
Association Rule Mining for Dynamic Database

Algorithms-a Survey

Jyoti Golakia

Department of Computer Engineering,
Atharva College of Engineering

Mumbai, Maharashtra

Trupti Shah
Department of Computer Engineering,

Atharva College of Engineering
Mumbai, Maharashtra

Snehal Kathale
Department of Information Technology,

Atharva College of Engineering
Mumbai, Maharashtra

Komal S. Mahajan
Department of Information Technology,

Atharva College of Engineering
Mumbai, Maharashtra

Abstract— Association rule discovery is an important

area of data mining. Association rules identify associations

among data items and were introduced in 1993 by Agarwal et

al. Most of the algorithms for finding association rules deal

with the static databases. In dynamic databases, new

transactions are appended as time advances. This may

introduce new association rules and some existing association

rules would become invalid. Thus, the association rule mining

for a dynamic database is an important problem. In this

paper, we analyzed three algorithms-Modified Border,

Promising frequent itemset and New Fast Update for finding

association rules for dynamic databases and observed their

pros and cons. These algorithms reduce rescanning of the

original databases.

Keywords— Borders, Promising frequent itemset, FUP,

NFUP.

I. INTRODUCTION

Following the explosive growth of data gathered by
transactional systems, a challenge for finding new

techniques to extract useful patterns from such a huge

amount of data arose. Data mining emerged as a new
research area to meet this

challenge. Data mining, or knowledge discovery, is the
computer-assisted process of digging through and

analyzing enormous sets of data and then extracting the

meaning of the data. One major application area of data
mining is association rule mining [1] was first introduced

in [Agrawal et al. 1993]. It aims to extract interesting

correlations, frequent patterns, associations or casual
structures among sets of items in the transaction databases

or other data repositories. The association rule mining
problem is to find out all the rules in the form of X => Y,

where X and Y ⊂ I are sets of items, called itemsets. The

association rule discovery algorithm is usually decomposed
into 2 major steps. The first step is find out all large

itemsets that have support value greater than minimum
support threshold and the second step is to find out all the

association rules that have value greater than minimum

confidence threshold.
One general assumption is that database is static.

However in reality, most of the databases

are dynamic and are updated frequently i.e. new

transactions are added, old transactions are deleted and
existing transactions are modified frequently. So the

itemsets which are frequent may become infrequent when

the database is updated and the itemsets which were
infrequent may become frequent when the database is

updated. Moreover, new database may contain some new
interesting rules which were not present in the old

database. One obvious technique is re-running association

rule mining algorithms in the updated database to find the
frequent itemsets in the updated database. However, this is

not the optimal solution because of running the algorithms

on adding, deleting or updating a small number of records.
It will be time consuming to scan the same database

repeatedly and generation of same itemsets repeatedly. As
a brute force approach, apriori may be reapplied to mining

the whole dynamic database when the database has been

changed. However, this approach is very costly even if
small amount of new transactions is inserted into a

database. Thus, the association rule mining for a dynamic

database is an important problem. Several research works
[2, 3, 4, 5, 6] have proposed several incremental algorithms

to deal with this problem.

Section II describes Modified Borders algorithm,

Promising Frequent Itemset algorithm and New Fast

Update algorithm. Section III includes analysis of the

algorithm. Section IV includes conclusion and future work.

II. ASSOCIATION RULE MINING ALGORITHMS

FOR DYNAMIC DATABASE

Many algorithms are available for generating

association rules for dynamic database. In this section,
some of the frequently used algorithms are reviewed and

the problems associated with each algorithm are discussed.

A. Modified Borders Algorithm

This algorithm is the modified version of Borders

algorithm. An itemset X is called a border set if X is not

frequent, but all its proper subsets are frequent. So

collection of border sets forms the border line between the

frequent sets and non-frequent sets. An itemset that was a

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIATE - 2017 Conference Proceedings

Volume 5, Issue 01

Special Issue - 2017

1

border set before the database was updated and has become

frequent after the database has been updated is called a

promoted border set. Borders algorithm also uses the

same concept and maintains support counts for all the

frequent sets as well as border sets. The algorithm scans the

whole database, if there is some promoted border set.

Otherwise, it does not require scanning the whole database.

The Borders algorithm is robust enough to find the frequent

itemsets in a dynamic database. However, the cost of the

scanning of whole database in the every iteration becomes

too expensive with the increase in the volume of the old

database as well as new database. It also suffers from

scalability problem.

Hence modified borders algorithm was proposed [7]. It

include some of the borders which are likely to become

promoted border to generate candidate sets in the old

database so that if those borders become promoted, no new

candidates will have to be generated. This reduces the

rescanning of original database. Modified Borders work by

considering two border sets. The first border set is B-old I

and the second border set is B-old II. B-old I contain items

of border set with support value greater than some β < α

(min. support) and less than α which will take part in

candidate generation and B-old II contains items of border

set with support value less than β and will not take part in

candidate generation. Thus, B-old I contain the itemsets

with higher probability of becoming promoted when new

transactions are added. New candidate sets will be

generated only when any of the elements of the B-old II

becomes promoted. If new candidate itemsets are

generated, one scan over the whole database is required to

find supports of the new candidates.

