
 

 

 

 

Abstract 

Software engineers often build new 

procedures by cloning, copying an existing 

one with similar requirements, and slightly 

modifying it. While this may be easier than 

extracting the common part, and sharing it 

in a library, it increases the system size and 

often leads to higher maintenance costs. The 

occurrence of clones is highly dependent on 

the system architecture and development 

model, and has been studied in the past for a 

few large procedural systems. 

In this dissertation a new mechanism is 

proposed which will find the effect of 

software clones on the maintenance of open 

source software. In order to achieve this 

objective a suitable tool will be selected. 

Different versions of open source software 

will be evaluated in the selected tool in the 

presence and absence of clones. In order to 

performance comparison, different software 

engineering’s well known metrics will be 

selected. 

Introduction 

1.1.Overview 

A “clone” in software is a segment 

of code that has been created through 

duplication of another piece of code. [1] [2] 

e.g. Copy and paste. Clones may start to 

appear for any one of the following reasons: 

· Development time: A software engineer 

clones a procedure when needing similar 

functionality instead of extracting the 

common reusable part. It looks quicker to 

achieve, may be faster for the initial 

implementation, but often leads to more 

expensive code to maintain.  

 

 

 

 

i. Communication: A software 

engineer borrows code from a 

colleague but cannot extract the 

common reusable part. Either he 

is not sufficiently knowledgeable 

about the cloned procedure, or he 

cannot convince the other 

software engineers involved to 

include this reusable procedure in 

the library and modify their code 

to use it. 

ii. Structural: A software engineer 

borrows code from another 

subsystem but cannot avoid 

cloning because the other 

subsystem may not be modified; 

the other subsystem may belong 

to a different department or may 

not be modifiable (stored in non-

volatile memory in embedded 

systems, or frozen after a lengthy 

testing/qualification procedure). 

iii. Coincidence: It may happen that 

two software engineers came up 

with similar procedures 

independently, thus leading to 

look-alikes more than clones. It 

would be beneficial to replace 

them with a reusable procedure. 

These are typically much more 

difficult to detect as they may 

achieve the same functionality 

with somewhat different apparent 

structures. 

iv. Efficiency: Considerations of 

efficiency may make the cost of a 

procedure call or method 

invocation, too high a price. 4 

 

Assessing The Influence Of Software Cloning On Software Maintenance 

Cost 
 

Neha Kohli      Gagandeep Singh 

M.Tech       Asst. Prof. 

Sri Sai Institute of Engg. & Tech.    Sri Sai Institute of Engg. & Tech. 

          
 

1073

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T



 

1.2 Problems with clones in code 

Unjustified duplicated code gives rise to 

severe problems: 

i. If one repairs a bug in a system with 

duplicated code, all possible 

duplications of that bug must be 

checked. 

ii. Code duplication increases the size 

of the code, extending compile time 

and expanding the size of the 

executable. 

iii. Code duplication often indicates 

design problems like missing 

inheritance or missing procedural 

abstraction. In turn, such a lack of 

abstraction hampers the addition of 

functionality. 

iv. Errors in the systematic renaming 

can lead to unintended aliasing, 

resulting in latent bugs that show up 

much later. 

v. The effect of all of these is a form of 

“software aging” or “hardening of 

the arteries” that result when even 

small design changes become very 

difficult to make. 

 

1.3 Types of clones 

In general, clones may be described 

using the following typology: 

i. Type I: An exactly identical source 

code clone, i.e. no changes at all.  

ii. Type II: An exactly identical source 

code clone, but with indentation, 

comments, or identifier (name) 

changes. 

iii. Type III: A functionally identical 

clone, but with small changes made 

to the code to tailor it to some new 

function.  

iv. Type IV: A functionally identical 

clone, developed possibly with the 

originator unaware that there is a 

function already available that 

accomplishes essentially the same 

function. 

 

1.4 Need of Software Cloning  
The copying and duplication of 

source code has been studied in software 

engineering under several topic areas. Copy 

and paste programming is a common 

activity but it introduces a negative point to 

reuse by creating clones. Cloning, the 

copying and duplicating of blocks of code, is 

the basic means of software reuse [25]. The 

most prominent research area within 

software engineering which studies the 

duplication of source code is clone analysis; 

other treatments of code copying and 

duplication include studies of programmer 

behaviour, code plagiarism detection 

algorithms, the post-modern programming 

movement, as well as the development of 

some specialized programming languages. 

