
ASIC Design for a 32-bit RISC-V Processor

Poorvaja Harish1, Ravishankar Holla2

1MTech student, Dept. of Electronics and Communication, RV College of Engineering, Bengaluru
2Assistant Professor, Dept. of Electronics and Communication, RV College of Engineering, Bengaluru

Abstract - Qflow is an open-source EDA (Electronic Design

Automation) flow primarily focused on digital VLSI design. It

provides a set of tools and scripts that facilitate various stages of

the chip design process, including synthesis, placement, routing,

and verification. Commercial tools like Cadence and Synopsis

require expensive license purchase for chip design. QFlow’s open-

source nature allows designers to access and modify the

underlying tools, enabling customization and experimentation.

Here, in this paper, the RTL to GDSII flow is performed for a 32-

bit RISC-V processor using Qflow in 180nm technology.

Keywords - RISC-V, Open-source, RTL, GDSII, Qflow

I. INTRODUCTION

RISC-V, [11] an open-source Instruction Set Architecture

(ISA), has garnered substantial attention for its innovative

approach to processor design. The acronym stands for”

Reduced Instruction Set Computing - Five”. The defining

characteristic of RISC-V is its accessibility and open

availability, enabling unrestricted use, modification, and

implementation by the global community. The RISC-V

architecture emerges as a promising avenue due to its open

nature and adaptability, contrasting with proprietary processor

designs.

The emergence of RISC-V architecture distinguishes itself

from traditional licensed processor designs by embracing an

open-source philosophy. In contrast to many proprietary

architectures prevalent in the industry, RISC-V offers an open

standard that encourages collaborative innovation and allows

researchers and developers to customize and experiment with

processor designs in unprecedented ways. Many licensed

processor architectures come with licensing fees and may limit

the level of flexibility that can be achieved. The modular nature

of the RISC-V instruction set architecture allows for fine

tuning processors to specific applications, providing an edge in

efficiency and performance optimization.

The QFlow EDA [6] flow typically includes tools such as

Yosys for synthesis, Graywolf for placement, Qrouter for

routing, and Magic for layout viewing and editing. These tools

are often integrated into a cohesive flow through a series of

scripts and configurations. QFlow aims to simplify the process

of designing digital integrated circuits using open-source tools

and methodologies. It is often used for small to medium-sized

projects and academic purposes. QFlow’s open-source nature

allows designers to access and modify the underlying tools,

enabling customization and experimentation. This can be

particularly useful for educational purposes and research

projects where understanding and optimizing the chip design

process are essential goals.

This paper explores a 32-bit processor design, aiming to

leverage the advantages of RISC-V architecture within the

realm of open-source EDA tools. The remaining sections of the

paper are organized as follows: Section II RISC-V overview;

the Section III Methodology; Experimental results present the

achievements in Section IV; and finally, the Section V

conclusion summarizes contributions and possible future

directions.

II. RISC-V OVERVIEW

The RISC-V Execution Pipeline operates through five

sequential stages [3], each contributing to the processor’s

seamless operation. The execution pipeline in the RISC-V

architecture comprises of five key stages: IF (Instruction Fetch),

ID (Instruction Decode), EX(Execute), MEM (Memory

Access), and WB(Write-Back) [2].

Fig. 1 Architecture of RISC-V Processor

A. Instruction Fetch (IF)

 During the Instruction Fetch stage, a pivotal precursor to the

processor’s functioning, a singular instruction is diligently

retrieved from the instruction memory. The heart of this stage

lies in the program counter (PC), a memory location that

houses the address of the current instruction being fetched. The

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS080115
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 08, August-2023

www.ijert.org
www.ijert.org

PC is seamlessly updated to point to the subsequent instruction

in line for execution.

B. Instruction Pre-Decode

 Instruction Pre-Decode stage plays a vital role in

streamlining the decoding process. In scenarios where 16-bit-

compressed instructions are utilized; this stage deftly decodes

them into their native 32-bit counterparts. This transformation

significantly simplifies subsequent stages, ensuring that

instructions are processed uniformly, irrespective of their

original format.

C. Instruction Decode (ID)

The Instruction Decode stage forms a critical junction. Here,

the processor engages with the Register File. The Register File

serves as a fundamental source and destination for data during

instruction execution. The bypass controls are determined.

Value inside the instruction and also the opcodes are verified.

