
Auto-Correlation of a Real-Time Remote Sensing Satellite Data

C. Yashitha

M.Tech., (Digital Systems and Computer Electronics)

Sreenidhi Institute of Science and Technology, Ghatkesar

Hyderabad, Andhra Pradesh

Abstract - Remote Sensing Satellite images the earth with the help

of Charge Coupled Devices (CCDs), and thus the EM waves are

converted to an electric signals of one’s and zero’s to form a

digital data in pixel form. When the data is being acquired at the

ground station, identifying the frame synchronization code of the

satellite data pattern is of prime importance. This includes

correlating the satellite data pattern called frame sync code with

a reference signal, before being processed and archived. To

ensure valid data acquisition in real time the auto correlation of

the incoming data with the same reference signal is performed in

real time and archived on the data recorder.

Keywords - Flywheel, frame sync, raw detect and loss pulse.

I. INTRODUCTION

 Auto correlation is a mathematical representation of

the degree of similarity between a given time series and a

lagged version of itself over successive intervals of time. It is

similar to that of calculating the correlation between two

different time series, except that the same time series is used

twice as once in its original form and once lagged one or more

time periods. It can also be defined as cross-correlation of a

signal with itself. Otherwise, it is the similarity between

observations as a function of the time separation between

them. It is a measure of how well a signal matches a time

shifted version of itself, as a function of the amount of time

shift. Correlation is to indicate a predictive relationship which

is exploited in practice. Autocorrelation is useful for finding

repetitive patterns in a signal, such as determining the

presence of a periodic signal which has been buried under

noise or identifying the missing fundamental frequency in a

signal implied by its harmonic frequencies. Autocorrelation

involves only one signal and provides information about the

structure of the signal or its behavior in the time domain. The

analysis of correlation is used to measure the spatial resolution

of an image receptor with uniform white noise as the input, to

the periodic patterns in noisy data and to characterize the

similarity patterns in data compression.

 While carrier and symbol clock may have been well

established in a data transmission system, the boundary of

long symbols or packets may not be known to a receiver. Such

synchronization requires searching for some known pattern or

known characteristic of the transmitted waveform to derive a

phase error (which is typically measured in the number of

sample periods or dimensions in error). Such synchronization,

once established, is only lost if some kind of catastrophic

failure of other mechanisms has occurred (or dramatic sudden

change in the channel) because it essentially involves counting

the number of samples from the recovered timing clock.

Correlation functions are many which are denoted by r or p,

used in the measurement of correlation degree. The most

common of these is the Pearson Correlation coefficient. It is

sensitive only to linear relationship between two variables.

These two variables may exist even if one is a nonlinear

function of the other. Other than this Pearson correlation

coefficient, more correlation coefficients have been developed

to be more sensitive to the nonlinear relationships.

Autocorrelation, sometimes is a correlation

coefficient. However, it can be correlation of two different

values of the same variable at different times instead of

correlation between tow different variables. Given a signal,

f(t) the continuous autocorrelation Rff (T) is most often defined

as the continuous cross-correlation integral of f(t) with itself,

at lag T.

Rff(T) = 𝑓(𝑡 + 𝑇)
∞

−∞
f*(t) dt

where, f* represents the complex conjugate and for a real

function, f*=f.

 Auto correlation maintains all the properties of cross-

correlation and is itself, periodic with the same period as

autocorrelation is a specific type of cross correlation as

mentioned above. The sum of the autocorrelation of each

function separately is given as the autocorrelation result of the

sum of two completely uncorrelated functions (for all T, the

cross correlation is zero). These autocorrelation functions are

exploited for predictions auto correlated time series is

predictable and sometimes known because future values

depend on past and present values. There are various tools for

assessing the autocorrelation of time series out of which

autocorrelation function is one apart from time series plot and

lagged scatter plot.

