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Abstract  
 

Speaker recognition approaches rely heavily on the use 

of Gaussian Mixture Models (GMMs) for speaker 

modelling. The models can represent arbitrary 

distributions of feature vectors extracted from speech 

waveforms, and are easy to train. However, they make 

several simplifying assumptions on the distribution of 

the feature vectors, including Gaussianity and time-

independence, which are not accurate given the nature 

of speech. This work seeks to quantify the effects of 

these assumptions as they pertain to speaker 

recognition system performance. Experiments are 

performed using a traditional GMM-UBM system. 

Initial results suggest that the Gaussian distribution 

assumption can negatively impact performance, while 

further investigation is needed to make definitive 

conclusions. 

 

 

1. Introduction  
    Speaker recognition has been an established area of 

research for the past 15 years, and involves the 

application of signal processing, statistical, and 

machine learning algorithms to the recognition of 

speaker identities in audio recordings. The technology 

is applicable to high-tech applications, such as voice-

based biometrics [1], and forensics [2][3]. The 

traditional speaker recognition approach that has been 

widely popular until around 2007 is one that uses 

Gaussian mixture models (GMMs) to model the feature 

vectors extracted from the speech waveforms of 

speakers [4]. It is referred to as the GMM-UBM 

approach, which involves the use of a Universal 

Background Model (UBM) to represent feature vectors 

from a large set of speakers. The feature vectors are 

extracted using acoustic signal processing techniques. 

While more recent approaches for speaker recognition 

have relied on advanced techniques such as Joint Factor 

Analysis (JFA) [5] and i-vectors [6][7], the classical 

approach involving GMM models is still viable in 

environments where speaker data is limited. This is 

because the JFA and i-vector techniques rely on large 

amounts of development data for modelling purposes. 

Such data, especially those matching the noise and 

recording environments of the target data, are not 

always available, 

    The GMM models consist of a mixture of 

multivariate Gaussians probability distributions which 

are easy to obtain (or train) using the feature vectors. 

Given limited knowledge of the data, GMMs can 

model feature vector distributions that are difficult to 

precisely characterize, such as feature vectors resulting 

from speech waveforms. GMM models are trained 

using the Expectation-Maximization (EM) algorithm, 

an iterative algorithm that finds a maximum-likelihood 

estimate of the model parameters given the feature 

vectors [8]. The EM algorithm is similar to the K-

means clustering algorithm [9], except that it uses soft 

clustering assignments. In soft clustering, each feature 

vector is assigned a likelihood of belonging to each 

GMM mixture. The mixture means, covariances, and 

weights are updated based on the likelihoods of its 

frames. 

    In every speaker recognition system, UBM is needed 

to represent the distribution of a general population of 

speakers [4]. The UBM is a speaker-independent GMM 

model that is used for score normalization and speaker-

dependent GMM training, and is itself trained using the 
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EM algorithm given feature vectors from a large 

number of speakers. GMM models are widely used not 

only for the classical GMM-UBM approach but also for 

the more advanced JFA and i-vector approaches. The i-

vector approach seeks to obtain low-dimensional 

vectors from speech waveforms representing speaker 

“voiceprints” [6][7]. A UBM is needed for the 

statistical algorithms used to extract the vectors.  

    Limited work has been done to investigate the 

validity of the assumptions that the model makes for 

speaker recognition. The model assumptions include 

Gaussian feature vectors distributions generated from 

different Gaussian mixtures, and time-independence of 

feature vector sequences. It’s evident, however, that 

speech signal waveform samples can not be considered 

to be time-independent, because words and sentences 

contained in speech would not be acoustically coherent 

if its signal sample values are scrambled and played 

back in time.   

    Lastly, the fact that the speaker-dependent GMM 

models are trained from the UBM (the UBM is used as 

the initialization parameters in the EM algorithms) can 

also lead to the fact that the models may overly depend 

on the UBM and not fit the data well enough. The 

overall purpose of this work is to aid in the 

development of speaker recognition approaches by 

performing experiments that test and analyze the 

modelling assumptions of GMMs.   