B. Promising Frequent Itemsets Algorithm

In this algorithm we compute not only frequent itemset

but also compute itemset that may be potentially large in an

incremental database called “Promising frequent Itemset”

[8]. The algorithm uses maximum support count of 1-

itemsets obtained from previous mining to estimate

infrequent itemsets of an original database that will

capable of being frequent itemsets when new transactions

are inserted into the original database. With maximum

support count and total size of new transactions that allow

insertion into an original database, support count for

promising frequent itemsets i.e. min_PL, is given by

min⁡_𝑠𝑢𝑝𝑝𝐷𝐵 −⁡((
maxsupp

𝑡𝑜𝑡𝑎𝑙𝑠𝑖𝑧𝑒
) × 𝑖𝑛c_size) ≤ min⁡_PL

≤ min⁡_suppDB
 (1)

Where

min⁡_𝑠𝑢𝑝𝑝𝐷𝐵 ⁡is minimum support count for an original

database,

maxsupp is maximum support count of itemsets,

𝑡𝑜𝑡𝑎𝑙𝑠𝑖𝑧𝑒 is a number of transaction of an original
database,

𝑖𝑛c_size is a maximum number of new transactions.

Apriori algorithm scans all transactions of original

database to find all possible frequent k-itemsets and

promising frequent k-itemsets. Items in both frequent k-

itemsets and promising frequent k-itemsets can be joined

together in the join step. The support count of frequent

itemset must be higher than user-specified minimum

support count threshold and the support count of promising

frequent item must be higher than min_PL but less than the

user-specified minimum support count.

1) Updating of frequent and promising frequent
itemsets:

The size of an updated database increases when new

transactions are inserted into an original database. Thus,

min_PL must be recalculated in order to associate with the

new size of an updated database.

min_PL (update) is computed as follows:

min_𝑃𝐿𝐷𝐵∪𝑑𝑏 = min_𝑠𝑢𝑝𝑝𝐷𝐵∪𝑑𝑏 − ((
𝑚𝑎𝑥𝑠𝑢𝑝𝑝

𝑡𝑜𝑡𝑎𝑙𝑠𝑖𝑧𝑒
) ×⁡ 𝑖𝑛𝑐𝑠𝑖𝑧𝑒)

 (2)

Any k-item has support count greater than or equal to

min_sup (DBUdb), this itemset is moved to a frequent k-

item of an updated database. In the other case, if any k-

item has support count less than min_sup(DBUdb) but it is

greater or equal to min_PL(update) , this k-item is moved

to a promise frequent itemset of an updated database.

In addition, if any item is a new frequent item or a new

promising frequent item, this item will be joined and

pruned with both a promise frequent k-itemset and a

frequent k-itemset. The k-itemsets are scanned in an

incremental database and if they are frequent they can

become a frequent itemset in an updated database. Thus, if

that itemset has support count greater than or equal to

min_sup(db), the item is moved to an estimated frequent k-

itemset. Similarly, a k-itemset can become a promising

frequent itemset in an updated database only if the k-

itemset is a frequent itemset in an incremental database.

Thus, if a k-itemset has support count less than
min_sup(db) but greater or equal to min_PL(update) or

min_PL(DB), the k-itemset is moved to an estimated

promising frequent k-itemset. Then, both the estimated

promise frequent k-itemsets and the estimated frequent k-

itemsets are scanned in original database to update their

support count.

C. NFUP (New Fast Update) Algorithm

This algorithm is a modification of FUP (Fast Update)

algorithm. In 1996, Cheung et al. proposed the FUP

algorithm to efficiently generate associations in the updated

database. The FUP algorithm relies on Apriori and

considers only these newly added transactions. Let DB be

the original database, db de the incremental database and

DB+ be the updated database (including DB and db). An

itemset X can have any one of this functionality. X can be

frequent or infrequent in DB or db.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIATE - 2017 Conference Proceedings

Volume 5, Issue 01

Special Issue - 2017

2

TABLE I

Four scenarios associated with an itemset in DB+

In the first pass, FUP scans db to obtain the occurrence

count of each 1-temset. Since the occurrence counts of

frequent itemsets in DB are known in advance, the total

occurrence count of arbitrary X is easily calculated if X is

in Case 2. If X is unfortunately in Case 3, DB must be

rescanned. Similarly, the next pass scans db to count the

candidate 2-itemsets of db. The FUP algorithm is time

consuming because of rescanning of the original database.

Hence, Chin-Chen Chang, Yu-Chiang Li and Jung-San L

proposed NFUP (New Fast Update) algorithm [9].

NFUP partitions the incremental database logically

according to unit time interval to mine new interesting rules
in updated database. NFUP progressively accumulates the
occurrence count of each candidate according to the

partitioning characteristics. NFUP scans each partition
backward, namely, the last partition is scanned first and the
first partition is scanned last as the last partition contains
the latest information. The frequent set of itemsets of DB is

known in advance. The new transaction database db can be
divided into n partitions (db = P1 U P2 U, ...,U Pn where
Pn denotes the partition n).

