
Association Rule Mining on Big Data – A Survey

Dr. R Nedunchezhian

Director of Research

KIT – Kalaignarkarunanidhi Institute of Technology

Coimbatore

K Geethanandhini
PG Scholar

Department of CSE

KIT – Kalaignarkarunanidhi Institute of Technology

Coimbatore

Abstract: Frequent pattern mining is the key concept in

Association Rule Mining task. Main aim of frequent pattern

mining is to find the recurrent patterns occurring in a dataset.

Finding patterns identify the relationship between items in an

item domain, these relationships are useful for strategic

decision making. Data is flooded in a day to day life, called

“Big Data”, because massive amount of data is produced

everywhere. Mining frequent patterns from the huge volumes

of data has many challenges due to memory requirement,

multiple data dimensions, heterogeneity of data and so on.

The complexities related to mining frequent itemsets from a

Big Data can be minimized by parallelizing the mining task

with Map Reduce framework in Hadoop Cluster [1]. In this

paper, an introduction to Big Data, Association Rule Mining,

concepts and basic methods for frequent pattern mining are

given. The various methods proposed by different authors to

mine frequent patterns from enormous dataset effectively are

also discussed.

Keywords: Association Rule Mining (ARM), Frequent Pattern

Mining (FPM), Big Data, Map - Reduce, Hadoop

I. INTRODUCTION

A) Big data

 Big Data is used everywhere now and it is an

emerging technology being used by many enterprises to

understand the business trends from their historical data

[3]. Big data is a large set of data which consist of different

data types with different dimensions. There are three types

of data: i) Structured ii) Semistructured and iii)

Unstructured. Most of the Big Data are Unstructured,

because they don't have any predefined patterns; it can be

of any form like image, audio, video and geospatial.

Structured data follow standard schema's. Semistructured

data is a combination of both structured & unstructured

data such as customer name and compliant. Among the

available data only 20% data is structured.

 The Big Data is expressed in terms of four

dimensions [3] i) Volume - it represents the amount of data

as big data is defined in terms of petabytes and zettabytes.,

ii) Velocity - it deals with the accelerating speed at which

data flows in from sources like business processes,

machines, networks and human interaction with things like

social media sites and mobile devices, iii) Variety refers to

the increasingly diversified sources and types of data

requiring management and analysis. Now data comes in the

form of emails, photos, videos, monitoring devices, PDFs

and audio which differ from the conventional data sets. iv)

Veracity - refers to the biases, noise and abnormality in

data being generated. The quality of the mining result

should not be deteriorated owing to the presence of

outliers. Given increasing volume of data at an

unprecedented rate and in ever more diverse forms, hence

there is a clear need for managing the uncertainty

associated with particular types of data.

 An important function of Big Data is “Big Data

Analytics”, it is a process of discovering hidden patterns,

relationship between the items, and customer interest on a

particular item from the large data sets. Different

techniques are applied to derive valid, previously unknown

and potentially useful patterns from mountains of data.

Association rule mining is one among the mining

functionalities applied for big data analytics in order to find

out the affinities among items. Frequent item set mining

helps in locating the relationships between items. The next

subsection deals with the introduction of Association Rule

Mining (ARM).

B) Association rule mining

Association rules are conditional statements

(if/then) that are used to uncover relationships between

apparently unrelated data in a relational database or other

information repository. It was introduced by Agrawal et al.

in 1993. A simple example of an association rule would be

"If a customer buys a CPU, he is 80% likely to purchase

Keyboard also." Main aim of Association Rule Mining

(ARM) is to find the frequent item set in the database [13].

These association rules are used in various fields to

enhance business, especially in the field of marketing.

Many algorithms, methods and techniques have been

proposed by ARM research community used to find the

frequent itemsets with minimum complexities.

Association rules have to meet the predefined

minimum support and confidence as they set by the user.

The goal is to find associations between items that occur

together in transactions. Usually the ARM process involves

two important steps, first is to find the frequent itemsets

from massive amount of datasets and the second step is to

generate associations from those derived frequent itemsets.

