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Abstract 
    Integral transform techniques widely used for 

solving linear differential equations in mathematics, 

especially in Engineering. It is commonly used to 

solve electrical circuit and systems problems. In this 

paper we show the relation between the Mellin 

transform of the derivative of a function is not simple 

nature as that of Laplace transform. A transform table 

will enable to obtain the solution by a method similar 

to the method used in Laplace transforms theory. Also 

we focus on some properties of Mellin transform and 

may be used to solve the Euler-Cauchy differential 

equation
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 which will simplify 

the solution of such an equation. The applications will 

illustrate instrumentation and Network analysis 

problems. 
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1. Introduction 
    The first occurrence of the transform is found in a 

memoir by Riemann in which he used it to study the 

famous zeta function. However it is the Finnish 

mathematicians R.H. Mellin (1854-1933) who was the 

first to give a systematic formulation of the 

transformation and its inverse. The Mellin transform is 

a basic tool for analyzing the behaviour of many 

important functions in mathematics and mathematical 

physics. 

 

Outlines of the paper- 

    In first section we discuss some generalities on 

Mellin transform. In Second section we shows how 

the relation between the Mellin transform of the 

derivative of a function is not simple nature as that of 

Laplace transform. In third section we see the 

application of Mellin to Euler-Cauchy differential 

equation and in fourth section applications will 

illustrate Instrumentation problem and then Network 

analysis problem. Lastly we conclude. 

2. Generalities on Mellin transform 
We recall first the definition of Mellin transform. 

Let f(t)denotes a complex-valued function of the real, 

positive variable t. The Mellin transform for f(t) will 

be denoted by 
[ ; ]M f s

and defined by 

1[ ; ] ( ) ( )

0

sM f s F s f t t dt


  

                       (1) 

Where„s‟ is complex. The basic properties of the  

Mellin transform follows immediately from those of 

the Laplace transform since these transforms are 

intimately connected. 

The integral (1) defines the Mellin transform in a 

vertical strip in the s plane whose boundaries are 

determined by the analytic structure of f(t) as t tend to 

0+ and t tends to +∞.If we suppose that  
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Where 
0 and a b  

,  then the integral (1) 

converges absolutely and defines an analytic function  

in the strip   
Re( )a s b 

 

And the inversion integral formula for (1) follows 

directly from the corresponding inversion formula for 

the bilateral Laplace transform. Thus we find the 

result  

 
1

( ) [ ; ]
2
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s

c j

f t t M f s ds a c b
j

 



 

  
           (2) 

Which is valid at all points t ≥ 0 where f(t) is 

continuous. 

 

3. Nature of Mellin transforms 
    In common with other integral transforms, the 

Mellin transform possesses a series of simple 

translational properties which greatly facilitate the 

evaluation of transforms of more involved functions.  

All these results can be obtained by straight forward 

manipulation of the definition (1).(See Table-I) 
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    The Mellin transform of derivative of f(t) can be 

found by integration by parts to yield 

1[ ( ); ] ( ) ( )

0

sM f t s F s f t t dt


   

0 0

( 1) 11 ( ) ( 1) ( )
sst f t s f t t dt


    

   
                                                              

                                                                                (3) 

If f(t) satisfies (1) ,we have   
1

0
lim ( ) 0 Re( ) 1s

t
t f t for s a


  

 
1lim ( ) 0 Re( ) 1s

t
t f t for s b


  

 
And hence (3) becomes, 

 
[ ( ); ] ( 1) ( 1) ( Re( 1) )M f t s s F s a s b         

1[ ( ); ] ( ) ( )
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sM f t s F s f t t dt
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And solving same above we get, 
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    But the relation between the Mellin transform of the 

derivative of a function is not simple nature as that of 

Laplace transform. For e.g. 
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                                                                                 (5) 

So that, if we assumef to be of such a nature that the 

square bracket vanishes, we have the relation 
1[ ( ); ] ( 1) ( 1)

( Re( 1) )

n nM f t s s F s

a s b

   

  
 

                                                       (6) 

In similar manner we obtain by induction, (Appling 

this rule until we reach F
0
(s))the Mellin transform of n 

the derivative of f (t) is given by 

[ ( ); ] ( 1) ( )
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Where,                             (7)
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This formula gives the Mellin transform of the 

derivative in terms of the Mellin transform of the 

function itself. 

