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Abstract 

Accuracy of information in any communication 

system is very critical. Use of Forward Error 

Correction (FEC) to lower the probability of error 

and increase transmission distance has become 

widespread. Reed-Solomon code is one of the block 

FEC, capable of correcting multiple errors, focusing 

specifically on burst errors, making it popular for 

mass storage devices, wireless and mobile 

communication units, digital television (DTV), 

satellite communications, digital video broadcasting 

(DVB) and broadband modems. When RS(n, k) codes 

are used for  high reliable systems, the occurrence of 

faults in the encoder and decoder subsystems should 

be considered. Reed Solomon codec consists of both 

encoder and decoder on a single chip. In this paper 

new architecture is proposed for RS codec which 

consists of an encoder, decoder and a noise block 

that generates random noise. The RS encoder 

architecture is designed using LFSRs which exploits 

some properties of the arithmetic operations in 

G(2
m
). The Reed-Solomon decoder processes each 

block and attempts to correct up to t = (n-k)/2 

symbols and recovers the original data. In the RS 

decoder, the implicit redundancy of the received 

codeword, under certain assumptions explained in 

this paper, allows implementation of concurrent 

error detection schemes useful for a wide range of 

applications. In this paper new decoding method for 

Reed Solomon codec is proposed which uses 

Berlekamp’s algorithm instead of Euclidean method. 

The codec is designed using verilog hardware 

description language and simulated using Xilinx 

tools. To improve the performance of the RS codec, 

the same design is synthesized and implemented with 

180nm TSMC library using cadence tools.   

 

1. Introduction  
Wireless technology is fast becoming a trend in 

present communication systems. The demand for 

greater bandwidth allocation is being addressed by 

fixed wireless broadband access. However, the use of 

free space, as a transmission medium, introduces 

many sources of error in the data being transmitted 

across the channel. As the accuracy of information is 

very critical, the use of Forward Error Correction 

(FEC) methods has gained tremendous importance. 

FEC improves the reliability of data reception for a 

system. The basic principle behind any error 

correcting codes is the application of a mathematical 

transform onto the message signal such that 

redundant message information is used to correct any 

errors that may have been introduced during 

transmission.  

In the design of high reliable electronics systems 

both the Reed-Solomon (RS) encoder and decoder 

should be self checking in order to avoid faults in 

these blocks which compromise the reliability of the 

whole system. In fact, a fault in the encoder can 

produce a non correct codeword, while a fault in the 

decoder can give a wrong data word even if no errors 

occur in the codeword transmission. Therefore, great 

attention must be paid to detect and recover faults in 

the encoding and decoding circuitry. Nowadays, the 

most used error correcting codes are the RS codes, 

based on the properties of the finite field arithmetic. 

In particular, finite fields with 2
m
 elements are suit-

able for digital implementations due to the 

isomorphism between the addition, performed 

modulo 2, and the XOR operation between the bits 

representing the elements of the field. 

The use of the XOR operation in addition and 

multiplication allows to use parity check-based 

strategies to check the presence of faults in the RS 
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encoder, while the implicit redundancy in the code-

word is used either for correct erroneous data and for 

detect faults inside the decoder block. 

 

2. RS Codes 
RS codes are an example of a block coding 

technique, where the data stream to be transmitted is 

broken up into blocks and redundant data is then 

added to each block. The size of these blocks and the 

amount of check data added to each block is either 

specified for a particular application or can be user-

defined for a closed system. RS codes are specified 

using (n, k) notation where „n‟ represents the total 

length of the codeword and „k‟ refers to the number 

of original message symbols of m-bit each.  

DATA PARITY

2t

n

k

                   

Figure 1: RS Codeword 

The advantage of using Reed Solomon codes is 

that it can correct multiple errors. In general there are 

(n-k) parity symbols of „m‟ bits each. A Reed-

Solomon decoder can correct up to „t‟ symbols that 

contain errors in a codeword, where 2t = n-k. It is 

mainly used to correct burst errors in mass storage 

devices, communication systems, digital video broad-

casting (DVB) and broadband modems. The amount 

of processing "power" required to encode and decode 

Reed-Solomon codes is related to the number of 

parity symbols per codeword. A large value of „t‟ 

means that a large number of errors can be corrected 

but requires more computational power than a small 

value of „t‟. 

The finite fields used in digital implementations 

are in the form GF(2
m
), where m represents the 

number of bits of a symbol to be coded. More 

information about finite fields and RS codes are 

provided in [1]. An element a(x)  GF(2
m
) is a 

polynomial with coefficients ai{0,1} and can be 

seen as a symbol of m bits a=am-1 …...a1a0. The 

addition of two elements a(x) and b(x) ϵ GF(2
m
) is 

the sum modulo 2 of the coefficients ai and bi, i.e., is 

the bitwise XOR of the two symbols a and b. The 

multiplication of two elements a(x) and b(x) ϵ 
GF(2

m
) requires the multiplication of the two 

polynomials followed by the reduction modulo i(x), 

where i(x) is an irreducible polynomial of degree m. 