 Let I={i1,i2,…..,in} be the set of items in a dataset

and T={t1,t2,…..,tm} is the set of transactions in the dataset,

it contain m transactions. Association rules are expressed in

the form of X=>Y, where X,Y ⊂ I are itemsets, and X∩Y=

∅. where, X is antecedent and Y is consequent.

Two thresholds of ARM are minimum support (min sup)

and minimum confidence (min con) [5].

 Support Count (σ): Frequency of occurrence of

itemset in transactions σ ({X, Y}).

Vol. 5 Issue 05, May-2016

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS050049

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

42

 Support (s): Fraction of transaction that contain an

itemset, it also determines how often a rule is applicable to

a given data set.

Support,

s(X→Y)=
𝜎(𝑋𝑈𝑌)

𝑚
 1.1

 Confidence (c) : It is used to measures how often

items in Y appear in transactions that contain X.

Confidence,

c(X→Y) ==
𝜎(𝑋𝑈𝑌)

𝜎(𝑋)
 1.2

 Support is an important measure because a rule

that has very low support may occur simply by chance, so

it can eliminate such

 rules. Confidence measures the reliability of the inference

made by a rule. It provides the conditional probability of Y

given X.

 It is to find all the interesting rules having support

≥ minsup and confidence ≥ minconf from a dataset D.

Total number of possible rules that can be extracted from

the dataset with n items in the item domain (I),

R=3m – 2m+1 + 1 [12] 1.3

 The remainder of this paper is organized as

follows. Section II describes about the basic methods used

for frequent pattern mining. In Section III different

methods proposed for frequent pattern mining in Big Data

are discussed.

II. FREQUENT ITEMSET MINING:

 Many algorithms have been proposed in the past.

The algorithm proposed by Agarwal and Srikant in the year

of 1994 called “APRIORI”, is a benchmark algorithm for

mining association rules. The apriori algorithm is explained

in detail below to express the different steps involved in

mining frequent itemsets.

A) Apriori Algorithm:

 It is an influential algorithm for mining frequent

itemsets for Boolean association rules. It follows Bottom

Up approach in which frequent subsets are extended one at

a time also called candidate set and this step is called

candidate generation. Group of candidates are tested

against the transaction in the dataset.

Apriori Property: “Any subset of a frequent itemset must

be frequent”[13]

Steps in the Apriori :

 The algorithm works on the fact that the algorithm

possess prior knowledge of frequent itemsets.

 Step 1: The algorithm visits the dataset for

calculating the frequency count of candidates. The

number of scans on dataset varies with the maximum

length of the frequent itemset in the dataset.

 Step 2: After the first scan over the dataset the set

of frequent 1-itemsets are created, L1.Then L1 is self-

joined to generate candidates of the length two, C2 and so

on until no frequent K-itemsets can be found.

 Step 3: Scan the dataset again to find the support

count of each k itemsets.

 Step 4: If the candidate itemset is null it move on

to the next step, otherwise step 2 and 3 repeated.

 Step 5: For each frequent itemset 1, generate all

nonempty subsets of 1.This iterative approach known as

Level wise search, where K- items are used to explore

(K+1)-itemsets from transactional databases for Boolean

Rules.

Limitations:

- Generate and test is a major drawback of the Apriori

algorithm. It involves large number of candidate

generations and repeated visits to the datasets. To find

a frequent pattern of size 100 need to generate totally

2100 − 2 ≈ 1030 candidates.

- It costs too high to manage and store the large amount

of candidate itemsets.

B) ECLAT ALGORITHM:

This method was proposed by Zaki[19], in the

year of 1997.The previous algorithm uses horizontal

representation but this algorithm follows vertical

representation of dataset. Eclat algorithm uses bottom up

approach to finds the itemsets from the dataset like depth

first search. Eclat algorithm is very simple method to find

the frequent item sets. If there is any horizontal database,

then we need to convert into vertical database.

There is no need to scan the database further.

Eclat algorithm scans the database only once. Each item is

stored together with its cover, also called tidlist and uses

the intersection operation compute the support of an

itemset. It is suitable for small datasets also it requires less

time for frequent pattern generation than apriori.

