

ASIC Implementation Of Reed Solomon Codec For Burst Error Detection And

Correction

Sangeeta Singh S. Sujana

 Associate Professor Associate Professor

 Dept. of ECE Dept. of ECE

 Vardhaman College of Engineering Vardhaman College of Engineering

 Hyderabad (A.P) Hyderabad (A.P)

Abstract

Accuracy of information in any communication

system is very critical. Use of Forward Error

Correction (FEC) to lower the probability of error

and increase transmission distance has become

widespread. Reed-Solomon code is one of the block

FEC, capable of correcting multiple errors, focusing

specifically on burst errors, making it popular for

mass storage devices, wireless and mobile

communication units, digital television (DTV),

satellite communications, digital video broadcasting

(DVB) and broadband modems. When RS(n, k) codes

are used for high reliable systems, the occurrence of

faults in the encoder and decoder subsystems should

be considered. Reed Solomon codec consists of both

encoder and decoder on a single chip. In this paper

new architecture is proposed for RS codec which

consists of an encoder, decoder and a noise block

that generates random noise. The RS encoder

architecture is designed using LFSRs which exploits

some properties of the arithmetic operations in

G(2
m
). The Reed-Solomon decoder processes each

block and attempts to correct up to t = (n-k)/2

symbols and recovers the original data. In the RS

decoder, the implicit redundancy of the received

codeword, under certain assumptions explained in

this paper, allows implementation of concurrent

error detection schemes useful for a wide range of

applications. In this paper new decoding method for

Reed Solomon codec is proposed which uses

Berlekamp’s algorithm instead of Euclidean method.

The codec is designed using verilog hardware

description language and simulated using Xilinx

tools. To improve the performance of the RS codec,

the same design is synthesized and implemented with

180nm TSMC library using cadence tools.

1. Introduction
Wireless technology is fast becoming a trend in

present communication systems. The demand for

greater bandwidth allocation is being addressed by

fixed wireless broadband access. However, the use of

free space, as a transmission medium, introduces

many sources of error in the data being transmitted

across the channel. As the accuracy of information is

very critical, the use of Forward Error Correction

(FEC) methods has gained tremendous importance.

FEC improves the reliability of data reception for a

system. The basic principle behind any error

correcting codes is the application of a mathematical

transform onto the message signal such that

redundant message information is used to correct any

errors that may have been introduced during

transmission.

In the design of high reliable electronics systems

both the Reed-Solomon (RS) encoder and decoder

should be self checking in order to avoid faults in

these blocks which compromise the reliability of the

whole system. In fact, a fault in the encoder can

produce a non correct codeword, while a fault in the

decoder can give a wrong data word even if no errors

occur in the codeword transmission. Therefore, great

attention must be paid to detect and recover faults in

the encoding and decoding circuitry. Nowadays, the

most used error correcting codes are the RS codes,

based on the properties of the finite field arithmetic.

In particular, finite fields with 2
m
 elements are suit-

able for digital implementations due to the

isomorphism between the addition, performed

modulo 2, and the XOR operation between the bits

representing the elements of the field.

The use of the XOR operation in addition and

multiplication allows to use parity check-based

strategies to check the presence of faults in the RS

1828

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

encoder, while the implicit redundancy in the code-

word is used either for correct erroneous data and for

detect faults inside the decoder block.

2. RS Codes
RS codes are an example of a block coding

technique, where the data stream to be transmitted is

broken up into blocks and redundant data is then

added to each block. The size of these blocks and the

amount of check data added to each block is either

specified for a particular application or can be user-

defined for a closed system. RS codes are specified

using (n, k) notation where „n‟ represents the total

length of the codeword and „k‟ refers to the number

of original message symbols of m-bit each.

DATA PARITY

2t

n

k

Figure 1: RS Codeword

The advantage of using Reed Solomon codes is

that it can correct multiple errors. In general there are

(n-k) parity symbols of „m‟ bits each. A Reed-

Solomon decoder can correct up to „t‟ symbols that

contain errors in a codeword, where 2t = n-k. It is

mainly used to correct burst errors in mass storage

devices, communication systems, digital video broad-

casting (DVB) and broadband modems. The amount

of processing "power" required to encode and decode

Reed-Solomon codes is related to the number of

parity symbols per codeword. A large value of „t‟

means that a large number of errors can be corrected

but requires more computational power than a small

value of „t‟.