Multiplication can be implemented as an AND-XOR 

network, as explained in [5]. 

 

 

3. RS Encoder and Decoder 
The RS(n, k) code is defined by representing the 

data word symbols as elements of the field GF(2
m
) 

and the overall data word is treated as a polynomial 

d(x) of degree k-1 with coefficient in GF(2
m
). The RS 

codeword is then generated by using the generator 

polynomial g(x). All valid code words are exactly 

divisible by g(x). The general form of  g(x) is  

      t2i1ii x........xxxg    

  t21t2
1t2

2
210 xxg......xgxggxg  

  

where  2t = n-k, α = primitive element. 

The codeword‟s of a separable RS(n,k) code 

correspond to the polynomial C(X) with degree n-1 

that can be generated by   

     xgmodx.xdxP kn             

         xmxxpxc kn  

Where p(x) is a polynomial representing the 

parity symbols. In general encoder takes „k‟ data 

symbols and adds „2t‟ parity symbols obtaining „n‟ 

symbol codeword. The „2t‟ parity symbols allows 

correction of up to „t‟ symbols containing errors in a 

code word. From a device utilization standpoint, the 

size of the encoder is most heavily affected by the 

number of check symbols required for the target RS 

code. The total message length, as well as the field 

polynomial and first root value, do not have any 

appreciable effect on the device utilization or 

performance for a given target RS code.   

In digital hardware, the encoder block is 

implemented using an LFSR with internal feedback 

connections corresponding to g(x).The computation 

of the remainder is implemented on digital hardware 

using a linear feedback shift register configuration as 

shown in Figure 2. Note that this setup resembles the 

iterative method of polynomial division. The final 

contents of the shift registers will contain the 

remainder. 

g0 g5g4g3g2g1

+ + + + + +F/F F/F F/F F/F F/F F/F

i(x)

 

       Figure2: Encoder Architecture 
When a received block is given as input to the 

decoder for processing, the decoder first verifies 

whether the received block appears in the dictionary 

of valid code words. If it does not, then errors must 

have occurred during transmission. This part of the 

decoder processing is called error detection. The 

parameters required to reconstruct the original 

encoded block are available to the decoder. The 

decoder attempts to perform reconstruction if errors 
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are detected. This is called error correction. 

Conventionally, decoding is performed by the 

Petersen-Gorenstein-Zierler (PGZ) algorithm, which 

consists of following parts: 

i. Syndromes calculation.  

ii. Derivation of the error-location polynomial. 

iii. Error Locations  

iv. Error Magnitudes 

v. Error Correct 

The RS decoder consists of five major blocks as 

shown below: 

SYNDROME
CALCULATOR

ERROR
POLYNOMIAL

BERLEKAMP'S
ALGORITHM

ERROR
LOCATIONS

CHIEN
SEARCH

ERROR
MAGNITUDES

FORNEY
ALGORITHM

ERROR
CORRECTORr(x) Si

L(x)
Xi

c(x)Yi



 

Figure 3: Decoder Architecture 

In this implementation the error-location 

polynomial is found using the Berlekamp-Massey 

algorithm, and the error values are obtained by the 

Forney algorithm. 

Let the received codeword R(X) : 

R(X) = C(X) + E(X) 

Where C(X) = original (transmitted) codeword,          

E(X) = error polynomial 

A codeword‟s syndrome s(x) is the remainder of 

the division of the received word r(x) by the genera-

tor polynomial, as implied by the following equation: 

 
)x(g

)x(s
)x(q

)x(g

)x(r
  

)x(g

)x(s
)x(q

)x(g

)x(e)x(c


                                                                                                                                                                                                                                

Since all code words are divisible by the generator 

polynomial, only the error component will yield a 

remainder. 

  
)x(g

)x(s
)x(q

)x(g

)x(e
e   

The above equation shows that the syndrome is 

independent of the message information and depends 

only on the error component. For no errors, the 

syndrome polynomial S(x) will be zero. In most 

systems, partial syndromes are computed instead of 

the syndrome, for reasons of simpler hardware 

implementation. In the computation of a partial 

syndrome, the divisor is no longer the entire 

generator polynomial, but only one of its factors, as 

shown in below equation: 

)ax(

s
)x(q

)ax(

)x(r

k

k

k 



 

There will be n-k partial syndromes for every 

received word, since the generator polynomial has n-

k factors. The hardware implementation is shown 

Figure 4. 

r0,r1,--rn-1

S0

S1

S19







D

/
8

D

D

 
Figure 4: Syndrome Calculation 

The method used for deriving error locator 

polynomial in this implementation is the Berlekamp-

Massey Algorithm[6]. The Berlekamp-Massey 

algorithm is a shift-register synthesis algorithm which 

takes the n-k partial syndromes as input and outputs 

the error locator polynomial σ(X). The Berlekamp 

Massey algorithm is an algorithm for finding the 

shortest linear feedback shift register (LFSR) for a 

given output sequence.  