A similar relation is the Mellin transform of the 

expression: 
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                                                                     (8) 

Where n=0,1,2…….. 

where the function is such that the quantity in the 

bracket again goes to zero. Repeating the process, we 

get:    
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                                          (9)                     

Where F(s) is the Mellin transform of the function 

f(t).Other simple relations which can be derived in the 

same way are: 

Table-I 

 

SN 

 

Original function 

 

Mellin Transform 

1 
 

( ), 0f t t 
 

1( ) ( )
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sF s f t t dt

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( )f t
 

 

( )F s
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1 2( ) ( )Af t Bf t
 

 

1 2(s) (s)AF BF
 

4 ( ), 0f at a 
 (s)sa F

 

5 
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f
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 
 
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( s)F 
 

6 0( ),a
realf t a   

1 1( )a F a s
 

 

7 ( ) ( ), 0at f t a 
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( ) ( 1) ( )

n

n nd
M t f t s F s

dt

  
   

       
                                                                            (10) 

And 

( ) ( 1) ( ) ( )

n

n nd
M t f t s n F s

dt

  
    

     
          (11) 

 

    The convolution or faulting theorem for the Mellin 

transform is derived in the same way as that of for the 

Laplace Transform. Let us suppose that F(S) and G(S) 

be the Mellin transforms of the functions f(t) and 

g(t)respectively; then the Mellin transform of the 

product f(t) g(t) is defined to be 

1 1

0 0

1
( ) ( ) ( ) ( )

2

c j

s s

c j

f t g t t dt g t t dt F t d
j

 


  

  

 

  
 

     (…using equation (2))                                 (12) 
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F d g t t dt
j

 


  

 

 

  
 

                         

1
( ) ( )

2

c j

c j

F G s d
j

  


 

 

 
 

                                  (By equation (1))               (13) 

In a similar way the Mellin transform of the product 

F(s) G(s) is, 

1

0

1
( ) ( )

2

1
( ) ( )

2

c j

s

c j

c j

s s

c j

F G s t ds
j

F s t ds g u u du
j






 



 

  

 

 





 

 

0

1
( ) ( )

2

sc j

c j

du t
g u F s ds

u j u

 

 

 
  

 
 

 

0
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
 

  
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
(..By(1) and(2))                    (14) 

 

4. Application on Euler-Cauchy differential 

equation: 

    Certain types of linear systems give rise to Euler-

Cauchy differential equations. 

Application of a Mellin transform to this type of 

equation will yield an algebraic equation. 

A  Euler‟s Cauchy differential equation is of the form, 

                     0

( )
( )

in
i

i i
i

d y t
At x t

dt


    

         (15) 

Where Ai’s are constants. 

Apply the Mellin Transform using Table-I& III to 

obtain the transformed equation. 
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            0
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n

i
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i

A s Y s X s

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Where i is a positive integer and  

( ) ( 1)( 2).....( 1)ns s s s s n      

Table-II 

SN Original function Mellin Transform 

1 t   
1

1s



 

2 
at

  
1

s a



 

3  
1 a bt t

b a

   

 
  

1

s a s b 
 

4 ate

 
sa

Г(s) 

5 Sin t Г s sin 
πs

2
  

6 Cos t Г s cos  
πs

2
  

Table-III 

SN Original function Mellin Transform 

1 ( )

n
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t f t
dt
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  
     

 

( 1) ( )n ns F s
 

2 ( )

n
d

t f t
dt
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  
     
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dt
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F s n
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( )n

n

n

d f t
t

dt
    1 ( )

n

n
s F s  
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( ) ( )f t g t  

1
( ) ( )

2

c j

c j

F G s d
j

  

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 
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6 
0
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t du
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 
 
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                                      (16) 
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0

1 1 2 .... 1
n

i

i

i

X s
Y s

A s s s s i


 

    

 

                          (17) 

Using the familiar partial fraction method and a Table 

of transform pair, the inverse transform of (17) is 

easily obtained. Hence for linear Mellin transform the 

sum of the inverse transform of each fraction is equal 

to the inverse transform of the sum. 

 

5. Application of Mellin transforms in the 

Instrumentation 

 

If the current which is measured by a meter in a circuit 

with varying current
1 1

( )
2 3

i t
t t

  , and the resistance,

0
R

R
t

 .what is the driving voltage of the network 

shown in Fig.1 ? 

 
The differential equation for Fig.1 is: 

( )
( ) ( )

di t
e t L Ri t

dt
  0( )

( )
Rdi t

L i t
dt t

 
Or 

0

( )
( ) ( )

di t
te t Lt R i t

dt
 

   
                                                    (18) 

Taking Mellin transform, we get 

0

( )
{ ( )} { } { ( )}

di t
M te t L M t R M i t

dt
 

 

0( 1) ( ) ( )E s L SI S R I S   
   

 0( )( )I S R L S 
   

                 (using Table -I)                                  (19) 

,where
(0)

(0) 0
di

i
dt

       

If the current meter reads,
1 1

( )
2 3

i t
t t

  then 

the equation by transforming (Table-II)we get, 

2 5
( )

( 2)( 3)

s
I S

s s

 


                                     (20) 

Therefore equation (19) becomes, 

0( 2 5)

( 1)
( 2)( 3)

R
s L s

L
E s

s s

 
   

   
   

  0(3 )

2 3

L a s RL a
a

s s L


  

 
 (by using partial 

fraction method)                                                   (21) 

Taking Inverse Mellin transform of both sides by 

using Table II, we get 
2 3( ) (3 ) (2 )t e t a Lt a Lt    

Or 

 
 

3

2
( ) 3

aL
e t a

t t

 
   

                          (22) 

      

which is the voltage necessary to provide the given 

current. 