The paper aims to design and develop an auto-

correlator using a frame synchronizer which will ensure error

free data acquisition and archiving high speed data. This will

also validate individual elements of the Satellite Ground

station before the actual data is being acquired on a daily

basis. This pattern is to test the functionality of hardware and

the system interfaces everyday to ensure the satellite data is

2548

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90936IJERTV2IS90936

received and archived properly. Due to huge number of

multiplication and addition calculations in the correlator, a

simple microprocessor cannot meet the real-time

requirements. Therefore, a useful FPGA platform for high

performance computing and real-time interactive signal

processing is used to implement the correlator.

II. IMPLEMENTATION OF THE PROJECT

 The hardware component used in the implementation

of the correlator is FLEX 10K. Every FLEX 10K device

consists of an embedded array for the implementation of

memory and specialized logic functions, and also a logic array

to implement general logic. Each embedded array consists of

a series of EABs, which when implementing memory

functions, each EAB provides 2,048 bits and in turn can be

used to create ROM, RAM, dual-port RAM, or first-in first-

out (FIFO) functions. When implementing a logic, each EAB

can contribute 100 to 600 gates towards complex logic

functions, such as multipliers, state machines,

microcontrollers, and DSP functions. EABs can be used either

independently or multiple EABs can be combined to

implement larger functions. The logic array consists of logic

array blocks (LABs). Each LAB contains eight LEs(Logic

Elements) and a local interconnect. An LE consists of a 4-

input look-up table (LUT), a programmable flip-flop, and

dedicated signal paths for carry and cascade functions. Eight

LEs together can be used to create medium-sized blocks of

logic such as 8-bit counters, address decoders, or state

machine or combined across LABs to create larger logic

blocks. Each LAB represents up to 96 usable gates of logic.

FLEX 10K devices provide six dedicated inputs that drive the

flip-flops’ control inputs to ensure the efficient distribution of

high-speed, low-skew (less than 1.5 ns) control signals. These

signals use dedicated routing channels that provide shorter

delays and lower skews than the Fast Track Interconnect.

Each of the four dedicated inputs drive four global signals

respectively. These four global signals can also be driven by

internal logic, providing an ideal solution for a clock divider

or an internally generated asynchronous clear signal that

clears many registers in the device.

 The EAB provides advantages over FPGAs, which

implement on-board RAM as arrays of small, distributed

RAM blocks. These FPGA RAM blocks contain delays which

are less predictable as the size of the RAM increases. In

addition, FPGA RAM blocks are prone to routing problems

because small blocks of RAM must be connected together to

make larger blocks. In contrast, EABs can be used to

implement large, dedicated blocks of RAM that eliminate

these timing and routing concerns. If needed, all EABs in a

device can be cascaded to form a single RAM block. EABs

can be cascaded to form RAM blocks of up to 2,048 words

without impacting timing. Altera’s software automatically

combines EABs to meet a designer’s RAM specifications.

 The LE, the smallest unit of logic in the FLEX 10K

architecture, has a compact size that provides efficient logic

utilization. Each LE contains a four-input LUT, which is a

function generator that can quickly compute any function of

four variables. The programmable flip-flop in the LE can be

configured for D, T, JK, or SR operation. The clock, clear,

and preset control signals on the flipflop can be driven by

global signals, general-purpose I/O pins, or any internal logic.

For combinatorial functions, the flipflop is bypassed and the

output of the LUT drives the output of the LE.

 Max+Plus II offers a full spectrum of logic design

capabilities and a variety of design entry methods for

hierarchical designs, powerful logic synthesis, timing-driven

compilation, partitioning, functional and timing simulation,

linked multi-device simulation, timing analysis, automatic

error location, and device programming and verification. The

software both reads and writes Altera Hardware Description

Language (AHDL) files besides reading Xilinx net list files

and writing Standard Delay format (SDF) files for a

convenient interface to other industry-standard CAE software.

It offers many features and commands such as opening files,

entering device, pin, and logic cell assignments and compiling

the current project. The design editors like Graphic, Text, and

Waveform, and auxiliary editors like Floorplan and Symbol

editors share numerous features. User can enter, edit, and

delete the types of resource, device and parameter assignments

that control project compilation, including logic synthesis,

partitioning, and fitting irrespective of project design file or

application window is open or not. The software allows the

user to open multiple design files and transfer information

between them while compiling or simulating another project.