Steps in the Eclat algorithm [19]:

1. Transform the horizontal dataset into vertical

format by scanning the entire database only once.

2. Estimate the support count of each itemset used as

the length of the TID set of the respective itemset.

3. Construct (k+1) candidate itemsets using he

frequent k-itemsets based on the Apriori property.

4. Repeat step 2 and 3 , until no frequent items or no

candidate itemsets can be found.

Properties of Eclat algorithm:

 Take the advantage of the Apriori property in the

generation of candidate (k+1)-itemsets from k-itemsets

 No need to scan the database to find the support of

(k+1) itemsets, for k>=1

 The TID_set of each k-itemset carries the complete

information required for counting such support

 The TID-sets can be quite long, hence expensive to

manipulate

 Use diffset technique to optimize the support count

computation

C) FREQUENT PATTERN TREE (FP – GROWTH):

 The algorithm was proposed by Han in the year of

2000[7]. It is more efficient than the previous algorithms

because it does not generate candidates. A tree pruning

method called frequent pattern tree tis applied to find

frequent patterns. It is a two-step approach[7]:

Step 1: Build a compact data structure called FP-

Tree. This is built using two passes over the data set.

Step 2: It divides the FP-Tree into a set of

conditional datasets and mines each dataset separately and

extracts frequent itemsets directly from the FP-Tree.

In this technique it is necessary to perform the first

scan of transaction dataset to identify set of frequent items.

Vol. 5 Issue 05, May-2016

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS050049

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

43

STEP 1: FP-Tree construction

Pass 1:

- Scan the dataset and find support for each item. Then

discard the infrequent items whose support is less than

the minsup.

- Sort the frequent items in decreasing order based on

their support.

- Based on the order FP-Tree is constructed, so common

prefix can be shared.

Pass 2:

Here nodes representing the items and they have counter to

update the frequency of items.

- FP-growth reads first transaction at a time and maps it

to a path.

- The fixed order is used, so paths can overlap when

transactions share same items. If the transactions

shares same prefix then the counters are incremented.

- Pointers are maintained between nodes containing the

same item. This forms singly linked list.

- If more paths overlap, it needs higher compression

then only FP-Tree may fit in memory.

- Finally frequent items are extracted from the FP-Tree.

FP-Tree size:

 The FP-Tree usually has a smaller size than

uncompressed data because in FP-Tree transactions share

the prefix if they have same items [7]. Sharing prefix

typically reduce the size of the tree. In the Best Case

Scenario: all the transactions have same set of items then

only one path in the FP-Tree. Worst Case Scenario: every

transaction has a unique set of items then size of the FP-

Tree is as large as the original data. An extra storage

requirement for the FP-Tree is needed, to store the pointers

between the nodes and the counters. Size of the FP-Tree

depends on how the items are ordered, usually decreasing

support is used but it does not always lead to the small size.

STEP 2: Frequent Itemset Generation

 After constructing the FP-Tree, have to find

frequent itemsets. Frequent itemsets are found in the

following manner,

- It follows divide and conquer method:

Conditional FP-Tree:

 First it looks for the frequent 1-itemset ending with

the first item in sorted list. This process is for all the

items in the sorted list. (Eg. c,bc,ac,abc,b,ab,a),

Conditional FP-Tree is constructed for every items

in sorted list.

 Extract prefix path sub trees ending with a single

item with the help of link list.

 Each prefix path sub tree is processed recursively to

extract the frequent itemsets.

 Finally solutions of each prefix path sub tree are

merged.

Properties of FP-growth:

 FP-growth transforms the problem of finding long

frequent patterns to searching for shorter once

recursively and concatenating the suffix

 It uses the least frequent suffix offering a good

selectivity

 It reduces the search cost

 If the tree does not fit into main memory, partition

the database

 Efficient and scalable for mining both long and short

frequent patterns

III. FREQUENT PATTERN MINING IN BIG DATA

In Big Data analytics it is important to find

frequent items to make decisions. Big Data analytics is an

emerging and growing technology used by the enterprises

to know their client’s interest on their products, by

analyzing the previous purchase of their clients. Analyzing

the previous purchases we can find frequent patterns, based

on this we made a decision about client’s habit of

purchasing. It can help in improving the profits of a

business organization.