D. Execute (EX)

 Based on the instruction provided by the decoder,

execution of required operations takes place. During the

Execute stage, a wide array of tasks are performed. This

includes executing operations for Arithmetic Logic Unit (ALU),

Division (DIV), Multiplication (MUL) instructions, managing

memory for Store or Load operations.

E. Memory (MEM)

The Memory stage ensures seamless memory access by

enabling data retrieval from or storage to memory through the

pipeline. This inclusion significantly contributes to the

pipeline’s overall efficiency.

F. Write-Back (WB)

 The Write Back stage finalizes the execution process,

writing the outcome of the Execute stage back into the Register

File.

G. Data and Instruction Cache

 Two essential components, the Data Cache and the

Instruction Cache, optimize memory access in the processor.

The Data Cache enhances data memory retrieval by buffering

frequently accessed memory locations. It adeptly handles

various access sizes based on the XLEN value. Meanwhile, the

Instruction Cache expedites instruction fetching by buffering

recently fetched instructions. It operates at a cycle-by-cycle

pace, fetching parcels on 16-bit boundaries. Both caches play a

crucial role in enhancing the processor’s overall performance.

H. Debug Unit and Register File

The Debug Unit facilitates thorough examination of the

CPU. The Register File, a core component, comprises 32

registers (X0 to X31). Notably, X9 is consistently set to zero.

The Register File includes one write port and two read ports,

allowing efficient data manipulation within the processor.

III. METHODOLOGY

The goal of this work is to implement the complete ASIC

design flow for a 32-bit RISC-V processor. The flowchart

representing the steps in the flow are shown in Fig. 2. The RTL

code and testbench of the processor is written in Verilog

hardware description language. It consists of codes for

different blocks of the processor including ALU, Control Unit,

Instruction Memory, Instruction Fetch Unit, Register File. This

code is simulated using iverilog. The simulation waveforms are

viewed in gtkwave. After verifying the functionality comes the

Preparation step where initial setup and configuration required

before starting the actual ASIC design flow. This step involves

several tasks to ensure that the design environment is properly

organized and ready for the subsequent design stages. Some of

the steps include library selection, technology file integration,

design files import, constraints import, and script creation.

Fig. 2 VLSI Design Flow in Qflow

After preparation, the RTL description undergoes synthesis

using Yosys. This phase translates the RTL code into a gate-

level representation called netlist. The Floorplan and Placement

step comes after this where the chip area is divided into

functional blocks. The dimensions and positions of these

blocks are determined and gate-level netlist is placed on the

chip area allocated to each block. Tools used is Graywolf. Then

STA is run for the pre-routed layout using openSTA [14] and

OpenTimer tools. This gives the maximum clock frequency of

the design and also if the timing requirement is met or not.

Once STA is done, Routing starts. Qrouter is used to establish

connections between gates while adhering to design constraints

and rules. MAGIC layout editor [12] is used to edit layouts.

Now we have the routed-layout for which again STA is run to

check whether the clock frequency and design timing is met

even after an additional load is introduced due to routing. Now

checks like DRC and LVS are performed on the routed-layout.

Once the design is error-free, the GDS file is generated and

final cleanup is done. This completes the project.

IV. EXPERIMENTAL RESULTS

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS080115
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 08, August-2023

www.ijert.org
www.ijert.org

The functional simulation of a 32-bit RISC-V processor is

shown in Fig. 3 below. The open-source tool iverilog is used to

compile and execute the Verilog code of the processor. The

waveform is viewed in gtkwave.

Fig. 3 Functional Simulation Results

Synthesis takes .sdc design constraints file and the RTL

code as the input and provides the gate-level-netlist and .sdc

constraint file as output. The schematic of the netlist obtained

in Yosys is shown in Fig. 4.

Fig. 4 Synthesis Netlist Schematic

The report generated after synthesis shows the total number

of cells used in the processor design and also the number and

type of individual standard cells in the design netlist. A total of

7322 cells are used in the RISC-V. Fig. 5 shows the report.

Fig. 6 shows the stages of Floorplan and Placement. In this

stage the chip area is divided into different blocks and all the

standard cells are placed in those blocks accordingly.

Fig. 7 shows the intermediate stage and the final placement

view is shown in Fig. 8.

Fig. 5 Synthesis Report

Fig. 6 Floorplan and Placement Initial Stage

The reports generated after the placement stage can be seen

in Fig. 9 shows the final number of routing tracks assigned.

