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Abstract— Association rule discovery is an important 

area of data mining. Association rules identify associations 

among data items and were introduced in 1993 by Agarwal et 

al. Most of the algorithms for finding association rules deal 

with the static databases. In dynamic databases, new 

transactions are appended as time advances. This may 

introduce new association rules and some existing association 

rules would become invalid. Thus, the association rule mining 

for a dynamic database is an important problem. In this 

paper, we analyzed three algorithms-Modified Border, 

Promising frequent itemset and New Fast Update for finding 

association rules for dynamic databases and observed their 

pros and cons. These algorithms reduce rescanning of the 

original databases. 

 
Keywords— Borders, Promising frequent itemset, FUP, 

NFUP. 
 

I. INTRODUCTION 
 

Following the explosive growth of data gathered by 
transactional systems, a challenge for finding new 

techniques to extract useful patterns from such a huge 

amount of data arose. Data mining emerged as a new 
research area to meet this  

challenge. Data mining, or knowledge discovery, is the 
computer-assisted process of digging through and 

analyzing enormous sets of data and then extracting the 

meaning of the data. One major application area of data 
mining is association rule mining [1] was first introduced 

in [Agrawal et al. 1993]. It aims to extract interesting 

correlations, frequent patterns, associations or casual 
structures among sets of items in the transaction databases 

or other data repositories. The association rule mining 
problem is to find out all the rules in the form of X => Y, 

where X and Y ⊂ I are sets of items, called itemsets. The 

association rule discovery algorithm is usually decomposed 
into 2 major steps. The first step is find out all large 

itemsets that have support value greater than minimum 
support threshold and the second step is to find out all the 

association rules that have value greater than minimum 

confidence threshold. 
One general assumption is that database is static. 

However in reality, most of the databases  

are dynamic and are updated frequently i.e. new 

transactions are added, old transactions are deleted and 
existing transactions are modified frequently. So the 

itemsets which are frequent may become infrequent when 

the database is updated and the itemsets which were 
infrequent may become frequent when the database is 

updated. Moreover, new database may contain some new 
interesting rules which were not present in the old 

database. One obvious technique is re-running association 

rule mining algorithms in the updated database to find the 
frequent itemsets in the updated database. However, this is 

not the optimal solution because of running the algorithms 

on adding, deleting or updating a small number of records. 
It will be time consuming to scan the same database 

repeatedly and generation of same itemsets repeatedly. As 
a brute force approach, apriori may be reapplied to mining 

the whole dynamic database when the database has been 

changed. However, this approach is very costly even if 
small amount of new transactions is inserted into a 

database. Thus, the association rule mining for a dynamic 

database is an important problem. Several research works 
[2, 3, 4, 5, 6] have proposed several incremental algorithms 

to deal with this problem. 

Section II describes Modified Borders algorithm, 

Promising Frequent Itemset algorithm and New Fast 

Update algorithm. Section III includes analysis of the 

algorithm. Section IV includes conclusion and future work. 

 
II. ASSOCIATION RULE MINING ALGORITHMS 

FOR DYNAMIC DATABASE  
 
Many algorithms are available for generating 

association rules for dynamic database. In this section, 
some of the frequently used algorithms are reviewed and 

the problems associated with each algorithm are discussed. 

 

A. Modified Borders Algorithm 

This algorithm is the modified version of Borders 

algorithm. An itemset X is called a border set if X is not 

frequent, but all its proper subsets are frequent. So 

collection of border sets forms the border line between the 

frequent sets and non-frequent sets. An itemset that was a 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIATE - 2017 Conference Proceedings

Volume 5, Issue 01

Special Issue - 2017

1



border set before the database was updated and has become 

frequent after the database has been updated is called a 

promoted border set. Borders algorithm also uses the 

same concept and maintains support counts for all the 

frequent sets as well as border sets. The algorithm scans the 

whole database, if there is some promoted border set. 

Otherwise, it does not require scanning the whole database. 