In [16], a new method introduced, Frequent

Ultrametric Tree (FIUT), to find frequent patterns as an

alternate to FP Tree. The proposed FIUT consists of two

main phases and it needs only two scans of dataset, D. In

phase1 it calculates support for each item in a dataset.

Then, a pruning technique is used to remove all infrequent

items, leaving only frequent items to generate the k-

itemsets. Meanwhile, all the frequent 1-itemset are

generated. Phase2 is the repetitive construction of small

ultrametric trees, the actual mining of these trees, and their

output. FIUT has four main salient features i) it scans the

database only twice so it gradually minimize I/O overhead,

ii) In case clustering FIUT is an efficient way to partition a

database so it reduces the search space, iii) It inserts only

the frequent items to FIUT for compressed storage, iv) By

checking the leaves of FIUT, frequent itemsets are

generated without recursive traversal through which the

computing time is reduced.

Merits: Computing time is reduced since it uses

compressed data structure in turn the search space also

reduced.

In [8], Tidset-based Parallel FPtree (TPFP-tree)

and Balanced Tidset-based Parallel FP-tree (BTP-tree) are

proposed based on cluster and grid computing. The first

parallel FP-tree algorithm based TID is developed for

Cluster computing. Cluster computation is homogeneous,

the TPFP -tree distributes the workload to each processor

equally without considering the efficiency of the

processors. The main aim of TPFP-tree is to reduce the

execution time of mining information exchange and reduce

the cost of transaction exchange. There are five primary

stages in the Tidset-based Parallel FP-tree (TPFP-tree)

algorithm: (1) create Header Table and Tidset, (2)

distribute mining item set, (3) exchange transactions, (4)

FP-tree construction and (5) apply FP-growth algorithm.

BTP-tree is designed for grid computing because grid is

heterogeneous. When using TPFP on grid we will face

imbalance problems thus BTP was proposed. The work is

distributed based on the computing capability of the

processors. There are six stages in a BTP-tree algorithm:

(1) create header table and Tidset, (2) evaluate the

performance index of computing nodes, (3) distribute

mining item set, (4) exchange transactions, (5) create FP-

tree and (6) apply FP-growth algorithm. For huge amount

of datasets, creation header table require more time.

Vol. 5 Issue 05, May-2016

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS050049

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

44

Therefore, a transaction identification set (Tidset) is created

at this stage to speed-up the transaction selection for future

use.

Merits: It is based on cluster and grid computing it

exchanges only necessary informations between clusters so

the performance increased.

Demerits: If any cluster failed entire mining task

will be affected.

In [9], introduced a method for finding frequent

patterns from large databases in cloud computing

environments. Here FP- Tree used for mining frequent

items, for this FP- Tree construction disk used as a

secondary memory. The system is composed of a dataset, a

kernel node, n, connection node, and many computing

nodes, where n is the number of clouds. Kernel node is

responsible for building the FP-Tree and frequent pattern

mining tasks are distributed across the computing nodes.

The main purpose of using disk based FP- Tree generating

method is to solve the memory lacking problem in kernel

node. All reads and writes of FP- Tree into disk in

serializable way for scalability and do the frequent pattern

mining in huge database. This mechanism stores the whole

FP-tree in many files, every file records partial FP-tree that

the number of nodes is restricted in maxNodes Per File.

They also introduce a tree data structure, File Table, to

record the mapping of X and file name. A File Table

contains a root itemset X, the count of X, a table named

IDTable, for mapping file ID and subRoot item, and a table

named subRootTable, for mapping subRoot item and

subFile Table.

Merits: For efficient mining disk is used as a

secondary memory so it solves memory problems.

Demerits: In case of disk failure, the mining task

will be affected.