 The timing analyzer helps to tag multiple source and

destination nodes so that they are included in an analysis after

which a source or destination node can be selected and all

delay paths associated with it are listed. An automatic error

location and extensive documentation on error and warning

messages make design modifications quick and easy. The

compiler applies a variety of techniques to increase the

efficiency of the project and minimize device resource usage.

If the project is too large to fit into a single device, it partitions

into multiple devices from the same device family, thus

reducing the number of connections between devices. The

simulator tests the logical operation and internal timing of the

project and allows to model a circuit design before it is

programmed into a device.

III. DESIGN OF A CORRELATOR

 Digital Correlator is a digital logic design that

correlates the input bit sequence with a standard reference

sequence (Frame Sync). This design consists of two

independently clocked shift registers, a reference holding

latch, and an independently clocked digital summing network.

It correlates the received frame Sync Code with the reference

synchronization code. Since the frame length is fixed, the

probability of false sync can be reduced by verifying the

occurrences of the FSC on successive frames. The incoming

data is compared with the reference frame sync code. When

the correlation score is >= the Threshold a Frame Sync Detect

pulse is generated. Otherwise a loss pulse is generated.

2549

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90936IJERTV2IS90936

Figure 1: Design of A Correlator

 In the design of the correlator shown in figure 1, the

64-bit transparent latch is controlled by an input load. A

HIGH level on the load input causes the latch to be

transparent, allowing the contents of the register to be applied

directly to the correlator array. When the load input is LOW,

the data in the latch is held, so that the register may be loaded

with a new correlation reference without affecting the current

reference value stored in Latch. Each bit in the input register

is Exclusive ORed with the corresponding bit in the latch,

implementing a single bit multiplication at each bit position.

This 64-bit vector is applied to a pipelined digital summer

which contains four pipeline stages and calculates the total

number of ones in the vector (the correlation score). The

output of the summer represents the count of number of

matching positions in the input data stream. In the design the

reference pattern register, correlation summation logic and

threshold logic are realized using macrocells. The Look-Up

Tables in the macrocell can be updated rapidly while the

FPGA is in full operation. The code below is written for

assigning a threshold value which is used to control the

allowable number of errors in the data stream of each frame.

The threshold value can be adjusted by using the three bit

threshold value code given below.

bin_vector_value[]=bin_vector_reg[];

thresh_reg[]=thresh_ip[];

delay_reg[0]=in_data_reg[63];

delay_reg[9..1]=delay_reg[8..0];

in_data_op=delay_reg[9];

if thresh_reg[] == 0 & sum_op[] == 64 then

raw_reg = TRUE;

elsif thresh_reg[] == 1 & sum_op[] >= 63 then

raw_reg = TRUE;

elsif thresh_reg[] == 2 & sum_op[] >= 62 then

raw_reg = TRUE;

elsif thresh_reg[] == 3 & sum_op[] >= 61 then

raw_reg = TRUE;

else raw_reg = FALSE;

end if;

 The threshold holds the value of number of

permissible errors in the input data. A maximum of three

errors are allowed in the frame which can be adjusted by the 2

bit threshold value. This output detects the arrival of loss

pulse if error occurred is more than the error bits in the

threshold value. If there is no error which falls under the

threshold value, a raw detect pulse occurs indicating the data

received is valid. A valid data also occurs when the error

occurred is less than or equal to the adjusted threshold value.

Otherwise, a loss pulse is detected instead of a raw detect

which indicates an error has occurred in the respective frame.

 As the frame sync code for any remote sensing

satellite is unique and fixed, it can be stored in memory

location and can be called for every start of frame. The frame

sync code contributes 8 words out of the total frame length of

2400 words. The description is for only one channel and the

same procedure is repeated for the second channel too. The

code below is for the 8 words frame sync code for one channel

and the length of it is one byte each. We use a 74195IC as an

up counter and the code is as following.