The Borders algorithm is robust enough to find the frequent 

itemsets in a dynamic database. However, the cost of the 

scanning of whole database in the every iteration becomes 

too expensive with the increase in the volume of the old 

database as well as new database. It also suffers from 

scalability problem. 

Hence modified borders algorithm was proposed [7]. It 

include some of the borders which are likely to become 

promoted border to generate candidate sets in the old 

database so that if those borders become promoted, no new 

candidates will have to be generated. This reduces the 

rescanning of original database. Modified Borders work by 

considering two border sets. The first border set is B-old I 

and the second border set is B-old II. B-old I contain items 

of border set with support value greater than some β < α 

(min. support) and less than α which will take part in 

candidate generation and B-old II contains items of border 

set with support value less than β and will not take part in 

candidate generation. Thus, B-old I contain the itemsets 

with higher probability of becoming promoted when new 

transactions are added. New candidate sets will be 

generated only when any of the elements of the B-old II 

becomes promoted. If new candidate itemsets are 

generated, one scan over the whole database is required to 

find supports of the new candidates. 
 
B. Promising Frequent Itemsets Algorithm 

In this algorithm we compute not only frequent itemset 

but also compute itemset that may be potentially large in an 

incremental database called “Promising frequent Itemset” 

[8]. The algorithm uses maximum support count of 1-

itemsets obtained from previous mining to estimate 

infrequent itemsets of an original database that will 

capable of being frequent itemsets when new transactions 

are inserted into the original database. With maximum 

support count and total size of new transactions that allow 

insertion into an original database, support count for 

promising frequent itemsets i.e. min_PL, is given by 

 

min⁡_𝑠𝑢𝑝𝑝𝐷𝐵 −⁡((
maxsupp

𝑡𝑜𝑡𝑎𝑙𝑠𝑖𝑧𝑒
) × 𝑖𝑛c_size) ≤ min⁡_PL

≤ min⁡_suppDB 
                                                                           (1) 

Where 

 

min⁡_𝑠𝑢𝑝𝑝𝐷𝐵 ⁡is minimum support count for an original 

database, 
 
maxsupp is maximum support count of itemsets, 
 
𝑡𝑜𝑡𝑎𝑙𝑠𝑖𝑧𝑒  is a number of transaction of an original 
database, 
 
𝑖𝑛c_size is a maximum number of new transactions. 

Apriori algorithm scans all transactions of original 

database to find all possible frequent k-itemsets and 

promising frequent k-itemsets. Items in both frequent k- 

itemsets and promising frequent k-itemsets can be joined 

together in the join step. The support count of frequent 

itemset must be higher than user-specified minimum 

support count threshold and the support count of promising 

frequent item must be higher than min_PL but less than the 

user-specified minimum support count. 
 

1) Updating of frequent and promising frequent 
itemsets: 

 
The size of an updated database increases when new 

transactions are inserted into an original database. Thus, 

min_PL must be recalculated in order to associate with the 

new size of an updated database. 
 
min_PL (update) is computed as follows: 

 

min_𝑃𝐿𝐷𝐵∪𝑑𝑏 = min_𝑠𝑢𝑝𝑝𝐷𝐵∪𝑑𝑏 − ((
𝑚𝑎𝑥𝑠𝑢𝑝𝑝

𝑡𝑜𝑡𝑎𝑙𝑠𝑖𝑧𝑒
) ×⁡ 𝑖𝑛𝑐𝑠𝑖𝑧𝑒) 

 
                  (2) 
 

Any k-item has support count greater than or equal to 

min_sup (DBUdb), this itemset is moved to a frequent k-

item of an updated database. In the other case, if any k-

item has support count less than min_sup(DBUdb) but it is 

greater or equal to min_PL(update) , this k-item is moved 

to a promise frequent itemset of an updated database. 
 

