

Aspect Interference Analysis Using Component Filter Model Semantics and

Slicing

Rishabh Shukla, Subramanhyam Kuntamukkala

Infosys Research Labs, Infosys Ltd.

Abstract

Aspect Oriented language aims to make cross-cutting

concerns clearly identifiable with special linguistic

construct called aspects. In order to analyze the

properties of an aspect one should consider the aspect

itself and the part of the system it affects. This part is

just a slice of the entire system and can be extracted by
exploiting program slicing algorithms. However they

will behave correctly in isolation, but when interaction

changes an aspect’s behavior or disables and aspect,

we will term it as aspect interference. We will propose

an approach to detect aspect interference, Aspect

composition are modeled by using graph production

system for modelling aspect-language semantics. This

graph is transformed into runtime-state representation.

Combined with the production system (also with proper

tool) the execution of the aspect is simulated. This

simulation results in LTS(labelled transition system)
that can be used to analyze verify different behavior at

join points..

1. Introduction
Aspect-oriented programming(AOP) is a widely

accepted language concept to improve separation of

concerns on the implementation level. Before or during

the execution of the program the behavior of the

aspects is imposed on to the base .One of the major

advantage of this is that is allow separate development

of base program and the aspects. In Section 2 We will

discuss the method of slice extraction,In this we have

taken a sample code and generated its corresponding

Control Dependence Graph and Flow Dependence

Graph. Finally we have extracted backward slice of the

sample code. In Section 3 We have discussed issues of
analyzing interaction of aspect. In Section 4 we have

discussed Conclusion where we discuss interaction of

slice and aspect and a way to avoid any interference. In

Section 5 We suggested the tool that will be used in out

proposed scheme. We propose the usage of GROOVE

for implementation of this approach.

2. Study of Slice Extraction
Program Slicing[1] is a technique aimed at

extracting program elements related to particular

computation. A slice of program is a set of statements

which affect a given point in a executable program.

There are basically two types of slicing in which one

can compute statically the set of statements that

potentially affect the slicing criterion for every possible
program execution. The other technique consider the

information about a particular execution of program

and derive a dynamic slice[2] of a program.There are

three type of slice, Thefirst one is Backward Slice

which is at point p is the program point p is the

program subset that may affect p. The second one

Forward Slice at point p is the program subset that may

be affected by p. The program subset between program

points p and q that may be affected by p and that may

affect q is called chop.

Slicing can be done with the help of Program
Dependence Graph(PDG) in which Nodes are

statements and Edge represent either Control

Dependence or Data dependence. Backward slice can

be computed from point p, by computing backward

reachability in the PDG from node p. Forward slice can

be computed from point p by computing forward

reachability. To compute chop between p and q identify

all paths between p and q.

We will explain slice extraction with a example

code. Firstly we will develop Control Dependence

Graph for that sample code as shown in Fig 1. The edge

from one node to another node will be there if edge
from first node branches one way, another node will be

eventually reached and if edge from first node branches

another way than second node may not be reached.

The second is the Flow Dependence Graph as shown

in Fig 2 which will together form Program Dependence

Graph. For Flow dependence graph edge from one node

to another node will be there if values of variable

assigned at first node may be used at second node. For

our sample code the Flow Dependence graph is shown

below.

3428

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121268

Figure 1.

Figure 2.

To find Backward Slice we will find the backward

reachability. The node “output(index)” has incoming

edge from three nodes and don’t have any outgoing

edge this corresponds to line 1 , 3 ,6 and last line.

Similarly we will continue and finally reach to node

involving the loop condition this will correspond to 4

line of the sample program . The final extracted slice

shown in Fig 3. In the figure the bold line corresponds

to that of flow dependence graph and simple line is of

control dependence graph.

Figure 3.

3. Analysis of Aspect Interaction
This section deals with analysis of interaction among

aspects. An aspect oriented program is composed by

weaving aspect and class together. The newly formed

aspect is weaved with and it add it as new cross-cutting

concern functionality without breaking the rules.Let a
code unit be an aspect or a class of a system. We say

that an aspect SampleAspect does not interfere with

code unit SampleClass if and only if every interesting

predicate on the state manipulated by SampleClass is

not changed by the application of SampleAspect. For

instance if an object sampleObject manipulated by

SampleClass exist such that the predicate

sampleObject<= 0 must hold for the correctness of the

system, SampleAspect does not interfere with

SampleClass only if SampleClass woven with

SampleAspect preserves sampleObject<= 0.

Let SampleAspect1 and SampleAspect2 be two aspect
and SampleSlice1 and SampleSlice2 the corresponding

backward and forward slices obtained by using

pointcuts declarations defined in SampleAspect1 and

SampleAspect2 as slicing criteria. Now we need to

identify interference between SampleAspect1 and

SampleAspect2.