Clone analysis is, however, the largest area 

of research related to code duplication.  

During the software development 

cycle, code cloning is easy and inexpensive 

(in both effort and money). However, this 

cloning practice can complicate software 

maintenance and it has been suggested that 

too much cloned code is a risk, albeit the 

practice itself is not generally considered 

harmful [37]. Not only it effects the 

maintenance phase but also leads to various 

problems like clones increases Resource 

Requirements, increases Defect Probability 

and also increases the Probability of Bad 

Design.  

 

1.5 Scope of Cloning  
Today various programming 

methodologies are being used in the 

software development process. The practice 

of copy and paste code is extensively 

acknowledged but is rarely explicitly 

accounted for in models of software 

1074

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T



development. The software industry seems 

to be embracing yet another change in the 

way it does business. Because of their 

emphasis on agility and time-to-market, 

many software shops have made the move to 

extreme programming and agile methods.  

To implement these methods 

adherents embrace XP practices like pair 

programming, refactoring and collective 

code ownership to generate their products. 

These releases, which are working versions 

of the product, not prototypes, are used to 

demonstrate functions and features to 

stakeholders who help shape their form 

through refactoring and continuous 

integration. Programming methodology is 

accompanied with high degree of reuse. 

Refactoring is one of the main practices of 

Extreme Programming and thus refactoring 

is used in the cloning process. Implementing 

refactoring patterns and detecting clones 

helps in improving the code and removing 

the clones.  

Code clones are considered harmful 

in software development, also provides 

hindrance in software evolution and 

maintenance phase. So various techniques 

are used to detect them and remove them 

from the software. One of the approaches is 

to try to eliminate them through refactoring. 

Various refactoring patterns are used to 

detect the clones and hence remove them. 

Other techniques are also used to eliminate 

them.  

 

1.5 Objective  
Code clone detection could be useful 

in many ways e.g. decreasing the cost of 

software maintenance activities. Detection 

of duplicate code fragments increases 

understand-ability of software systems and 

may help system maintainers to increase 

code quality of the existing system.  

Detection of duplicate code 

fragments leads to efficiency on the software 

maintenance process and decreases 

maintenance cost. The aim of this paper is to 

evaluate the effect of software clones on the 

maintenance of open source software. 

In order to achieve this objective, the 

following objectives must be fulfilled.  

I. The main objective is to evaluate the 

effect of software clones on the 

maintenance of open source 

software. 

II. The effect of code cloning v/s clone 

free open source software on the 

“code metrics” like Method Level 

Metrics, Class Level Metrics, File 

Level Metrics and Package Level 

Metrics. 

III. Quantitative measurement of 

Maintainability Index Metric 

Quantitative measurement of an 

operational system's maintainability is 

desirable both as an instantaneous measure 

and as a predictor of maintainability over 

time. Efforts to measure and track 

maintainability are intended to help reduce a 

system's tendency toward "code entropy" or 

degraded integrity, and to indicate when it 

becomes cheaper and/or less risky to rewrite 

the code than to change it. 

Software Maintainability Metrics 

Models in Practice is the latest report from 

an ongoing, multi-year joint effort 

(involving the Software Engineering Test 

Laboratory of the University of Idaho, the 

Idaho National Engineering Laboratory, 

Hewlett-Packard, and other companies) to 

quantify maintainability via a 

Maintainability Index (MI). 

 

Problem Statement 
Software Cloning effects software 

maintenance and other engineering efforts. 

Cloning at design as well as at code level is 

seemed as an obstacle so it is needed to be 

removed. And hence cloning has grown as 

an active area in software engineering 

research community yielding numerous 

1075

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T



techniques, various tools and other methods 

for clone detection and removal. Cloning in 

source code has been reported for different 

programming languages and application 

domains.  

In this dissertation a new mechanism 

is proposed which will find the effect of 

software clones on the maintenance of open 

source software. In order to achieve this 

objective a suitable tool will be selected. 

Different versions of open source softwares 

will be evaluated in the selected tool in the 

presence and absence of clones. In order to 

performance comparison, different software 

engineering’s well known metrics will be 

selected. 

However it has been seen in base 

paper Meirelles et al. (2010) [1] has studied 

a significant number of Free Software 

projects for evaluations. This dissertation 

extends its work and study for software 

cloning by using well known metrics not 

only at code level also at effect of code 

cloning v/s clone free open source software 

on the “software metrics” like Method Level 

Metrics, Class Level Metrics, File Level 

Metrics and Package Level Metrics and 

Quantitative measurement of 

Maintainability Index Metric. 