    This work consists of the following steps: 

 

1. Implement the classical GMM-UBM system, 

and obtain a baseline performance. 

2. Perform experiments investigating the 

weaknesses in the GMM modelling 

assumptions. 

3. Comparative and analyze the methods. 

4. Obtain conclusions on the GMM’s modeling 

assumptions. 

 

    The article is structured as followed: Section 2 

discusses related work. Section 3 lists the data 

collected, and Section 4 describes the baseline GMM-

UBM approach. Sections 5, 6, and 7 describe the new 

methodologies. Section 8 describes the speaker 

recognition performance measures, and Section 9 

describes the results and provides a discussion. Section 

10 provides a summary and discussion of future work. 

 

2. Related Work 
    This work is primarily inspired by the work of 

Gillick and Wegmann, 2011 [10], who investigated the 

acoustic model assumptions of Hidden Markov Models 

(HMMs) for automatic speech recognition. HMMs are 

similar to GMMs, but also accounts for time-

dependence in the distribution of the data that it 

models. Their primary conclusion was that there are 

significant data/model mismatches when using HMMs, 

especially given the still-existant time-independence 

assumptions of the model. Gillick and Wegmann found 

that the Gaussianity assumption of the model is less of 

an issue. The focus of this work is more on the 

Gaussianity assumption, because the time-

independence assumption of GMMs used in speaker 

recognition has been a widely known problem with few 

solutions. In addition to the aforementioned work, the 

work of Reynolds, 1992 [4] discusses the classical 

GMM-UBM approach. The work of Taufiq and 

Hansen, 2011, investigates ways to train better UBMs 

(including the use of less data) in the GMM-UBM 

approach. The work of Bar-Yosef and Bistritz, 2009 

[11] investigates the use of different UBMs for score-

normalization purposes in speaker recognition systems. 

The conclusion of this last work is that the use of 

multiple UBMs can be advantageous for score-

normalization purposes.  

    Some speaker recognition work that relates to 

popular culture includes Sargin’s research is based on 

using speaker recognition to identify celebrities in 

YouTube videos [12]. Speaker recognition used for 

recognizing celebrities in TV broadcasts were 

discussed by Everingham et al. [13]. There are many 

other works of speaker recognition found in literature, 

too numerous to list here. 

    

3. Data 
    The data consists of recorded speech from California 

State University, East Bay students and faculty. The 

recorded subjects include four females and 17 males, 

spanning 9 different accents. Each subject was asked to 

read two paragraphs carefully selected from a textbook 

containing numbers and simple wording. The duration 

of the first paragraph is roughly two minutes, while the 

second paragraph is roughly one minute. The 

recordings were taken using a Blue Snowball USB 

microphone with the omni-directional microphone 

setting, with a sampling frequency of 44,100 samples 

per second. The total amount of speech used in all 

experiments is roughly one hour. We note that the 

dataset we used using is significantly smaller compared 

to standard datasets, such as the NIST Speaker 

Recognition Evaluation Datasets [14]. However, our 

aim is to understand the GMM modelling assumptions, 

for which a smaller dataset with fewer variables can be 

more suitable. 
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4. Baseline GMM-UBM approach 
    The baseline for our experiments is the classical 

GMM-UBM approach, which is based on training 

GMMs to model the distribution of feature vectors of 

extracted from speech waveforms. The feature vectors 

are Mel-Frequency Cepstral Coefficients (MFCCs) C0-

C19, a total of 20 dimensions. In addition, the first and 

second time derivatives of the coefficients of each 

feature vector dimension are appended to generate 

vectors of 60 dimensions. The typical feature extraction 

approach extracts one MFCC feature vector for every 

10ms of speech using 25ms windows of speech, such 

that an entire speech waveform is represented by a 

sequence of feature vectors. Every minute of speech 

should hence contain 100 vectors. Each MFCC feature 

vector dimension is mean and variance normalized 

across the duration of each waveform. Because our 

work is focused on the modelling approaches and not 

on the MFCC feature vectors, we will omit a full 

description of the feature vector extraction process 

from the acoustic and signal processing standpoint. For 

those interested, the work of [15] describes the MFCC 

features in detail. 