LNCTR :lpm_counter with (lpm_width=12,

lpm_direction = "up",lpm_modulus=2400);

LFCTR :lpm_counter with (lpm_width=24,

lpm_direction = "up");

The start of frame code can be loaded into memory as shown

below.

a1[]=H"0c"; % loading frame sync register with fs-code %

a2[]=H"28";

a3[]=H"f2";

a4[]=H"2c";

a5[]=H"ed";

a6[]=H"7d";

a7[]=H"0e";

a8[]=H"24";

The same procedure can be repeated to generate another frame

sync code for the second channel.

IV Flywheel and its Strategy

 The flywheel and frame sync strategy allows us to

record all the data received from the satellite irrespective of

the frame sync state into the system hard disk for further

processing. To prevent false detects a flywheel logic is

included with strategy which has a search, check and lock

modes as shown in figure 2. When two consecutive syncs are

detected the logic will change from search to check and later

to lock mode. Likewise, when a sync loss occurs the logic will

change from lock to check and when two consecutive sync

loss occur the logic will revert to search mode. For a fixed

strategy of flywheel search mode is the initial state where the

data stream is scanned for the given programmed sync pattern.

When an expected pattern is detected, the synchronizer enter

into verify state. A window is generated at the end of the

frame and a bit slip window. If a good pattern is found within

the window the state is shifted from verify to lock mode.

Otherwise, the identification of bad pattern shifts the state

from verify to search. In lock state the correlator pattern is

tested at the end of frame window. The code below is for

generating a window at the end of frame and bit slip window

64 bit input register

64 bit latch

4 bit pipe line

summer

Threshold

Detector

2550

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90936IJERTV2IS90936

at 19198 bit which uses fwf and dg2 as the D-filpflops and

fcout is the output. The figure 2 below describes the states of

flywheel.

 verify

 >1

 1 >=2

 search lock

 >1 >1

 1

 check

 Frame sync detected

 Frame sync loss

Figure 2: Flywheel and its Strategy

fwf[].d=fwf[].q+1;

fw=(Fwf[]==19198);

fcout[]=fwf[];

dg2.clk=clk;

dg2.d=fw;

 The search mode looks for a possible frame sync

pattern. When a known pattern is tentatively identified, a

window is set at the expected time of reoccurrence of the sync

pattern, and is checked for several frames after which the

synchronizer advances to lock. In the lock mode, the mode

continues to look for the frame sync pattern in the sync

window and will only revert to a previous mode if the sync

pattern fails to occur in the window for a given number of

frames. Once the frame synchronization is established,

commutated and super commutated measures can be identified

since the position of the data values are relatively known to

the frame sync pattern. Finally, after being in lock, if an

expected frame sync pattern is not detected, the state is the

converse of the “Verify” mode. The frame sync strategy and

flywheel allows to record all the data received from the

satellite irrespective of the frame sync state into the system

hard disk for further processing. These states of the flywheel

avoid total frame loss, improving the efficiency of the data

reception and enable post processing of the data after real time

data reception from the satellite.

V. Simulation Results

The entire code for the correlation with frame

synchronization is written in Altera's Hardware Description

Language (AHDL) and implemented using FLEX 10k device

with the help of Altera's Maxplus II software. The entire

design occupies approximately 30% of the total device

resource and achieved a frequency up to 70MHz for each

channel.

The fixed data pattern for multiple frames is

generated as shown in figure 3. It is of length 16 bytes,

attached to the video data in a frame of 2400bytes. Thus any

number of frames can be occurred depending on the length of

the video data sent from the satellite.

Fig 3: Pattern Generation Waveforms

The simulation results of the correlator is as shown

below in figure 4. The loss pulse mentioned as lp in the output

is enabled for the threshold values 0, 1 and 2. The raw detect

is enabled for the threshold value set at 3 with up to 3

allowable errors.