3.1. Composition Filter Model

It is extension of conventional object-based model,

where objects are enhanced with filters for the

manipulation of incoming and outgoing
messages.Filters are grouped into components called

filter models shown in Fig 4. These units of reuse

provide execution context for the filters.

3429

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121268

Figure 4.

Composition Filters concept can be mapped to those

of regular AOP-language. Superimposition

specification pointcut designator. We present a sample

code of SampleAspect in Fig 5, it consist of filter

module named SampleModule, which contain one

input-filter. This filter is evaluated when a message is

received by an object enhanced with this filter-module.

The input-filter declaration contains the name of the
Sample filter and a matching pattern which matches the

selector send. A substitution part(*.*) will pass the

matched target and selector to the action performed by

the filter. The superimposition selects class Server

using query on the static structure of the base program,

and superimposes the SampleModule filter module on

this class, Thus, whenever a method named send is

called on an instance of class Server.

Figure 5.

Now we have defined composition filter model we

have to check the interference for the following

condition. We should ensure that.

SampleAspect1 ∩SampleSlice2 = NULL

AND

SampleAspect2 ∩SampleSlice1 = NULL

Now with aspects and slice we will generate a

transition system of execution using graph

transformation based operational semantics. We will

then identify the occurrence of above two cases from

this transition system. For a Composition Filters

program we will generate a graph of Abstract Syntax

Tree.

3.2. Production Rules
In order to carry out transformation and generate

state spaces we propose to use GROOVE as a tool.

GROOVE notation shown in Fig 6 contain nodes and

edges, the labels in nodes are in fact self-edges

connected to those nodes Different line style have

different significance.

Figure 6.

The first figure shows a normal line is called as

Reader element and used for matching, the second with

dashed elements are eraser elements which will be

removed and thus also are required for matching the

rule, the third figure which represent thick lines

represent creator elements which will be added to the

graph when the rule applied. The fourth is thick dashed
line represent embargoes, it is negative application

conditions which when matched prevent the rule from

being applicable.

From the AST,we will generate Abstract Syntax

Graph, By the time the graph is generated the complier

has already resolved the superimposition part and the

filtertype(which is replaced by the accept and reject

action.)

3.3. Generation of Control Flow Graph
Then next step is to add control flow information

and we will get Control Flow Graph. It consists of flow

3430

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121268

and branch edges; the latter lead to dedicated Branch

nodes, which in turn identify the value under which a

particular control flow is taken. Then we use

production system for simulation of execution where

ever rule specified the runtime semantics of a single

flow element.

4. Conclusion
In our proposed approach allows to abstractly specify

the behavior of advice actions, such that only relevant

behavior is in-corporated. Even though it doesn’t

guarantee that a composition of aspect is free of
interference, there will be a warning for interference in

case of non-confluent result. We propose that when

advices are commutative for every combination of

condition value the shared join points is highly likely

free of interference. In Labeled Transition System the

visual nature helped in getting the knowledge of

composition of advices, even as simply as seeing

different shapes under difficult condition values. This

will help in decision for debugging purpose.

5. Tool Support
In our proposed method the graph generator will be

implemented as s Compose complier module which

will be compile time and run time implementation of

Composition Filter language. Compose is available
both in Java and .Net platform.

After graph have been generated run-time simulation is

started. The final Labeled Transition System can be

opened in GROOVE viewer. Analysis of the state

space to give understandable feedback to the user can

only be obtained by visual aid, automatic capability is

still not there.

10. References

[1] Weiser, M., “Program Slicing”, IEEE Transactions on
software engineering, Vol. 10, Issue 4, 1984, 352-357.
[2] Korel, B. and Laski, J., “Dynamic Program Slicing”,
Information Processing Letters, Vol. 29, Issue 3,
doi>10.1016/0020-0190(88)90054-3, 26 October 1988,155-

163.
[3] Mehmet Aksit ,ArendRensink, and Tom Stajien “A graph-
transformation-based simulation approach for analysing
aspect interference on shared join points”AOSD’09 March 2-
6, 2009, Charlottesville, Virginia, USA.
[4] DavideBalzarotti, MattiaMonga “Using Program Slicing
to Analyze Aspect Oriented Composition” Foundation of
Aspect Oriented Language2004.

[5] Tom Staijen, ArendRensink “A Graph Transformation-
Based Semantics for Analysing Aspect Interference” .
[6] Kim Mens, Tom Tourwe “Evolution Issues in Aspect-
Oriented Programming”.

3431

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121268