    The GMM-UBM approach involves first training a 

UBM via the EM algorithm on a set of speech data 

across multiple speakers. The UBM represents the 

speaker-independent model. In our particular 

implementation of the system, speaker-dependent 

GMM models are trained using the EM algorithm from 

each speaker’s data, and the UBM is used to initialize 

the algorithm. The following equation describes the 

probably density function (pdf) of a GMM model: 

 


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m
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where x is a vector, N(x; μm,Σm) is a pdf of a Gaussian 

distribution with mean μm and covariance matrix Σm, 

and ωm are the mixture weights. M is the number of 

Gaussian mixtures. The UBM is trained using the first 

paragraph of speakers 1-10, while the speaker-

dependent models are trained using the first paragraphs 

of each speaker. Hence, the first paragraphs of each 

speaker comprise the training data. 

    In our experiments, we use eight mixtures for each 

GMM (M=8), with full covariance matrices. The 

number of mixtures is small compared to those used in 

a typical GMM-UBM system, with 512 to 2,048 

mixtures. However, the dataset we are using (1 hour of 

total speech) is also significantly smaller compared to 

the typical datasets, and hence fewer mixtures are 

needed. Figure 1 illustrates the GMM training process. 

    Once the speaker-dependent GMM models are 

trained, data from the second paragraphs of each 

speaker (i.e. the test data) is used to generate test 

MFCC feature vectors for each speaker. The test 

feature vectors are scored against each speaker-

dependent model. Specifically, given a speaker A for 

which test MFCC feature vectors are generated, and a 

speaker B for which a speaker-dependent GMM is 

generated, a log-likelihood ratio (LLR) is computed to 

generate a speaker-similarity score, as shown in the 

equation below: 
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where p(•) is a pdf of a GMM, score(A,B) is the 

similarity score between speakers A and B, μB, ΣB, and 

ωB are the parameters of the GMM trained for speaker 

B, and μUBM, ΣUBM, and ωUBM are the parameters of the 

UBM. xAi is MFCC feature vector i from the test data 

(second paragraph) of speaker A, which has a total of N 

feature vectors. Figure 2 illustrates score computation. 

 

 
 

Figure 1: Training of speaker-independent UBM, 

and speaker-dependent GMM models 
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Note that our implementation of the GMM-UBM 

speaker recognition system is completed using 

publically available MATLAB scripts under the BSD 

license. 

 

 
 

Figure 2: Log-Likelihood Ratio (LLR) speaker 

similarity score computation 
 

 

5. Investigation 1: Examining the 

Gaussianity Assumption of GMMs 
    The primary focus of this work is to analyse the 

assumptions of the GMM models, to eventually 

quantify the effectiveness of the GMM models in 

modelling MFCC feature vector distributions of 

speech. The experiments utilize the basic GMM-UBM 

framework, while varying the method by which the 

MFCC features of the test data are generated. In the 

baseline system, the MFCC features are taken for LLR 

score computation as they are, in the exact sequence as 

they occur in the test data.  

    The following describes the first procedure for 

testing the Gaussianity assumption. It involves 

generating artificial MFCC feature vectors for the test 

data that conform to a GMM distribution. This 

approach is inspired by [10]. 

 

1. Use the EM algorithm to train speaker-

dependent models from the test data, using the 

second paragraphs of each speaker. The UBM 

is used to initialize the EM algorithms. Hence, 

each speaker is associated with two speaker-

dependent GMMs, one trained using the first 

paragraph, and one trained using the second 

paragraph. We refer to the GMM trained using 

the second paragraphs as GMM-2. 

