic optimization com-

pared to the deterministic optimization with σdet  = 1.38◦.

A detailed look at the bottom right plot in Figure 13 reveals 

a minor shift in the recorded trajectory compared to the 

planned one from the analytic model. We attribute this 

error to imprecisions in the hardware, i.e. tiny asymme-

tries, which are not included in the analytic model. In the 

case of higher co-contraction, small manufacturing errors 

and an increased joint friction lead to deviations towards 

the idealized analytic model predictions. Indeed the learned 

dynamic model can account for these asymmetries as can 

be seen in Figure 9 (left), along the equilibrium position

θ = 0◦, i.e. the line u1 = u2 is slightly skewed.

5. Conclusion and Outlook

In this paper we have presented a stochastic optimal control 

model for antagonistically actuated systems. We proposed

15
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Fig. 8. Motion traces of our SEA hardware around θ = 0◦. The perturbation motor causes different deflections depending on the co-

contraction levels: (a) u1 = u2 = 0◦, (b) u1 = u2 = 45◦, (c) u1 = u2 = 120◦.
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Fig. 9. Left: Learned equilibrium position as a function of the motor positions (in degrees), with contour lines spaced at 5◦ intervals. 

Right: Stochastic information given by the heteroscedastic confidence intervals of LWPR.

to learn the dynamics as well as the stochastic information 

of the controlled system from sensorimotor feedback of the 

plant. This control architecture can account for a system-

atic change in the system properties (Experiment 1) and, 

furthermore, is able, by incorporating the heteroscedastic 

prediction variances into the optimization, to compensate 

for stochastic perturbations that were induced in the plant.

Doing so, our control model demonstrated significantly 

better accuracy performance than the deterministic opti-

mization in both energy-optimal equilibrium point control 

(Experiment 2) and energy-optimal reaching using dynamic 

optimization (Experiment 3). The improved behavior was 

achieved by co-activating antagonistic motors, i.e. by using 

the redundant degree of freedom in the system based on the

u
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first principles of optimality. The presented results demon-

strate that this is a viable optimal control strategy for real 

hardware systems that exhibit hard-to-model system prop-

erties (e.g. asymmetries, systematic changes) as well as 

stochastic characteristics (e.g. using a power tool) that may 

be unknown a priori.

An advantage of the presented control architecture is that 

motor co-activation (or impedance) does not need to be 

specified explicitly as a control variable but emerges from 

the actual learned stochasticity within the system (scaled 

with the specified accuracy requirements of the task). 

Therefore, co-activation (i.e. higher impedance), since it is 

energetically expensive, will only be applied if it actually is 

beneficial for the accuracy of the task.

Exploiting stochasticity in wider domains The method-

ology we suggest for optimal exploitation of sensorimo-

tor stochasticity through learning is a generic principle 

that goes beyond applications to impedance modulation of 

antagonistic systems but can be generalized to deal with any 

kind of control or state dependent uncertainties. For exam-

ple, if we wish to control a robot arm that suffers from poor 

repeatability in certain joint angles or in a particular range 

of velocities, this would be visible in the noise landscape

(given one has learned state dependent stochastic dynamics) 

and consequently those regions would be “avoided” by the 

optimal controller. In this context, the source of the stochas-

ticity is irrelevant for the learner and therefore, it could arise 

from internal (i.e. noise in the motor), as well as external 

(i.e. power tool) sources. However, the stochastic system 

properties must, to a certain degree, be stationary in time 

so that the learner can acquire enough information about 

the noise landscape.

Biological relevance As mentioned in the introduction, 

biological systems are often used as a benchmark for the 

control of artificial systems. In this work not only the antag-

onistic hardware but also the actual control architecture is 

motivated by biological principles. Optimality approaches 

have been a very fruitful line of research (Todorov 2004; 

Scott 2004; Shadmehr and Krakauer 2008) and its combi-

nation with a learning paradigm (Mitrovic et al. 2008) is 

biologically justified a priori, since the sensorimotor sys-

tem can be seen as the product of an optimization process 

(i.e. evolution, development, learning, adaptation) that con-

stantly learns to improve its behavioral performance (Li 

2006). Indeed, internal models play a key role in efficient 

human motor control (Davidson and Wolpert 2005) and it
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has been suggested that the motor system forms an internal 

forward dynamic model to compensate for delays, uncer-

tainty of sensory feedback, and environmental changes in a 

predictive fashion (Wolpert et al. 1995; Kawato 1999; Shad-

mehr and Wise 2005). Notably a learned optimal trade-

off between energy consumption, accuracy and impedance 

has been repeatedly observed in human impedance con-

trol studies (Burdet et al. 2001; Franklin et al.  2008). 