The finite fields used in digital implementations

are in the form GF(2
m
), where m represents the

number of bits of a symbol to be coded. More

information about finite fields and RS codes are

provided in [1]. An element a(x)  GF(2
m
) is a

polynomial with coefficients ai{0,1} and can be

seen as a symbol of m bits a=am-1 …...a1a0. The

addition of two elements a(x) and b(x) ϵ GF(2
m
) is

the sum modulo 2 of the coefficients ai and bi, i.e., is

the bitwise XOR of the two symbols a and b. The

multiplication of two elements a(x) and b(x) ϵ
GF(2

m
) requires the multiplication of the two

polynomials followed by the reduction modulo i(x),

where i(x) is an irreducible polynomial of degree m.

Multiplication can be implemented as an AND-XOR

network, as explained in [5].

3. RS Encoder and Decoder
The RS(n, k) code is defined by representing the

data word symbols as elements of the field GF(2
m
)

and the overall data word is treated as a polynomial

d(x) of degree k-1 with coefficient in GF(2
m
). The RS

codeword is then generated by using the generator

polynomial g(x). All valid code words are exactly

divisible by g(x). The general form of g(x) is

      t2i1ii x........xxxg  

  t21t2
1t2

2
210 xxg......xgxggxg  



where 2t = n-k, α = primitive element.

The codeword‟s of a separable RS(n,k) code

correspond to the polynomial C(X) with degree n-1

that can be generated by

     xgmodx.xdxP kn

      xmxxpxc kn

Where p(x) is a polynomial representing the

parity symbols. In general encoder takes „k‟ data

symbols and adds „2t‟ parity symbols obtaining „n‟

symbol codeword. The „2t‟ parity symbols allows

correction of up to „t‟ symbols containing errors in a

code word. From a device utilization standpoint, the

size of the encoder is most heavily affected by the

number of check symbols required for the target RS

code. The total message length, as well as the field

polynomial and first root value, do not have any

appreciable effect on the device utilization or

performance for a given target RS code.

In digital hardware, the encoder block is

implemented using an LFSR with internal feedback

connections corresponding to g(x).The computation

of the remainder is implemented on digital hardware

using a linear feedback shift register configuration as

shown in Figure 2. Note that this setup resembles the

iterative method of polynomial division. The final

contents of the shift registers will contain the

remainder.

g0 g5g4g3g2g1

+ + + + + +F/F F/F F/F F/F F/F F/F

i(x)

 Figure2: Encoder Architecture
When a received block is given as input to the

decoder for processing, the decoder first verifies

whether the received block appears in the dictionary

of valid code words. If it does not, then errors must

have occurred during transmission. This part of the

decoder processing is called error detection. The

parameters required to reconstruct the original

encoded block are available to the decoder. The

decoder attempts to perform reconstruction if errors

1829

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

are detected. This is called error correction.

Conventionally, decoding is performed by the

Petersen-Gorenstein-Zierler (PGZ) algorithm, which

consists of following parts:

i. Syndromes calculation.

ii. Derivation of the error-location polynomial.

iii. Error Locations

iv. Error Magnitudes

v. Error Correct

The RS decoder consists of five major blocks as

shown below:

SYNDROME
CALCULATOR

ERROR
POLYNOMIAL

BERLEKAMP'S
ALGORITHM

ERROR
LOCATIONS

CHIEN
SEARCH

ERROR
MAGNITUDES

FORNEY
ALGORITHM

ERROR
CORRECTORr(x) Si

L(x)
Xi

c(x)Yi



Figure 3: Decoder Architecture

In this implementation the error-location

polynomial is found using the Berlekamp-Massey

algorithm, and the error values are obtained by the

Forney algorithm.

Let the received codeword R(X) :

R(X) = C(X) + E(X)

Where C(X) = original (transmitted) codeword,

E(X) = error polynomial

A codeword‟s syndrome s(x) is the remainder of

the division of the received word r(x) by the genera-

tor polynomial, as implied by the following equation:

)x(g

)x(s
)x(q

)x(g

)x(r


)x(g

)x(s
)x(q

)x(g

)x(e)x(c




Since all code words are divisible by the generator

polynomial, only the error component will yield a

remainder.