 

6. Application of Mellin transforms in 

Network analysis 
When the switch S is closed, current i(t) is measured 

by a meter in a circuit is given by 1 1
( )

2
i t

t t
  , and the 

Capacitor 1

2 2

c
o

c t
 ,the resistance, 0

R
R

t
  find the driving 

voltage ( )e t for the network shown in Fig.2 ? 

 
 

Fig.2 

The differential equation for Fig.2 is: 

 

( ) 1
( ) ( ) ( )

di t
e t L Ri t i t dt

dt c
   

                  (23) 

0

2

( )
( ) ( ) ( )oR cdi t

e t L i t i t dt
dt t t

   
  OR 
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0 0

( ) ( )
( ) ( )

di t i t
te t Lt R i t c dt

dt t
   

        (24) 

Taking Mellin transform (Table-I & II), we get, 

0
0( 1) ( ) ( ) ( )

C
E s L SI S R I S I S

s
    

 

                

0
0 ( )

C
L S R I S

s

 
    
   

                

( )
b

S a I S
s

 
    
                      (25) 

                                      

0 0a
R C

b
L L

 
 

Where   
(0)

(0) 0
di

i
dt

   

If the current meter reads, 

1 1
( )

2
i t

t t
 

 

Equation by transforming we get, 

            

2 3
( )

( 1)( 2)

s
I S

s s

 


 
                        (26) 

Therefore equation (25) becomes, 

( 2 3)

( 1)
( 1)( 2)

b
s L S a

s
E s

s s

 
     

   
                                                   

                     (by using partial fraction method)   

                   

 2(a 1) 2

1 2

bL aL b

s s

   
 

      (27) 

Taking Inverse Mellin transform of both sides by 

using Table II, we get 

 1 2( ) (a 1) 2
2

bt e t L b t L a t      
 

 2 3( ) (a 1) 2
2

be t L b t L a t      
Or 

 
2

2
2

( ) (a 1)

baL
e t b

t t

  
    
 
            (28) 

which is the voltage necessary to provide the given 

current. 

Conclusion 
 

The use of the Laplace integral transform for some of 

the random variables is mostly used and explained in 

every advanced Engineering and Science field, now 

brief theory of Mellin integral transform for electrical 

Engineering is given in this paper .It seems for any 

statisticians, mathematicians and engineers will also 

take interest in developing Mellin transform. 

Here the paper presented some background on Mellin 

transform theory and motivated to compute the Euler-

Cauchy differential equation

0

( )
( )

in
i

i i
i

d y t
At x t

dt


and the application of Mellin transform in different 

areas of Electrical Engineering. It is a very effective 

mathematical tool to simplify very complex problems 

in the area of Instrumentation and Network analysis. 

 

References 
 

[1]George J. Fikioris “Mellin Transform Method for  

Integral Evaluation” 

[2]BogdanZiemian “The Mellin Transformation and  

Fuchsian Type Partial Differential Equations” 

[3]R. B. Paris, D. Kaminski “AsymptoticsandMellin- 

BarnesIntegrals” 

[4]Alexander D. Poularikas“Handbook of Formulas and  

Tables for Signal Processing” 

[5]D.Zagier“APPENDIXTHEMELLIN TRANSFORM 

ANDRELATEDANALYTIC TECHNIQUES” 

[6] Jacqueline Bertrand, Pierre Bertrand,  Jean-Philippe  

Ovarlez  “The Mellin Transform” CRC Press inc, 1995 

[7]Francis R Gerardi “Application of Mellin and Hankel 

Transforms to Networks with Time-Varying  

Parameters”. 

[8]P. A. Martin “Some Applications of the Mellin 

Transform to Asymptotics of Series” Peter Lang,  

Frankfurt,1995 

[9] Christopher C. Tisdell“Engineering mathematics  

wookbook”2012 

[10]A. K. Ghosh“Introducton to Instrumentation and  

Control” 

[11] Peter D. Hiscocks “A Laplace Transform Cookbook” 

Syscomp Electronic Design Limited,March 1, 2008 

[12]A: R. Forsyth, “A Treatise on Differential Equations,”  

Macmillan and Co., Ltd., London, Eng.; 1885. 

 

 

 

 

 

1956

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T