The roots of error locator polynomial provides the 

error locations and is obtained by performing the 

Chien Search, which evaluates the Error Locator 

Polynomial at all elements of the GF(2
m
) field. The 

algorithm checks if σ( α 
P 

)equals zero, p = 0, 1, 2 …., 

n, then α
P
 is a root of the polynomial, and α 

P
  is an 

error location, XP. This is implemented using LFSRs 

similar to those used in computing the partial 

syndromes. The equation that determines the error 

evaluator or error magnitude polynomial Ω(X) is 

given by  

      knXmodXXXS   

An efficient way of computing Ω(X) is to perform 

parallel computation of σ(X). The Forney Algorithm 

is used to compute for the error magnitudes, Yi, 

corresponding to the respective error locations using 

the following equation: 

 
 1

i

1
i

i
X'

X
Y








  

where Xi
-1

 indicates the root as computed from the 

Chien Search, and σ
1
(X)the derivative of the error 

locator polynomial. 

The error corrector block takes the received code 

and performs XOR-operation with the corresponding 

error magnitudes computed at the respective error 

locations to attain the original message stream. 

    iii YXRXC   
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4. Results 
In this paper the top module of the design 

integrates data-rom block for input, an encoder, noise 

block and decoder. The design receives message 

symbols using data-rom that generates sequence of 

symbols for input. These are processed by encoder 

operating on Galois Field to form a complete code 

word by adding parity symbols. A noise block 

generates random noise that gets added to the 

encoded message and converts it into an incorrect 

information. The function of decoder is to detect all 

possible errors and correct them. 

The design is implemented in verilog hardware 

description language and simulated using Xilinx on 

Spartan-3E. RS Codec is further synthesized using 

180 nm TSMC technology. Table-1 shows the results 

obtained for the order RS(208, 200) using Xilinx. 

Timing Delay Report: This gives the delays that will 

be present in the realization of the design once it is 

implemented on a FPGA kit. It is the sum of the logic 

delays and the wiring delays. The wiring delays must 

be kept as low as possible and at times are 

comparable to the logic delays. The total delay is thus 

the sum of all the logic delays involved and the 

wiring delays. This is depicted in Table-2 which 

shows the delays involved in the FPGA 

implementation of our design. 

Table 1: Device Utilization Summary 

Device Utilization Summary 

Selected Device:3x500efg320-4 

Number of Slices: 

Flip Flops: 

Number of 4 input LUTs: 

Number of bonded IOBs: 

Number of    GCLKs: 

1446 out of 4656 

671 out of 9312 

2635 out of 9312 

22 out of 232 

1 out of 24 

31% 

7% 

28% 

9% 

4% 

 

RTL compiler generates schematic for each sub 

modules including the top module after completing 

synthesis. Figure 5 to 7 show RTL schematic of top 

module, encoder and input message module 

respectively.                

Table 2: Timing Summary. 

Timing Summary 

Speed Grade: -4 

Minimum period: 24.379ns (Maximum 

Frequency: 

41.019MHz) 

Minimum input arrival 

time before clock:     

13.201ns 

 Maximum output 

required time after clock:     

28.420ns 

  

 
Figure 5: Top Module of RS(208,200) Codec 

 
Figure 6: Encoder Module 

 

 
Figure 7: Input Message Module 

 

 

The same design is implemented using SOC 

encounter tool. Reports on gate count, power, timing 

etc are generated at the output. The leakage power 

obtained is 750.127 nW .      

 

Type Instances Area  Area

% 

Sequential 

Inverter 

Buffer 

Logic 

649 

236 

7 

4326 

46842.365 

1609.978 

93.139 

84207.816 

35.3 

1.2 

0.1 

63.4 

Total 5218 132753.29

8   

100 

     Table 3: Gates Report 
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5. Conclusion 

Reliability of information is critical in any 

communication systems. Use of error-control codes 

reduces interference effects, and FECs in general, 

eliminate the need for retransmission of data streams. 

RS (208,200) Codec is capable of correcting 4 errors 

at a time and is mainly used to correct burst errors in 

storage devices. 

The design has been verified using Xilinx tools on 

Spartan-3E FPGA where the operating frequency is 

41.019 MHz and the same is also synthesized using 

180nm TSMC library RTL compiler and SOC 

Encounter to improve the performance by increasing 

the clock frequency to 100 MHz. 

The RS Codec designed here considers only 

pseudo random noise. The same design can be 

extended to model different types of noises like 

Poisson‟s distribution, Gaussian distribution. The 

length of the codeword can be increased in order to 

correct more number of errors.  
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