In [10], PARMA is introduced to achieve near-

linear speedup while avoiding costly replication of data. In

this multiple small random samples are created from the

transactional dataset and running a mining algorithm on the

samples independently and in parallel. Finally all frequent

itemsets from samples are consolidated. PARMA is

implemented using Map Reduce framework. It has two

stages, in the first stage N samples are created with the help

of first Map function and the samples are mined using first

Reduce function. Second is the aggregation stage in which

all the results of samples are combined to get a whole set of

frequent itemsets in a database.

Merits: Instead of processing the whole dataset, it

divides into sample in order to give the better and fast

resuts.

In [14], two new methods are proposed for mining

Big Data, Dist-Eclat focuses on speed while BigFIM is

optimized to run on really large datasets. Both the methods

are parallel on the Map Reduce framework where

frequency thresholds can be set low. In the first method,

Dist-Eclat, first it divides the vertical dataset into small

blocks and distributes it into the possible amongst the

mappers and reducers gives frequent items with count,

second map reduce job is applied by distributing the

frequent items to the mappers the reducer will give the

frequent itemset of size k, it is pure Eclat method. Finally

subtree mining applied to ecxtract all frequent itemsets.

Mappers require whole dataset to mine subtrees but which

can be not suitable for the given network infrastructure. So

they proposed another method BigFIM, it is a hybrid

method and first uses the Apriori algorithm to extract

frequent itemsets of length k and later on it moves to Eclat

when the projected databases fit in memory.

Merits: Here it is implemented on the hadoop

cluster to get a better and fast performance.

In [18], FiDoop is a parallel frequent itemsets

mining algorithm. The main aim of FiDoop is to build a

mechanism that enables automatic parallelization, load

balancing, and data distribution for parallel mining of

frequent itemsets on large clusters. In FiDoop, three Map

Reduce jobs are implemented to mine the large datasets.

The first map reduce job is used to generate frequent one-

items. Then the second map reduce job scans the dataset

and prunes the infrequent items in each transaction record.

Finally, third map reduce job is an important and expensive

too, The main goal of each mapper is to achieve two

things: i) to decompose each k-itemset obtained by the

second Map Reduce job into a list of small-sized sets,

where the number of each set is anywhere between 2 to k −

1 and ii) to construct an FIU-tree by merging local

decomposition results with the same length. Also they

developed FiDoop-HD, an extension of FiDoop, to speed

up the mining performance for high-dimensional data

analysis.

Merits: It uses FIUT instead of FP Tree and

implemented using Map Reduce jobs to tolerate the

high amount of data.

In [15], a new pre-processed k-means technique

applied on BigFIM algorithm to find frequent itemsets in

Big Data. ClustBigFIM uses hybrid approach, clustering

using kmeans algorithm to generate Clusters and these

clusters consist of datasets from huge databases, and here

they used Apriori and Eclat algorithms to mine frequent

itemsets from generated clusters using MapReduce

programming model. The k-means algorithm is most used

technique of clustering, it takes number of clusters as input,

random points are chosen as centre of gravity and distance

measures to calculate distance of each point from centre of

gravity. Each point is assigned to only one cluster based on

high intra-cluster similarity and low inter-cluster similarity.

ClustBigFIM algorithm has following phases, a. Find

Clusters, In this, clusters are found using k-means

algorithm, b. Finding k-FIs, In this phase transaction ID list

for large database cannot be handled so datasets in a cluster

are mined to get local transaction ID using apriori

algorithm, c. generate single global TID list, in this Eclat

algorithm is used and thereby generating global transaction

ID list from local transaction ID list d. Mining of subtree,

finally (k+1) Frequent Items are mined using Eclat

algorithm. Prefix tree generated in phase2 is mined

independently by mappers and frequent itemsets are

generated.

Merits: It uses preprocessing technique and works

on large dataset with increased execution efficiency.

Vol. 5 Issue 05, May-2016

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS050049

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

45

IV. CONCLUSION

 In this paper, various ARM algorithms for

frequent itemset mining are discussed. Methods proposed

by various authors to extract frequent itemsets in a large

dataset have also discussed. And also merits and demerits

of those techniques have been discussed. It is observed that

the space and time complexities are the major issues with

all algorithms discussed here.

