
Auto Parallelization

Abhishek Choudhary
Computer Department

Fr.C.R.I.T.
Vashi, India

Gabriel Rajendran
Computer Department

Fr.C.R.I.T.
Vashi, India

Loukik Raina
Computer Department

Fr.C.R.I.T.
Vashi, India

Yashraj Mane
Computer Department

Fr.C.R.I.T.
Vashi, India

Abstract—Dual-core and quad-core processors have become ubiquitous in

modern computing. To exploit the capabilities of these multi-core processors,

developers often write parallel programs. However, many legacy applications

are designed for sequential execution and are unable to fully utilize the

processing power of multiple cores. To optimize these applications, they must

be either rewritten or parallelized. Manual parallelization is a complex and

costly process, making automatic parallelization a desirable alternative.

Development of parallel software has traditionally been thought of as time

and effort-intensive work. Programs spend most of their execution time in

nested loops therefore it will be optimal to execute this parallelly. The ability

to perform complex loop restructuring is required for parallelizing

programs. A program dependence graph can be used for identifying and

distributing the parallel slices of a given sequential program.
The proposed system is an Automatic Code Parallelizer utilizing OpenMP

that can automate the insertion of compiler directives to facilitate parallel
processing on multi-core shared memory machines. This tool converts
sequential C source code into multi-threaded parallel C source code,
supporting multi-level parallelization with the generation of nested OpenMP
constructs. The proposed scheme breaks down a sequential C program into
coarse-grained tasks, analyzes the dependency among tasks, and generates
MPI parallel code. This approach prioritizes coarse-grained task parallelism
to achieve performance improvements beyond the limits of loop parallelism.
Additionally, the generated MPI codes are compatible with a broad range of
SMP machines, which may lead to performance gains.

Keywords: OpenMP, MPI, Program dependence graph, Parallelization.

I. INTRODUCTION

A. Background

Traditionally, computer software has been written for serial

computation. To solve a problem, an algorithm is constructed and

implemented as a serial stream of instructions. These instructions are

executed on a central processing unit on one computer. Only one

instruction may execute at a time after that instruction is finished, the

next one is executed.
Parallel computing, on the other hand, uses multiple pro-cessing

elements simultaneously to solve a problem. This is accomplished by

breaking the problem into independent

Identify applicable funding agency here. If none, delete this.

parts so that each processing element can execute its part of the algorithm

simultaneously with the others. The processing elements can be diverse and

include resources such as a single computer with multiple processors, several

networked comput-ers, specialized hardware, or any combination of the

above. Historically parallel computing was used for scientific com-puting

and the simulation of scientific problems, particularly in the natural and

engineering sciences, such as meteorology. This led to the design of parallel

hardware and software, as well as high-performance computing. However,

loop-level par-allelism has gained importance only in the past few years. Due

to the ever-growing trend of multi-core architecture, parallel programming is

important as well as interesting. Automatic parallelization is a mechanism of

automatically converting a sequential program to a version that can directly

run on multiple processing elements without changing the meaning of the

program. Automatic parallelization is typically performed in a compiler, at a

high level where most of the information needed is available. Computing

power can be used effectively if the programmers write only the sequential

codes and leave the task of parallelization to the compiler.

B. Motivation

It is seen that parallel programming is a difficult chore requiring

great effort from the programmer. One conclusive elucidation of this

problem is automatic parallelization.
Currently well accepted methods of parallel programming, such as MPI,

are essentially extensions to existing languages, like C or FORTRAN.

On one hand, it allows the reuse of an existing code base while on the

other hand, it requires both the compiler and programmers to deal with

languages that were not originally designed for parallelism. The major

challenges involved in the design and implementation of such a tool

include side-effects of function calls, finding alias variables, the

dependency between statements, etc. Additionally, the tool has to deal

with a variety of coding styles, length and number of files. It is also

important to take into consideration the amount of inherent parallelism

the application provides.

C. Aim and Objective

The output of an auto-parallelizer is a race-free deterministic program that

obtains the same results as the original sequential

350

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS060153
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 06, June-2023

www.ijert.org
www.ijert.org
www.ijert.org

program. This dissertation deals with compile-time automatic

parallelization and primarily targets shared memory parallel

architectures for which auto-parallelization is significantly easier.

The programming control structures on which auto parallelization

places the most focus are loops, because, in general, most of the

execution time of a program takes place inside some form of loop.
Automatic parallelization eliminates the need for program-mers to

manually identify sections of code that are suitable for parallel

execution. It also relieves them of the burden of performing data

dependency analysis to ensure program correctness and inserting

parallel code or directives at relevant locations. However, there is

some overhead associated with parallelization. While automatic

parallelization may result in some performance gain, the extent of

the improvement depends on the inherent nature of the program and

the degree of parallelization. Programs with many dependencies will

still be executed serially and will not see any performance

improvement.
Loop-level parallelism, where loop iterations are paral-lelized, is a

common approach to parallelization. However, this method requires

prior knowledge of loop bounds and cannot be applied to

unstructured programs. As a result, there is a need for systems that

can automatically leverage task-level parallelism in sequential

programs.
The proposed approach for achieving this is based on coarse-grained

task-level parallelization. In this approach, a sequential program is

statically decomposed into tasks, and the parallelism among tasks is

analyzed. Independent tasks are then parallelized using OpenMP task

constructs, while ap-propriate synchronization constructs are introduced

to ensure program correctness in the presence of dependencies. Further-

more, the proposed system considers multi-level parallelism by

considering nested loops within the outer loop.