In addition, if any item is a new frequent item or a new 

promising frequent item, this item will be joined and 

pruned with both a promise frequent k-itemset and a 

frequent k-itemset. The k-itemsets are scanned in an 

incremental database and if they are frequent they can 

become a frequent itemset in an updated database. Thus, if 

that itemset has support count greater than or equal to 

min_sup(db), the item is moved to an estimated frequent k-

itemset. Similarly, a k-itemset can become a promising 

frequent itemset in an updated database only if the k-

itemset is a frequent itemset in an incremental database. 
 

Thus, if a k-itemset has support count less than  
min_sup(db) but greater or equal to min_PL(update) or 

min_PL(DB), the k-itemset is moved to an estimated 

promising frequent k-itemset. Then, both the estimated 

promise frequent k-itemsets and the estimated frequent k-

itemsets are scanned in original database to update their 

support count. 

 

C. NFUP (New Fast Update) Algorithm 

This algorithm is a modification of FUP (Fast Update) 

algorithm. In 1996, Cheung et al. proposed the FUP 

algorithm to efficiently generate associations in the updated 

database. The FUP algorithm relies on Apriori and 

considers only these newly added transactions. Let DB be 

the original database, db de the incremental database and 

DB+ be the updated database (including DB and db). An 

itemset X can have any one of this functionality. X can be 

frequent or infrequent in DB or db. 
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TABLE I 

Four scenarios associated with an itemset in DB+  
 

 
 
 
 
 
 
 
 
 
 

 

In the first pass, FUP scans db to obtain the occurrence 

count of each 1-temset. Since the occurrence counts of 

frequent itemsets in DB are known in advance, the total 

occurrence count of arbitrary X is easily calculated if X is 

in Case 2. If X is unfortunately in Case 3, DB must be 

rescanned. Similarly, the next pass scans db to count the 

candidate 2-itemsets of db. The FUP algorithm is time 

consuming because of rescanning of the original database. 

Hence, Chin-Chen Chang, Yu-Chiang Li and Jung-San L 

proposed NFUP (New Fast Update) algorithm [9]. 

 
NFUP partitions the incremental database logically 

according to unit time interval to mine new interesting rules 
in updated database. NFUP progressively accumulates the 
occurrence count of each candidate according to the 

partitioning characteristics. NFUP scans each partition 
backward, namely, the last partition is scanned first and the 
first partition is scanned last as the last partition contains 
the latest information. The frequent set of itemsets of DB is 

known in advance. The new transaction database db can be 
divided into n partitions (db = P1 U P2 U, ...,U Pn where 
Pn denotes the partition n). 
 

Let dbm,n represent the continuous time interval from 
partition Pm to partition Pn, where n≥m≥1 and nƐN. 
 

The final set of frequent itemsets consists of the three 
following types. 
 

 α set: frequent itemsets in DB+, 

 β set: frequent itemsets in dbm,n (m≤n),  
but infrequent in dbm-1,n 

  γ set:frequent itemsets in dbm,m  but infrequent 
in dbm+1,n. 

 
For dbn,n (Pn), the process starts at 1-itemsets.  

Each frequent itemset has three attributes. 

 
 X.count: includes the occurrence count in current 

partition,  
 X.start: includes the partition number of the 

corresponding starting partition when X becomes 
an element of frequent set,  

 X.type: denotes one of the three types and r. 

 
 
 
 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 1. Process of NFUP for Pm 

 

Fig. 1 shows the working of NFUP algorithm. 

 

After Pn has been scanned, all frequent 1-itemsets are 

added into the set and are joined to form 2-itemset 
candidates. In Pn, the process is performed like that of 
Apriori. NFUP is applied to the next partition Pn-1 
whenever no more candidate k-itemsets can be generated in 
Pn. In each partition, NFUP determines which candidate k-

itemset will  
become an element of or r set and identifies from which 

partition the k-itemset becomes frequent. After P1 is 

scanned, the occurrence count is accumulated with that of 

DB. 
 