Research methodology 

In order to achieve the objectives a 

software analysis tool will be selected and 

different software will be tested in the case 

of clone as well as same software when it is 

clone free.  

The following metrics will be selected for 

evaluation: 

3.2.1 Method Level 

a. Number of lines of Code 

(NLOC_MTD) 

b. Percentage of comments 

(POC_MTD) 

c. Number of Variables (NOV_MTD) 

d. Number of Unused Variables 

(NOUV_MTD) 

e. Number of comment lines 

(CL_MTD) 

f. Number of Parameters (NOP_MTD) 

g. Number of Unused Parameters 

(NOUP_MTD) 

3.2.2 Class Level 

a. Number of Lines of 

Code(NLOC_CLS) 

b. Number of Parents (NOPNT_CLS) 

c. Number of Fields (NOFLD_CLS) 

d. Percentage of Non-Private Fields 

(NPFP_CLS) 

e. Percentage of Non-Private Methods 

(NPMP_CLS) 

f. Number of Inner Classes 

(NOIC_CLS)  

3.2.3 File Level 

a. Number of Lines of Code 

(NLOC_FIL) 

b. Halstead Effort / Volume (HE_FIL, 

HV_FIL) 

c. SEI Maintainability Index (MI_FIL) 

3.2.4 Package Level 

a. Number of Lines of Code 

(NLOC_PKG) 

b. Number of Classes (NOCLS_PKG) 

c. Number of Interfaces (NOIFC_PKG) 

d. Number of Files (NOF_PKG) 

 

Conclusion and Future work 

New mechanism is proposed which will find 

the effect of software clones on the 

maintenance of open source software. In 

order to achieve this objective a suitable tool 

will be selected. Different versions of open 

source software will be evaluated in the 

selected tool in the presence and absence of 

clones. In order to performance comparison, 

different software engineering’s well known 

metrics will be selected. 

1076

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T



 

Bibliography 

[1] Paulo Meirelles, Carlos Santos Jr., 

Joao Miranda, Fabio Kon, Antonio 

Terceiro and Christina Chavez 

(2010), “A Study of the Relationships 

between Source Code 

[2] Metrics and Attractiveness in Free 

Software Projects”, IEEE, 2010. 

[3] Sandro Schulze, Sven Apel and 

Christian K¨astner, “Code Clones in 

Feature-Oriented Software Product 

Lines”,ACM, GPCE’10, October 

10–13, 2010. 

[4] Debarshi Chatterji1, Beverly 

Massengill2, Jason Oslin1, Jeffrey C. 

Carver and Nicholas A. Kraft (2010), 

“Measuring the Efficacy of Code 

Clone Information: An Empirical 

Study”, in the proceedings of the 

Workshop on Evaluation and 

Usability of Programming 

Languages and Tools (PLATEAU) at 

the ACM and SPLASH Conferences, 

October, 2010. 

[5] Jens Krinke (2011),“ Is Cloned Code 

older than Non-Cloned Code?”, 

ACM, IWSC 2011, May 23, 2011. 

[6] Liliane Barbour, Foutse Khomh and 

Ying Zou (2011), “Late Propagation 

in Software Clones”, IEEE, 2011. 

[7] Foyzur Rahman, Christian Bird and 

Premkumar Devanbu (2011), 

“Clones: what is that smell”, 

Springer Science, Business Media, 

LLC 2011. 

[8] Minhaz F. Zibran Chanchal and K. 

Roy (2011), “A Constraint 

Programming Approach to Conflict-

aware Optimal Scheduling of 

Prioritized Code Clone 

Refactoring”, IEEE, 2011. 

[9] Gehan M. K. Selim, Liliane Barbour, 

Weiyi Shang, Bram Adams, Ahmed 

E. Hassan and Ying Zou (2010), “  

Studying the Impact of Clones on 

Software Defects”, IEEE, 2010. 

[10] Chanchal K. Roy, James R. 

Cordy and Rainer Koschke (2009), 

“Comparison and Evaluation of 

Code Clone Detection Techniques 

and Tools: A Qualitative Approach”, 

Science of Computer Programming 

February 24, 2009. 

[11] Benjamin Hummel, Elmar 

Juergens, Lars Heinemann and 

Michael Conradt (2011), “Index-

Based Code Clone Detection: 

Incremental, Distributed, Scalable”, 

IEEE, 2011. 

 

1077

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T