Fig 4: Correlator waveform

In the design a Bit Slip Window of 3 bits is designed

which corrects the resultant one bit sync error. As the frame

sync code is fixed and should reoccur at specific bit interval, a

bit slip correction is developed to allow one it sync error. The

fly wheel strategy output with a 3 bit slip window is shown in

figure 5 below.

2551

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90936IJERTV2IS90936

Fig 5: Flywheel Output

 Hence, the sync pattern may occur one bit position

early or late. This feature enables the unit to maintain

synchronization during excessive noise bursts or data dropouts

in the input stream when the bit synchronizer cannot maintain

synchronization with the PCM stream.

 The Floorplan Editor as shown in figure 6, provides a

convenient method to enter and edit physical device resource

assignments of the project. Two displays are available. They

are the device view and LAB view where all pins on a device

package with their functions and the interior of the device,

including all Logic Array Blocks(LABs) with individual logic

cells within each LAB are shown respectively. In devices that

include Embedded Array Blocks (EABs), we can view

individual embedded cells within each EAB. In MAX 9000,

FLEX 6000, FLEX 8000, and FLEX 10K devices, I/O cell

locations are also displayed. In addition, pins are displayed

around the edges of the device packages. The Floorplan

Editor provides a list of unassigned node and pin names of the

project. Each name has a handle that you can drag to an

individual pin, logic cell, I/O cell, or embedded cell in the

Device View or LAB View display. You can also drag a node

or pin with an existing assignment back to the list of

unassigned nodes or to a different location on the device

Figure 6: Floor Plan view

 A color legend clearly indicates unassigned and

assigned pins, logic cells, and I/O cells; the type of fan-out

from each item; and VCC, GND, and reserved pins. The

white, blue red and yellow indicate unassigned, device-wide

fan-out, local LAB fan-out and unrouted. One can

automatically display the fan-in and fan-out of any selected

item(s), or the paths between multiple selected items and also

view detailed routing statistics for selected item(s) and for the

most congested area of a chip.

VI. CONCLUSION

 During high speed data acquisition, validity of the

data recorded is to be maintained. Hence real time auto

correlation enables us as the first phase of identifying the data

and subsequently recording the data. By implementing this in

the hardware, considerable amount of load in the software is

reduced, thus giving sufficient time for packing the data in the

format required for further processing and display.

VII. REFERENCE

[1] Hand Book of Telemetry & remote control by Royal

Signals.

[2] Advanced FPGA Design: Architecture,

Implementation, and Optimization By Steve Kilts.

[3] International Journal of Electronics and

Communication Engineering & Technology (IJECET),

ISSN 0976–6464(Print), ISSN 0976=6472(Online)

Volume 4, Issue 1, January-February, (2013), © IAEME.

[4] Altera Max plus II User Guide.

[5] www.altera.com/literature/ds/archives/dsf10k.pdf.

[6] Flow Measurement with Digital Correlator Realized

by FPGA,Advanced Materials Research Vol.462(2012)

pp 641-646.

[7] IACSIT International Journal of Engineering and

Technology, Vol.3, No.3, June 2011.

[8] John G. Proakis and Dimities G. Manolakis, Digital

Signal Processing Principles, Algorithms and

Applications”, Prentice-Hall India Publications, Third

Edition, ISBN-81-203-1129-9.

[9] Integrated Electronics: Analog and Digital Circuits

and Systems by Jacob Millman and Christos C.Halkias,

Tata McGraw-Hill Edition.

[10] Digital Logic and Computer Design by M.Morris

Mano, Prentice-Hall of India.

[11] http://www.ltrr.arizona.edu/~dmeko/notes_3/pdf

[11] www.stanford.edu/group/cioffi/book/chap/pdf.

[12]www.princeton.edu/~achaney/tmve/wiki100k/

docs/Autocorrelation.html.

[13]www.physics.ohio-state.edu/~hughes/cdf_osu/xft/

documents/dsconf/pdf.

[14] Communication Systems Security, AppendixA,

Draft, L.Chen and G.Gong, 2008.

2552

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90936IJERTV2IS90936