More specifically, the amount of impedance modulation in

humans seems to be governed by some measure of uncer-

tainty, which could arise from internal (e.g. motor noise) or 

external (e.g. tools) sources (Selen et al. 2009).

In the computational model presented here, these uncer-

tainties are represented by the heteroscedastic confidence 

bounds of LWPR and integrated into the optimization 

process via the performance index (i.e. cost function). Such 

an assumption is biologically plausible, since humans have 

the ability to learn not only the dynamics but also the
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stochastic characteristics of tasks, in order to optimally 

learn the control of a complex task (Chhabra and Jacobs 

2006; Selen et al. 2009).

Hardware Limitations and Scalability This work repre-

sents an initial attempt to modulate the impedance of a real 

antagonistic system in a principled fashion. The proposed 

SEA has been primarily designed to perform as a “proof of 

concept” of our control method on a real system. Specifi-

cally we can identify several limitations of our system that 

need further investigation in the future.

First, the stiffness range of the system is fairly low as 

spring non-linearities are achieved by the geometric effect 

of changing the moment arms. There are other, mechani-

cally sophisticated, SEA designs with large stiffness ranges 

(e.g. Grebenstein and van der Smagt 2008; van Ham et al. 

2009), which also could serve as attractive implementation 

platforms for our algorithm. Specifically the MACCEPA 

design (van Ham et al. 2007) is very appealing as it is tech-

nically simple and offers a large stiffness range; however, 

parallels to biologically realistic implementations are less 

obvious in this design, as the system is not antagonistically

actuated. The fact that we were able to obtain a significant 

increase in co-contraction from the learned stochastic infor-

mation, even for hardware with a very low stiffness range 

is promising, indicating good resolution capabilities of the 

localized variance measure in LWPR.

Second, the relatively slow control loop (50 Hz) causes 

controllability issues (i.e. slow feedback) and, furthermore, 

turned out to be sensitive to numerical integration errors 

within ILQG. While these numerical issues have not caused 

problems in an analytic dynamic formulation (Experiment 

3), they turned out to be critical when we run ILQG using

the full learned forward dynamics f˜(x, u). Under these con-

ditions, for most of the time ILQG does not converge  to   

a reasonable solution. A potential route of improvement 

could be a combination of LWPR learning with an analytic 

model. Instead of “ignoring” valuable knowledge about the 

system given in analytic form, one could focus on learning 

an error model only, i.e. aspects of the dynamics that are 

not described by the analytic model.

Third, the transfer of optimal controls from simulation to 

the real hardware has proven to be very challenging. Cur-

rently we are computing ILQG solutions for a fixed time
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·

horizon and later applying them to the SEA. For slower 

movements this approach produces satisfying accuracy. In 

Experiment 3 we “enforced” slower and smoother move-

ments by formulating an appropriate time-dependent cost 

function. However, for movements with higher frequency 

the situation is more difficult: Errors accumulate on the 

hardware over the course of the trajectory, since the feed-

back loop for corrections is very slow. This leads to solu-

tions that differ significantly from the preplanned optimal 

solution. A potential route to resolve this problem is to  

use a model predictive control approach in which the opti-

mal solutions are re-computed during control with current 

states of the plant as initial states. However, this approach 

requires computationally efficient re-computations of the 

optimal control law, which may be hard to obtain, especially 

for systems with higher dimensionality.

Finally, our experiments were carried out on a low-

dimensional system with a single joint and two motors. 