2. Using GMM-2 for each speaker, assign each 

MFCC feature vector in the test data to the 

mixture in GMM-2 most likely to have 

generated the feature vector. This is done by 

computing the probability of the vector being 

generated by each mixture in GMM-2, and 

choosing the mixture with the highest 

probability. 

3. Replace the original feature vector with a 

vector sample from the resulting GMM-2 

mixture. 

 

    Replacing the test data MFCC features with samples 

from GMM-2 helps determine the effectiveness of the 

Gaussian distribution assumption, since the new test 

feature vectors will have been directly sampled from a 

GMM. Note that because each test GMM is also trained 

using the EM algorithm, and not simply MAP-adapted, 

as was done in the typical GMM-UBM approach [4]) 

our GMM-2 models should more closely match the 

distributions of the original test feature vector. Figure 3 

illustrates this approach: 

 

 
 

Figure 3: Training speaker-dependent GMMs using 

the test data (second paragraphs) of each speaker. 

 

   

6. Investigation 2: Examining the 

Gaussianity and Time-Independence 

Assumptions of GMMs 
    The following describes the procedure for 

investigating both the Gaussianity and time-

independence assumptions of feature vectors. The 

approach involves re-sampling the test MFCC feature 

vectors as they are, while imposing the mixture-based 

assumption of GMMs. This approach is also inspired 

by [10]. 

 

1. Use the EM algorithm to train speaker-

dependent models for the test data, using the 

second paragraphs of each speaker. The 

GMM-2 models are obtained. The UBM is 

used to initialize the EM algorithms. This step 

is the same as the first step of Investigation 1. 
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2. Using GMM-2 for each speaker, assign each 

MFCC feature vector in the test data to the 

mixture in GMM-2 most likely to have 

generated the feature vector. This step is the 

same as the second step of Investigation 1. 

3. For a given test feature vector, replace it with 

a random sample from the set of all feature 

vectors assigned to the same mixture as the 

given feature vector.  

 

 
 

Figure 4: Creating new MFCC feature vectors by 

sampling of original feature vectors assigned to 

different GMM mixtures. 

 

    Hence, the final set of test data feature vectors is a 

randomized selection the original sequence of test 

feature vectors. Some of the original feature vectors 

may not be selected to be a part of the final set. This 

approach preserves the fact that a GMM is comprised 

of a set of mixtures, but discards the Gaussianity 

assumption of the GMMs. Figure 4 illustrates this 

approach. 

 

7. Investigation 3: Examining the effect of 

alternate UBMs 
    In this investigation, a second UBM is trained the 

using the second paragraphs of 20 speakers, such that 

the UBM is much more closely matched to the test 

data. We refer to this UBM as UBM-test. This is in 

contrast to the original UBM, which is matched more 

closely to the training data (first paragraphs). First, the 

approach from investigation 1 (Section 5) is repeated, 

but with all speaker-dependent GMMs from the 

training and test data re-trained with UBM-test for EM 

algorithm initialization. This potentially leads to better 

performance, as the speaker-dependent GMMs would 

be more closely aligned to the test data. We note that in 

typical speaker recognition experiments, use of test 

data to train the UBM is not allowed. However, use of 

test data can help us better understand the GMM 

modelling assumptions for purposes of this work. 

    Second, the approach from Investigation 1 is 

repeated, but only with the GMM-2 models trained 

with UBM-test for EM initialization. This attempts to 

quantify the effect of mismatches in the UBM 

initializations for different GMM speaker models. In 

the classical GMM-UBM approach, a single UBM is 

used to train all speaker-dependent models. This 

simplifies the training but also helps to maintain 

correspondence of mixtures between the speaker-

dependent GMMs and the UBM for LLR score 

computation. This helps normalize the LLR scores. 

Given the fact that we are using only eight GMM 

mixtures, however, maintaining correspondence 

between the mixtures may be less of an issue. 