Let dbm,n represent the continuous time interval from
partition Pm to partition Pn, where n≥m≥1 and nƐN.

The final set of frequent itemsets consists of the three
following types.

 α set: frequent itemsets in DB+,

 β set: frequent itemsets in dbm,n (m≤n),
but infrequent in dbm-1,n

 γ set:frequent itemsets in dbm,m but infrequent
in dbm+1,n.

For dbn,n (Pn), the process starts at 1-itemsets.

Each frequent itemset has three attributes.

 X.count: includes the occurrence count in current

partition,
 X.start: includes the partition number of the

corresponding starting partition when X becomes
an element of frequent set,

 X.type: denotes one of the three types and r.

Fig 1. Process of NFUP for Pm

Fig. 1 shows the working of NFUP algorithm.

After Pn has been scanned, all frequent 1-itemsets are

added into the set and are joined to form 2-itemset
candidates. In Pn, the process is performed like that of
Apriori. NFUP is applied to the next partition Pn-1
whenever no more candidate k-itemsets can be generated in
Pn. In each partition, NFUP determines which candidate k-

itemset will
become an element of or r set and identifies from which

partition the k-itemset becomes frequent. After P1 is

scanned, the occurrence count is accumulated with that of

DB.

III. ANALYSIS OF ALGORITHMS

Modified Borders reduces rescanning of old database

than Borders algorithm but still requires rescanning of

database a few number of times. The value of β has a great

effect on the performance of Modified Borders algorithm.

As the value of β increases, the border sets which are likely

to become promoted border sets will be less. Hence number

of whole scan also increases. Also, Modified Borders tend

to take little more time because number of full scan tends to

increase with the increase in value of β. Thus, Modified

Borders takes much less time than that of Borders when β

is small.

Promising Frequent Itemset algorithm requires more

computation because min_PL is calculated for each

updation of database.

NFUP does not require rescanning of the original

database and can determine frequent itemsets from recent

transactions at the latest time intervals. But the running

time of NFUP increases if the incremental database is

large.

IV. CONCLUSION

In the real world, databases are periodically and

frequently updated. Therefore, mining must be repeated on

each update. In this paper, we analyzed various algorithms

for generating association rules for dynamic database.

Promising frequent itemset algorithm reduces the

rescanning of old database as compared to Modified

Borders algorithm. NFUP does not require rescanning of

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIATE - 2017 Conference Proceedings

Volume 5, Issue 01

Special Issue - 2017

3

original database. However the execution time depends on

the size of the database either original or incremental.

It can be observed that most of the data mining

approaches discover the knowledge pertaining to frequently

occurring entities. However, real-world datasets are mostly

non-uniform in nature containing both frequent and

relatively rare items. Some rare items are equally important

for generating association rules. The rare cases are more

difficult to detect because they contain fewer data. At high

user specified minimum support value, rare itemsets are

missed, and at low minimum support value, the number of

frequent itemsets explodes.

REFERENCES

[1]. R. Agrawal., T. Imielinski, and A. Swami, “Mining association

rules between sets of items in large databases,” In Proc. Of the
ACM SIGMOD Intl Conf. on Management of Data (A CM
SIGMOD ’93), Washington, USA, May1993

[2]. C. H. Lee, C. R. Lin , and M. S. Chen, “Sliding-Window

Filtering: An Efficient Algorithm for Incremental Mining
ACM, 2000

[3].C.C. Chang, Y.C. Li and J.S. Lee, “An efficient algorithm for
incremental mining of association rules,” Proceedings of the 15th
international workshop on research issues in data engineering:
stream data mining and applications (RIDE-SDMA’05) ,IEEE,
2005

[4]. A. A. Veloso et al., “Mining frequent itemsets in evolving
databases,” In Proc. 2nd SIAM Intl. Conf. on Data Mining,
Arlington, VA, Apr. 2002

[5]. K.L. Lee, G. Lee and A. L.P. Chen, “Efficient Graph-based
algorithm for discovering and maintaining knowledge in large
database,” In Proc. third pacific-asia conference on
methodologies for knowledge discovert and data mining, April
1999.

[6]. N. L. Sarda and N. V. Srinivas, “An adaptive algorithm for
incremental. mining of association rules,” In Proc. 9th Intl.
Workshop on Database and Expert System Applications,Vienna,
Austria, pp. 240-245, Aug1998.

[7]. A Das & D K Bhattacharyya, Department of Information
Technology, Tezpur University, Napaam 784 028, India “Rule
mining for dynamic databases” In AJIS Vol 13, No. 1 September
2005.

[8]. Ratchadaporn Amornchewin & Worapoj Kreesuradej,
“Incremental Association Rule Mining Using Promising Frequent
Itemset Algorithm” In ICICS 2007.

[9]. Chin-Chen Chang, Yu-Chiang Li and Jung-San Lee “An Efficient
Algorithm for Incremental Mining of Association Rules” In Proc.
15th International Workshop on Research Issues in Data
Engineering: Stream Data Mining and Applications,2005

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIATE - 2017 Conference Proceedings

Volume 5, Issue 01

Special Issue - 2017

4