III. ANALYSIS OF ALGORITHMS 
 

Modified Borders reduces rescanning of old database 

than Borders algorithm but still requires rescanning of 

database a few number of times. The value of β has a great 

effect on the performance of Modified Borders algorithm. 

As the value of β increases, the border sets which are likely 

to become promoted border sets will be less. Hence number 

of whole scan also increases. Also, Modified Borders tend 

to take little more time because number of full scan tends to 

increase with the increase in value of β. Thus, Modified 

Borders takes much less time than that of Borders when β 

is small. 

Promising Frequent Itemset algorithm requires more 

computation because min_PL is calculated for each 

updation of database. 

NFUP does not require rescanning of the original 

database and can determine frequent itemsets from recent 

transactions at the latest time intervals. But the running 

time of NFUP increases if the incremental database is 

large. 

IV. CONCLUSION 
 

In the real world, databases are periodically and 

frequently updated. Therefore, mining must be repeated on 

each update. In this paper, we analyzed various algorithms 

for generating association rules for dynamic database. 

Promising frequent itemset algorithm reduces the 

rescanning of old database as compared to Modified 

Borders algorithm. NFUP does not require rescanning of 
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original database. However the execution time depends on 

the size of the database either original or incremental. 

It can be observed that most of the data mining 

approaches discover the knowledge pertaining to frequently 

occurring entities. However, real-world datasets are mostly 

non-uniform in nature containing both frequent and 

relatively rare items. Some rare items are equally important 

for generating association rules. The rare cases are more 

difficult to detect because they contain fewer data. At high 

user specified minimum support value, rare itemsets are 

missed, and at low minimum support value, the number of 

frequent itemsets explodes.  

  
REFERENCES 

 
[1]. R. Agrawal., T. Imielinski, and A. Swami, “Mining association 

rules between sets of items in large databases,” In Proc. Of the 
ACM SIGMOD Intl Conf. on Management of Data (A CM 
SIGMOD ’93), Washington, USA, May1993  

[2]. C. H. Lee, C. R. Lin , and M. S. Chen, “Sliding-Window 

Filtering:  An  Efficient  Algorithm  for  Incremental Mining 
ACM, 2000 

[3].C.C. Chang, Y.C. Li and J.S. Lee, “An efficient algorithm for 
incremental mining of association rules,” Proceedings of the 15th 
international workshop on research issues in data engineering: 
stream data mining and applications (RIDE-SDMA’05) ,IEEE, 
2005 

[4]. A. A. Veloso et al., “Mining frequent itemsets in evolving 
databases,” In Proc. 2nd SIAM Intl. Conf. on Data Mining, 
Arlington, VA, Apr. 2002  

[5]. K.L. Lee, G. Lee and A. L.P. Chen, “Efficient Graph-based 
algorithm for discovering and maintaining knowledge in large 
database,” In Proc. third pacific-asia conference on 
methodologies for knowledge discovert and data mining, April 
1999. 

[6]. N. L. Sarda and N. V. Srinivas, “An adaptive algorithm for 
incremental. mining of association rules,” In Proc. 9th Intl. 
Workshop on Database and Expert System Applications,Vienna, 
Austria, pp. 240-245, Aug1998. 

[7]. A Das & D K Bhattacharyya, Department of Information 
Technology, Tezpur University, Napaam 784 028, India “Rule 
mining for dynamic databases” In AJIS Vol 13, No. 1 September 
2005. 

[8]. Ratchadaporn Amornchewin & Worapoj Kreesuradej, 
“Incremental Association Rule Mining Using Promising Frequent 
Itemset Algorithm” In ICICS 2007. 

[9]. Chin-Chen Chang, Yu-Chiang Li and Jung-San Lee “An Efficient 
Algorithm for Incremental Mining of Association Rules” In Proc. 
15th International Workshop on Research Issues in Data 
Engineering: Stream Data Mining and Applications,2005 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIATE - 2017 Conference Proceedings

Volume 5, Issue 01

Special Issue - 2017

4