)x(g

)x(s
)x(q

)x(g

)x(e
e 

The above equation shows that the syndrome is

independent of the message information and depends

only on the error component. For no errors, the

syndrome polynomial S(x) will be zero. In most

systems, partial syndromes are computed instead of

the syndrome, for reasons of simpler hardware

implementation. In the computation of a partial

syndrome, the divisor is no longer the entire

generator polynomial, but only one of its factors, as

shown in below equation:

)ax(

s
)x(q

)ax(

)x(r

k

k

k 




There will be n-k partial syndromes for every

received word, since the generator polynomial has n-

k factors. The hardware implementation is shown

Figure 4.

r0,r1,--rn-1

S0

S1

S19







D

/
8

D

D

Figure 4: Syndrome Calculation

The method used for deriving error locator

polynomial in this implementation is the Berlekamp-

Massey Algorithm[6]. The Berlekamp-Massey

algorithm is a shift-register synthesis algorithm which

takes the n-k partial syndromes as input and outputs

the error locator polynomial σ(X). The Berlekamp

Massey algorithm is an algorithm for finding the

shortest linear feedback shift register (LFSR) for a

given output sequence.

The roots of error locator polynomial provides the

error locations and is obtained by performing the

Chien Search, which evaluates the Error Locator

Polynomial at all elements of the GF(2
m
) field. The

algorithm checks if σ(α
P

)equals zero, p = 0, 1, 2 ….,

n, then α
P
 is a root of the polynomial, and α

P
 is an

error location, XP. This is implemented using LFSRs

similar to those used in computing the partial

syndromes. The equation that determines the error

evaluator or error magnitude polynomial Ω(X) is

given by

      knXmodXXXS 

An efficient way of computing Ω(X) is to perform

parallel computation of σ(X). The Forney Algorithm

is used to compute for the error magnitudes, Yi,

corresponding to the respective error locations using

the following equation:

 
 1

i

1
i

i
X'

X
Y










where Xi
-1

 indicates the root as computed from the

Chien Search, and σ
1
(X)the derivative of the error

locator polynomial.

The error corrector block takes the received code

and performs XOR-operation with the corresponding

error magnitudes computed at the respective error

locations to attain the original message stream.

    iii YXRXC 

1830

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

4. Results
In this paper the top module of the design

integrates data-rom block for input, an encoder, noise

block and decoder. The design receives message

symbols using data-rom that generates sequence of

symbols for input. These are processed by encoder

operating on Galois Field to form a complete code

word by adding parity symbols. A noise block

generates random noise that gets added to the

encoded message and converts it into an incorrect

information. The function of decoder is to detect all

possible errors and correct them.

The design is implemented in verilog hardware

description language and simulated using Xilinx on

Spartan-3E. RS Codec is further synthesized using

180 nm TSMC technology. Table-1 shows the results

obtained for the order RS(208, 200) using Xilinx.

Timing Delay Report: This gives the delays that will

be present in the realization of the design once it is

implemented on a FPGA kit. It is the sum of the logic

delays and the wiring delays. The wiring delays must

be kept as low as possible and at times are

comparable to the logic delays. The total delay is thus

the sum of all the logic delays involved and the

wiring delays. This is depicted in Table-2 which

shows the delays involved in the FPGA

implementation of our design.

Table 1: Device Utilization Summary

Device Utilization Summary

Selected Device:3x500efg320-4

Number of Slices:

Flip Flops:

Number of 4 input LUTs:

Number of bonded IOBs:

Number of GCLKs:

1446 out of 4656

671 out of 9312

2635 out of 9312

22 out of 232

1 out of 24

31%

7%

28%

9%

4%

RTL compiler generates schematic for each sub

modules including the top module after completing

synthesis. Figure 5 to 7 show RTL schematic of top

module, encoder and input message module

respectively.

Table 2: Timing Summary.

Timing Summary

Speed Grade: -4

Minimum period: 24.379ns (Maximum

Frequency:

41.019MHz)

Minimum input arrival

time before clock:

13.201ns

 Maximum output

required time after clock:

28.420ns

Figure 5: Top Module of RS(208,200) Codec

Figure 6: Encoder Module

Figure 7: Input Message Module

The same design is implemented using SOC

encounter tool. Reports on gate count, power, timing

etc are generated at the output. The leakage power

obtained is 750.127 nW .