Implementations on systems with higher dimensionality, 

however, are still very challenging as the construction of 

antagonistic robots is non-trivial and the availability of large 

degrees of freedom systems is very limited. Due to the 

curse of dimensionality, high-dimensional systems impose 

serious computational challenges on both optimal control 

methods and machine learning techniques. While some of 

these issues have been addressed in previous work (Todorov 

et al. 2005; Mitrovic et al. 2008, 2010), we believe that  

the study of impedance control based on stochastic senso-

rimotor feedback is a promising route of research for both 

robotic and biological systems.
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Notes

1. This means we put expectation brackets around the integrals 

and h( ) in (7).

2. For the infinite-horizon case, the matrix is constant.

3. Note that we have ignored any motor dynamics.

4. Stability here refers to the desired equilibrium position.

5. Heteroscedastic noise has different variances across the state 

and action space. For example, the variance of the noise can 

scale with the magnitude of the control signal u, which is also 

called signal dependent noise.

6. Alternatively, assume the feedback loop is so slow that it is 

practically unusable.

7. For our SEA this optimization can be performed in real time,

i.e. at least 50 times per second, which corresponds to the 

maximum control frequency of our system (50 Hz).

8. or any other high-frequency perturbation.
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Appendix A: Learning with LWPR

In order to learn the plant dynamics various supervised 

learning algorithms could be applied. Here we focus on 

local learning methods, which represent a function by using 

small simplistic patches, e.g. first-order polynomials. The 

size of the locality is determined by gating activation ker-

nels, and the positions and number of the local kernels are 

adapted during learning to represent the non-linear func-

tion. Because the input data activates only local patches, 

local learning algorithms are robust against global nega-

tive interference. This ensures the flexibility of the learned 

model towards systematic changes in the dynamic proper-

ties of the arm (e.g. load, material wear). Furthermore, the 

domain of real-time robot control demands certain proper-

ties of a learning algorithm, namely fast learning rates and 

high prediction speeds at run-time if the model is trained 

incrementally. LWPR has been shown to exhibit these prop-

erties, and to be very efficient for incremental learning of 

non-linear models (Vijayakumar et al. 2005).

In LWPR, the regression function is constructed by 

blending local linear models, each of which is endowed with 

a locality kernel that defines the area of its validity (also 

termed its receptive field). During training, the parameters 

of the local models (locality and fit) are updated using incre-

mental Partial Least Squares, and models can be pruned or 

added on an as-need basis, for example, when training data 

is generated in previously unexplored regions. Usually the 

receptive fields of LWPR are modeled by Gaussian kernels, 

so their activation or response to a query vector z (here the 

inputs are the two motor commands u) is given by

van Ham R, Sugar T, Vanderborght B, Hollander K and Lefeber 

D (2009) Compliant actuator designs. IEEE Robotics and 

Automation Magazine 16(3): 81–94.

van Ham R, Vanderborght B, Van Damme M, Verrelst B and

wk( z) = exp
.

−
1 ( z − ck)T Dk( z − ck)

Σ

, (22)

Lefeber D (2007) MACCEPA, the mechanically adjustable 

compliance and controllable equilibrium position actuator:

where ck is the center of the kth linear model and Dk is its 

distance metric. Treating each output dimension separately
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2

+

for notational convenience, the regression function can be 

written as

K K

f˜( z) =
1 .

w ( z) ψ (z), W = 
.

w ( z) , (23)

ψk( z) = b0 + bT( z − ck) , (24)

where b0 and bk denote the offset and slope of the kth 

model, respectively.

LWPR learning has the desirable property that it can be 

carried out online, and moreover, the learned model can be 

adapted to changes in the dynamics in real-time. Further-

more, the statistical parameters of LWPR regression models 

provide access to the confidence intervals, here termed con-

fidence bounds, of new prediction inputs (Vijayakumar et al. 

2005). In LWPR the predictive variances are assumed to 

evolve as an additive combination of the variances within 

a local model and the variances independent of the local 

model. The predictive variance estimates σ 2 for the kth

Fig. 14. Typical regression function (blue continuous line) using 

LWPR. The dots indicate a representative training data set. The 

receptive fields are shown as ellipses drawn at the bottom of the 

plot. The shaded region represents the confidence bounds around 

the prediction function. The confidence bounds grow between    

z =[5..6] (no training data) and generally towards larger z values 

(noise grows with larger values).

x̄i[k + 1] = x̄i[k] + βt f( x̄i[k], ūi[k]). Next, the discretized

local model can be computed by analogy with ordinary 

linear regression. Similarly one can formulate the global 

variances σ2 across models. Byanalogy with Equation (23),

dynamics (Equation (5)) are linearly approximated as

δx[k + 1] =

.