V. REFERENCES
[1] Apachehadoop. http://hadoop.apache.org/, 2013.

[2] B. Goethals. Survey on frequent pattern mining. Univ. of

Helsinki, 2003.

[3] Big Data Dimensions, http://www.klarity-analytics.com/392-

dimensions-of-big-data.html

[4] Big Data Spectrum by Infosys,

https://www.infosys.com/cloud/resource-center/.../big-data-

spectrum.pdf

[5] C. C. Aggarwal and J. Han, Frequent Pattern Mining. Cham:

Springer International Publishing, 2014.

[6] Dhruba Borthakur. The hadoop distributed file system:

Architecture and design. Hadoop Project Website.

[7] J. Han, H. Pei, and Y. Yin. Mining Frequent Patterns without

Candidate Generation. In: Proc. Conf. on the Management of

Data (SIGMOD’00, Dallas, TX). ACM Press, New York,

NY, USA 2000.

[8] K. Yu and J. Zhou. Parallel TID-based frequent pattern

mining algorithm on a PC cluster and grid computing

system. Expert Syst. Appl., vol. 37, no. 3, pp. 2486–2494,

2010.

[9] Kawuu W. Lin, Pei-Ling Chen, Weng-Long Chang. A novel

frequent pattern mining algorithm for very large databases in

cloud computing environments. In 2011 IEEE International

Conference on Granular Computing (GrC), Page(s):399 –

403.

[10] M. Riondato, J. A. De Brabant, R. Fonseca, and E. Upfal,

PARMA: A parallel randomized algorithm for approximate

association rules mining in MapReduce. in Proc. 21st ACM

Int. Conf. Inf. Knowl. Manage., Maui, HI, USA, 2012, pp.

85–94.

[11] Manjit kaur, Urvashi Grag. ECLAT Algorithm for Frequent

Itemsets Generation. International Journal of Computer

Systems (ISSN: 2394-1065), Volume 01– Issue 03,

December, 2014.

[12] P. Tan, M. Steinbach and V. Kumar, Introduction to data

mining. Boston, Mass: Addison- Wesley, 2013.

[13] Rakesh Agrawal and Ramakrishnan Srikant, Fast algorithms

for mining association rules in large databases. Proceedings

of the 20th International Conference on Very Large Data

Bases, VLDB, pages 487-499, Santiago, Chile, September

1994.

[14] Sandy Moens, Emin Aksehirli, and Bart Goethals. Frequent

itemset mining for big data. In 2013 IEEE International

Conference on Big Data, pages 111–118. IEEE, 2013.

[15] Sheela Gole and Bharat Tidke. Clustbigfim-Frequent Itemset

Mining Of Big Data Using Pre-Processing Based On

Mapreduce Framework. In International Journal in

Foundations of Computer Science & Technology (IJFCST),

Vol.5, No.3, May 2015.

[16] Y.-J. Tsay, T.-J. Hsu, and J.-R. Yu. FIUT: A new method for

mining frequent itemsets. Inf. Sci.,vol. 179, no. 11, pp.

1724–1737, 2009.

[17] Y. Lai, S. Zhong Zhi, An efficient data mining framework on

Hadoop using java persistence API, Computer and

Information Technology (2010) 203–209.

[18] Yaling Xun, Jifu Zhang, and Xiao Qin. Fi Doop: Parallel

Mining of Frequent Itemsets Using Map Reduce. In IEEE

Transactions on Systems, Man, and Cybernetics: Systems,

(Volume:PP ,Issue: 99), ISSN :2168-2216, 15 June 2015.

[19] Zaki, M. J. (2000). Scalable algorithms for association

mining. IEEE Transactions on Knowledge and Data

Engineering12(3): 372–390.

[20] Aggarwal, C, Li, Y, Wang, J & Wang, J 2009, ‘Frequent

pattern mining with uncertain data’, Proceedings of the 15th

ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, ACM, pp. 29-38.

[21] Techapichetvanich, K & Datta 2004, ‘Visual Mining of

Market Basket Association Rules’, Lecture Notes in

Computer Science, vol. 3046, pp. 479–488

Vol. 5 Issue 05, May-2016

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS050049

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

46