The layout of the processor before routing and after

placement is shown in Fig. 10 and 11 in full view and zoomed

view.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS080115
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 08, August-2023

www.ijert.org
www.ijert.org

Fig. 7 Floorplan and Placement Intermediate Stage

Fig. 8 Floorplan and Placement Final Stage

Once the placement of standard cells is completed, static

timing analysis is run for the pre-routed layout. The pre-routed

layout STA results show that the design meets the required

timing and the maximum clock frequency obtained is 115.147

MHz.

Fig. 9 Placement Report

Fig. 10 Placed and un-routed layout full view

Fig. 11 Placed and un-routed layout zoomed view

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS080115
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 08, August-2023

www.ijert.org
www.ijert.org

Fig. 12 Pre-route STA - maximum clock frequency

Fig. 13 Pre-route STA – timing met report

Fig. 14 shows the routing stage where the interconnections

between the components is done. Qrouter is the tool that does

routing in Qflow toolchain.

The report generated after routing shows that there are no

routing errors in Fig. 15.

Post-layout STA results shown in Fig. 16 and 17 depict that

the maximum clock frequency is 108.782 MHz MHz after

routing. The reduction in frequency is due to delay variation,

cross-talk and noise, routing congestion, clock skew and

various parasitic effects.

The layout after routing can be compared with the layout

before routing and significant changes can be seen due to

interconnection.

The Fig. 18 shows the full view and the Fig. 19 shows the

zoomed view of the layout post-routing stage.

Fig. 14 Qrouter routing

Fig. 15 Routing Report

Fig. 16 Post-route STA – maximum clock frequency

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS080115
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 08, August-2023

www.ijert.org
www.ijert.org

Fig. 17 Post-route STA – timing met report

Fig. 18 Routed layout full view

Fig. 19 Routed layout zoomed view

Fig. 20 DRC Errors encountered

The DRC (Design Rule Check) and LVS (Layout vs

Schematic) checks were done post-route. Initially few DRC

errors were encountered which are shown in Fig. 20. These

errors were then solved by editing the layout using MAGIC

layout editor tool.

Fig. 21 LVS Report

The reports showing DRC and LVS checks are shown in Fig.

21 and 22 respectively.

Fig. 22 DRC no error Report

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS080115
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 08, August-2023

www.ijert.org
www.ijert.org

DRC and LVS are clean, so the final GDSII file is generated.

The final GDS layout is shown in Fig. 23 in full view and Fig.

24 in zoomed view.

Fig. 23 GDS Layout full view

Fig. 24 GDS Layout zoomed view

V. ANALYSIS OF THE RESULT

Fig. 25 Qflow GUI

The analysis of the RTL to GDSII flow for the

implementation of a 32-bit RISC-V processor using Qflow

provides valuable insights into the design process, challenges

faced, and achieved outcomes. The design metrics obtained

after completing the entire RTL to GDSII flow demonstrate the

successful transformation of the processor’s RTL description

into a physical layout. Fig. 16 shows the Qflow GUI (Graphical

User Interface) depicting the successful completion of the

project.

VI. CONCLUSION

This work delved into the ASIC Design of a 32-bit RISC-V

processor design, harnessing the capabilities of open-source

EDA tools. The successful completion of the RTL to GDSII

flow for the 32-bit RISC-V processor using Qflow underscores

the viability and effectiveness of the open-source EDA tools in

modern VLSI design. The achieved outcomes validate the

effectiveness of the design methodologies employed in the

flow and demonstrate the collaborative effort between design,

synthesis, placement, routing, and physical verification stages.

While the current study successfully implements the 32-bit

RISC-V processor using Qflow, several avenues for future

research and enhancement emerge. Further research could

focus on exploring advanced optimization strategies to fine-

tune the RTL to GDSII flow for 32-bit RISC-V processor

REFERENCES

[1] S Nikhil Kumar Reddy, Shashank Viswanath Hosmath, Sharanakumar ,

Sandeep , Vinay B K, ”Implementation of RISC-V SoC from RTL to
GDS flow using Open-Source Tools”, Ijraset Journal For Research in

Applied Science and Engineering Technology, Volume 10 Issue VI June

2022, doi: https://doi.org/10.22214/ijraset.2022.44249
[2] J. -Y. Lai, C. -A. Chen, S. -L. Chen and C. -Y. Su, ”Implement 32-bit

RISC-V Architecture Processor using Verilog HDL,” 2021 International

Symposium on Intelligent Signal Processing and Communication
Systems (ISPACS), Hualien City, Taiwan, 2021, pp. 1-2, doi:

10.1109/ISPACS51563.2021.9651130.