I + βt
∂ f .

Σ

δx[k] + βt
∂ f . δu[k].

pred =
1 K

W 2
wk( z)σ2 +

. 2
pred,k . (25)

Similarly one can derive a quadratic approximation of the 

cost function around x̄i[k] and ū i[k]:

1
k=1 k=1 cost[k] = q[k] +δx[k]Tq[k] + δx[k]TQ[k]δx[k] (27)

2
The local nature of LWPR leads to the intuitive require-

ment that only receptive fields that actively contribute to 

the prediction (e.g. large linear regions) are involved in  

the actual confidence bounds calculation. Large confidence 

bound values typically evolve if the training data contains where

δu[k]Tr[k] + 
1 

δu[k]TR[k]δu[k] +

δu[k]TP[k]δx[k]

much noise and other sources of variability, such as chang- ∂v[k]

.

bounds compared with densely trained regions. Figure 14 

depicts the learning concepts of LWPR graphically for a 

learned model with one input and one output dimension.

∂2v[k]
Q[k] = βt

x̄[k],ū[k]

∂v[k] .

∂2v[k]

P[k] = βt 
∂u ∂x

.

∂ v[k] .
x̄[k],ū[k]

values. Furthermore, in the range z [5..6] no data was
sampled for training to show the effects of sparse data on 

LWPR learning.

Appendix B: The ILQG Algorithm

The ILQG algorithm starts with a time-discretized initial 

guess of an optimal control sequence and then iteratively 

improves it with respect to the cost function. From the 

initial control sequence ui at the ith iteration, the corre-

sponding state sequence xi is retrieved using the determin-

istic forward dynamics f with a standard Euler integration

Both approximations are formulated as deviations δxi[k]

xi[k] xi[k] and δui[k]  ui[k]   ui[k] of the current opti-

mal trajectory and therefore form a “local” LQG problem. 

This linear quadratic problem can be solved efficiently via 

a modified Ricatti-like set of equations that yields an affine 

control law π [k]( δx) l[k]  L[k]δx[k]. This control law 

has a special form: since it is defined in terms of deviations 

of a nominal trajectory and since it needs to be implemented 

iteratively, it consists of an open-loop component l[k] and a 

feedback-component L[k]δx[k]. The actual optimization in 

ILQG supports constraints for the control variable u, such 

as lower and upper bounds. After the optimal control signal

ū[k]
∂u

The noisy training data was drawn from an example func-

tion that becomes more linear and more noisy for larger z

ing output distributions. Further regions with sparse or no 

trainingdata, i.e. unexplored regions, showlarge confidence

LWPR then combines both variances additively to form the 

confidence bounds given by (26)

.

σ

K

wk( z)σ

k=1 k=1

q[k] = βtv[k] q[k] = βt
∂x

(28)

r[k] = βt
ū[k]

Σ
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¯correction δui has been obtained, it can be used to improve 

the current optimal control sequence for the next iteration 

using ui+1[k] ui[k] δui[k]. Finally, ui+1[k] is applied to 

the system dynamics (Equation (5)) and the new total cost 

along the trajectory is computed. The algorithm stops once 

the cost v cannot be significantly decreased anymore. After 

convergence, ILQG returns an optimal control sequence u

and a corresponding state sequence x (i.e. trajectory). Along 

with the open-loop parameters x and u, ILQG produces a 

feedback matrix L which may serve as optimal feedback 

gains for correcting local deviations from the desired tra-

jectory of the plant (Figure 15). The control law for each 

time step k is defined as

u[k]plant = ū[k] + δu[k] (29)

δu[k] = L[k] · (x[k] − x̄[k]) , (30)

where x[k] represents the real plant position and x[k] the 

desired position at time k.

Fig. 15. The optimal feedback control scheme using ILQG.
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