 

8. Performance measures 
    The effectiveness of each speaker recognition 

approach can be quantified using the following three 

measures, which are widely used in Speaker 

Recognition and Speaker Identification research: 

 

 Closed-Set Speaker Identification Accuracy 

 Log-Likelihood Ratio Cost (CLLR) [16] 

 Equal Error Rate (EER) 

 

    The closed-set speaker identification accuracy is the 

percentage that the test data’s speaker (test speaker) is 

correctly identified given the set of all speakers in the 

dataset, and the knowledge that the test speaker is 

included among the set of all speakers. A test speaker is 

correct identified if the LLR score is highest for the 

speaker-dependent GMM of the same speaker. The 

higher the accuracy percentage, the better the speaker 

recognition approach. 

    The CLLR is computed according to the following 

equation [16]: 

 

Cllr =1/(2log2)*(∑log(1+1/s)/NTT +∑log(1+s)/NNT)    (3) 

 

where the first summation is across all speaker 

similarity scores with matching training and test 

speakers (target speaker scores), and the second is 

across scores with non-matching speakers (non-target 

speaker scores). NTT and NNT are the total numbers of 

target and non-target speaker scores. s is a score, in the 

form of a likelihood ratio [16]. 

    It should be noted that for an ideal speaker 

recognition system, the first summation in the above 
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equation should have a higher scores s, while the 

second summation should have a lower scores s. This 

implies that the lower the Cllr, the better the speaker 

recognition approach at separating the target and non-

target speaker scores. Note also that the Cllr examines 

the set of all scores and gives a measure of how well 

the system separates the set of all target and non-target 

scores, not just the ones that affect the accuracy. 

    The third performance measure is the Equal Error 

Rate (EER). The EER occurs at a scoring threshold 

where the rate at which non-target speaker scores are 

misclassified as target speaker scores (false alarms), 

equals the rate at which target speaker scores are 

misclassified as non-target speaker scores (misses). 

Similar to the Cllr, The lower the EER, the better the 

speaker recognition approach at separating the target 

and non-target speaker scores. 

    Note that 21 speakers are used for all experiments in 

this work, and each speaker provides both training and 

test data. Hence, the speaker recognition approaches all 

generate 21 target speaker scores, and 420 non-target 

speaker scores (21*21 = 441; 441-21 = 420), where 

each test data is scored against every speaker-

dependent model obtained from the training data. 

 

9. Results and Discussion 
    Using the dataset described in Section 3, and the 

performance measures described in Section 8, results 

are generated for the baseline approach, and the new 

investigations. The approach described in Section 5 

where test MFCC feature feature vectors are obtained 

by sampling from the GMM-2 models is referred to as 

Gaussian Sampling. The approach described in Section 

6 with the random sampling of feature vectors is 

referred to as Emperical Sampling.  

    The first approach described in Section 7, where 

UBM-test is used for training all speaker-dependent 

GMMs, and where sampling from GMM-2 models are 

used, is referred to as Gaussian Sampling-UBMtest. 

The second approach from Section 7, where different 

UBMs are used to train the speaker-dependent GMMs, 

is referred to as Gaussian Sampling-UBMDiff.  

    Lastly, as a sanity-check, the Gaussian Sampling 

approach is repeated, but using the training speaker-

dependent GMMs for test MFCC mixture assignment 

and Gaussian sampling. The resulting sampled feature 

vectors should be closely matched to the training 

models, and give a significantly better speaker 

recognition performance compared to the other 

approaches. This approach is referred to as Gaussian 

Sampling-GMMTrain. Table 1 summarizes the results.  

    We caution the reader that, because a very small 

dataset is used, there are issues of statistical 

significance in the results. However, this work only 

seeks to suggest likely trends resulting from the 

different investigations, and is not meant to make 

conclusive statements. 