[3] G. Kanase and N. M, ”ASIC Design of a 32-bit Low Power RISC-V
based System Core for Medical Applications,” 2021 6th International

Conference on Communication and Electronics Systems (ICCES),

Coimbatre, India, 2021, pp. 1-5, doi:
10.1109/ICCES51350.2021.9489067.

[4] D. Acharya and U. S. Mehta, ”Performance Analysis of RTL to GDSII

Flow in Opensource Tool Qflow and Commercial Tool Cadence
Encounter for Synchronous FIFO,” 2022 IEEE International Conference

of Electron Devices Society Kolkata Chapter (EDKCON), Kolkata,

India, 2022, pp. 199-204, doi: 10.1109/EDKCON56221.2022.10032906.
[5] G. Kanase and K. B. Sowmya, ”Physical Implementation of Shift Register

with respect to Timing and Dynamic Drop,” 2020 5th International

Conference on Communication and Electronics Systems (ICCES),
Coimbatore, India, 2020, pp. 120-124, doi:

10.1109/ICCES48766.2020.9137916.
[6] K. P. Ghosh and A. K. Ghosh, ”Technology mediated tutorial on RISC-

V CPU core implementation and sign-off using revolutionary EDA

management system (EMS) — VSDFLOW,” 2018 China
Semiconductor Technology International Conference (CSTIC),

Shanghai, China, 2018, pp. 1-3, doi: 10.1109/CSTIC.2018.8369332.

 [7] S. Hesham, M. Shalan, M. W. El-Kharashi and M. Dessouky, ”Digital
ASIC Implementation of RISC-V: OpenLane and Commercial

Approaches in Comparison,” 2021 IEEE International Midwest

Symposium on Circuits and Systems (MWSCAS), Lansing, MI, USA,
2021, pp. 498- 502, doi: 10.1109/MWSCAS47672.2021.9531753.

[8] Neha Deshpande, Sowmya K B, ”A Review on ASIC Flow Employing

EDA Tools by Synopsys,” SSRG International Journal of VLSI &
Signal Processing, vol. 7, no. 1, pp. 15-19, 2020. Crossref,

https://doi.org/10.14445/23942584/IJVSP-V7I1P104

[9] S. Gayathri and T. C. Taranath, ”RTL synthesis of case study using
design compiler,” 2017 International Conference on Electrical,

Electronics, Communication, Computer, and Optimization Techniques

(ICEECCOT), Mysuru, 2017, pp. 1-7.
[10] S. Sreevidya, R. Holla and R. Raghu, ”Low Power Physical Design and

Verification in 16nm FinFET Technology,” 2019 3rd International

conference on Electronics, Communication and Aerospace Technology
(ICECA), Coimbatore, India, 2019, pp. 936-940.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS080115
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 08, August-2023

www.ijert.org
www.ijert.org

[11] Waterman, A., and K. Asanovic. “The RISC-V Instruction Set Manual,
Volume I: User-Level ISA, Document Version 2.2. CS Division, EECS

Department.” University of California, Berkeley (2017)

[12] “Magic VLSI Layout Tool,” https://github.com/RTimothyEdwards/magic,
2020.

[13] Ahmed Alaa Ghazy and Mohamed Shalan, “OpenLane: The OpenSource

Digital ASIC Implementation Flow”, 2020.
[14] “OpenSTA,” https://github.com/The-OpenROAD-Project/OpenSTA, 2020.

[15] Neha Deshpande, Sowmya K B, 2020, A Review on ASIC Synthesis

Flow Employing Two Industry Standard Tools, INTERNATIONAL
JOURNAL OF ENGINEERING RESEARCH & TECHNOLOGY

(IJERT) ICEECT – 2020 (Volume 8 – Issue 17).

[16] J. Lu and B. Taskin, “From RTL to GDSII: An ASIC design course
development using Synopsys® University Program,” 2011 IEEE

International Conference on Microelectronic Systems Education, San

Diego, CA, USA, 2011, pp. 72-75.

[17] M. Shalan and T. Edwards, “Building OpenLANE: A 130nm

OpenROAD-based Tapeout- Proven Flow : Invited Paper,” 2020

IEEE/ACM International Conference On Computer Aided Design
(ICCAD), San Diego, CA, USA, 2020, pp. 1-6

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS080115
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 08, August-2023

www.ijert.org
www.ijert.org