Type Instances Area Area

%

Sequential

Inverter

Buffer

Logic

649

236

7

4326

46842.365

1609.978

93.139

84207.816

35.3

1.2

0.1

63.4

Total 5218 132753.29

8

100

 Table 3: Gates Report

1831

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

5. Conclusion

Reliability of information is critical in any

communication systems. Use of error-control codes

reduces interference effects, and FECs in general,

eliminate the need for retransmission of data streams.

RS (208,200) Codec is capable of correcting 4 errors

at a time and is mainly used to correct burst errors in

storage devices.

The design has been verified using Xilinx tools on

Spartan-3E FPGA where the operating frequency is

41.019 MHz and the same is also synthesized using

180nm TSMC library RTL compiler and SOC

Encounter to improve the performance by increasing

the clock frequency to 100 MHz.

The RS Codec designed here considers only

pseudo random noise. The same design can be

extended to model different types of noises like

Poisson‟s distribution, Gaussian distribution. The

length of the codeword can be increased in order to

correct more number of errors.

6. References
[1] R. E. Blahut, Theory and Practice of Error Control

Codes. Reading, MA: Addison-Wesley Publishing

Company, 1983.

[2] S. B. Wicker, Error control Systems for Digital

Communication and Storage, Prentice Hall, 1995 G.C

[3] G.B. Agnew, T. Beth, R.C. Mullin, and S.A.

Vanstone,“Arithmetic Operations in GF(2m),” J.

Cryptology, vol.6, pp. 3-13,1993.

[4] Candarilli, S.Pontarelli, “Concurrent Error Detection in

Reed-Solomon Encoders and Decoders”- IEEE trans.

VLSI Systems. , Volume 15, July 2007.

[5] A. R. Masoleh and M. A. Hasan, “Low complexity bit

parallel architectures for polynomial basis

multiplication over GF(2m), computers,” IEEE Trans.

Computer., vol. 53, no. 8, pp. 945–959, Aug. 2004.

[6] G. L. Feng and K. K. Tzeng, “A generalization of the

Berlekamp-Massey algorithm for multisequence shift

register synthesis with application to decoding cyclic
codes,” IEEE Trans. Inform.Theory, volume. 37,pp.

1274–1287, 1991.

[7] W.J. Ebel, W. H. Tranter, The Performance of Reed-

Solomon Codes on a Bursty-Noise Channel, IEEE

Transactions on Communications, Vol. 43, No. 2/3/4,

February/March/April 1995.

[8] S. P. Kang, C. G. Kim, S. W. Rhee, and Y. Jee, “ASIC

Implementation of Reed-Solomon Error Correction

Circuits for Low Area Overhead on Memory System,”

International Conference on Electronics, Information,

and Communication (ICEIC 2008), pp. 339-342, June.

2008.

[9] M. Gossel, S. Fenn, and D. Taylor, “On-line error

detection for finite field multipliers,” in Proc. IEEE

Int. Symp. Defect Fault Tolerance VLSI Syst., 1997,

pp. 307–311.

[10] T.A. Gulliver, M. Serra, and V.K. Bhargava, “The

Generation of Primitive Polynomials in GF(q) with

Independent Roots and Their Application for Power

Residue Codes, VLSI Testing and Finite Field

Multipliers Using Normal Bases,” Int‟l J. Electronics,

vol. 71, no. 4, pp. 559-576, 1991.

[11] S. B. Sarmadi and M. A. Hasan, “Concurrent error

detection of polynomial basis multiplication over

extension fields using a multiple-bit parity scheme,” in

Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI

Syst., 2005, pp. 102–110.

[12] E.D. Mastrovito, “VLSI Architectures for

Computation in Galois Fields,” PhD thesis, Linkoping

Univ., Linkoping, Sweden, 1991.

[13] M.A. Hasan, M.Z. Wang, and V.K. Bhargava,

“Modular Construction of Low Complexity Parallel

Multipliers for a Class of Finite Fields GF(2m),” IEEE

Trans. Computers, vol. 41, no. 8, pp. 962-971, Aug.

1992.

1832

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