    According the Table 1, the results suggest that the 

Baseline and Emperical Sampling approaches, with 

accuracies of 95.2%, outperformed the other 

approaches. The CLLR and EER for these approaches 

are not significantly different (3.1 vs. 3.0 for CLLR, 

and 4.9% vs. 5.7% for EER). The Gaussian Sampling-

UBMtest approach has the next best accuracy at 85.7%, 

while the Gaussian Sampling approach has the worst 

accuracy at 76.2%. The Gaussian Sampling-

GMMTrain approach gives the best accuracy (100%), 

CLLR (1.0), and EER (0.0%), as expected. 

 

Table 1: Speaker recognition results for all 

performance measures 

 

Approaches Accuracy CLLR EER 

Baseline 95.2% 3.1 4.9% 

Gaussian Sampling 76.2% 3.5 9.3% 

Emperical Sampling 95.2% 3.0 5.7% 

Gaussian Sampling-

UBMtest 

85.7% 3.7 5.7% 

Gaussian Sampling-

UBMDiff 

66.7% 3.7 9.5% 

Gaussian Sampling-

GMMTrain 

100.0% 1.0 0.0% 

 

    The fact that the Gaussian Sampling approach has 

the worst accuracy suggests that using the original test 

MFCC feature vectors may be preferable to substituting 

them with Gaussian samples from a GMM model. This 

seems counter-intuitive, since one might expect that 

having test MFCC feature vectors that conforms to the 

speaker-dependent training GMMs would give a closer 

match between the training model and test features. 

However, because each set of test feature vectors are 

scored against the set of all training models, it may be 

that the test MFCC feature vectors match closely not 

only to the matching-speaker training model, but to all 

the non-matching-speaker models as well.  

    The fact that the Gaussian Sampling-UBMtest 

approach outperforms the Gaussian Sampling approach 

suggests that it is more helpful to use the test data to 

create UBMs. The Gaussian Sampling-UBMtest 

approach furthers narrows the gap between the speaker-

dependent training models and the test MFCC feature  
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vectors. However, the Gaussian Sampling-UBMDiff 

approached performed slightly worse than Gaussian 

Sampling-UBMtest (66.7% vs 76.2% accuracy), 

suggesting that using a different UBM for test MFCC 

feature vector sampling might not produce better test 

feature vectors for speaker recognition. 

    Overall, results suggest that for GMM-UBM based 

speaker recognition experiments, it is better to 

preserve the test MFCC feature vectors as they are. 

Altering the feature vectors based on GMM 

modelling assumptions worsens overall speaker 

recognition performance (since the Gaussian 

Sampling approach had the worst performance).   

Results also suggest that there are likely many 

deficiencies with the GMM modelling assumption. 

Imposing the Gaussian assumptions on the test 

MFCC feature vectors may remove many of the 

characteristics of the feature vectors that are helpful 

to speaker recognition. Lastly, the fact that the 

Baseline and Emperical Sampling approaches 

perform similarly suggests that the sequential 

ordering of test MFCC feature vectors is not essential 

to speaker recognition performance using the GMM-

UBM approach. This agrees with the fact that GMMs 

does not consider time-dependence assumptions of 

MFCC feature vectors. 

 

10. Summary and Future Work 
    This work attempts to quantify the effects of a 

couple of assumptions involving the use of GMMs 

for speaker recognition, and established a set of 

results showing the effects of the Gaussianity and 

time-independent assumptions on feature vectors, 

albeit on a small dataset. It is the start of a series of 

investigations on problems with GMM modelling 

assumptions for speaker recognition, in an attempt to 

improve its modelling approaches. Future work will 

involve performing more detailed analysis of the 

results. Future work could also include the use of a 

larger dataset with recordings of more voice samples 

to generate greater statistical significance in the 

results. The use of large-scale speaker recognition 

datasets from the NIST Speaker Recognition 

Evaluations [14] may also be considered. Future 

work could also extend investigations to other 

speaker recognition modelling techniques, such as the 

i-vector approach that’s more appropriate for large-

scale datasets containing thousands of hours of 

speech data. 
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