II. LITERATURE SURVEY

A. Survey of Research Papers

Hamid Arabnejad et al. [1] presented the AutoPar-Clava compiler,

which provides a versatile automatic paralleliza-tion approach for

Clava, a C source-to-source compiler. The compiler is currently

focused on parallelizing C programs by adding OpenMP directives.

The proposed source-to-source compiler deals with the original code,

and inserts OpenMP directives (mainly parallel-for and atomic

directives) and the necessary clauses.
Vladmir Beletsky et al. [2] created a package that provides effective

parallelization of the programs that are written in the C language and

guarantees the correctness in executing them on transputer-systems of

various configurations.
Amit G Bhat et al. [3] proposed an algorithm which is simple and

efficient for automatic parallelization of “for” loops using OpenMP

APIs. It uses compile time cost estimation in order to determine whether

parallelization of the program is profitable or not, since the overhead

involved in creation of multiple threads sometimes degrades the

performance of loops on par-allelization. The algorithm also performs

minor modification

possible, such as multiple initialization elimination, in order

make the loop compatible for using OpenMP APIs.
Manju Mathews et al. [4] proposed an algorithm whose focus is

on multilevel coarse grained task parallelism and does not

consider loop parallelism. The observations on sample test codes

indicate that there is a performance gain with parallelization.

B. Existing Systems

• YUCCA : YUCCA is a Sequential to Parallel automatic code

conversion tool developed by KPIT Technologies Ltd. Pune. It

takes input as C source code which may have multiple source and

header files. It gives output as transformed multi-threaded

parallel code using pthreads functions and OpenMP constructs.

The YUCCA tool does task and loop level paral-lelization.
• Par4All : Par4All is an automatic parallelizing and opti-mizing

compiler (workbench) for C and FORTRAN sequential programs. The

purpose of this source-to-source compiler is to adapt existing

applications to various hardware targets such as multi-core systems, high

performance computers and GPUs. It creates a new source code and thus

allows the original source code of the application to remain unchanged.

• Cetus : Cetus is a compiler infrastructure for the source-to-source

transformation of software programs. This project is developed by

Purdue University. Cetus is written in Java. It provides basic

infrastructure for writing automatic paral-lelization tools or compilers.

The basic parallelizing techniques Cetus currently implements are

privatization, reduction vari-ables recognition and induction variable

substitution. A new graphic user interface (GUI) was added in Feb 2013.

Speedup calculations and graph display were added in May 2013. A

Cetus remote server in a client–server model was added in May 2013

and users can optionally transform C Code through the server. This is

especially useful when users run Cetus on a non-Linux platform. An

experimental Hubzero version of Cetus was also implemented in May

2013 and users can also run Cetus through a web browser.
• PLUTO : PLUTO is an automatic parallelization tool based on the

polyhedral model. The polyhedral model for compiler optimization is a

representation for programs that makes it convenient to perform high-

level transformations such as loop nest optimizations and loop

parallelization. Pluto transforms C programs from source to source for

coarse-grained parallelism and data locality simultaneously. The core

transformation framework mainly works by finding affine

transformations for efficient tiling and fusion, but not lim-ited to those.

OpenMP parallel code for multi-cores can be automatically generated

from sequential C program sections.

III. PROPOSED SYSTEM

Our proposed system is to have a transpiler that can parallelize the

execution of sequential code as input. This transpiler will act on certain

subset of programming languages and will optimize the execution by

maximizing the throughput

351

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS060153
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 06, June-2023

www.ijert.org
www.ijert.org
www.ijert.org

and making maximum utilization of available resources, and

worker nodes.
It will make use of extracted section parallelization that aims to

identify sections of code independent of data flow within the program

and do not rely on execution of previous code blocks and do not have

any dependents further in the program. The extent of parallelization

relies on the level of coupling within program, a program with lot of

interdependence and shared memory usage will have poor parallelization

compared to sequential code with independent code blocks with minimal

coupling. Independent blocks with non-overlapping resource access can

be separated for parallelization, while these non-overlapping sections

might require sequence, they can be parallelized independently.
Automatic parallelization aims to minimize human inter-vention,

it has stages which are analogous to working of compilers, and

involves code parsing into an intermediate form which is

independent of source program. The stage that’s not analogous to

compiler is the schedule phase where we define the order of

execution of non-overlapping sections and the distribution of tasks to

worker nodes in an optimal way and ensuring redundancy for fault

tolerance. The parallelized ver-sion of our code will be able to work

on certain architectures of CUDA and use MPI for message passing

between worker nodes.

IV. DESIGN

A. Data Flow Diagram

1) Data Flow Diagram (Level 0):

Fig. 1. Data Flow diagram: Level 0

2) Data Flow Diagram (Level 1):

• Read Input : Read sequential code in C as input from

storage.
• Lexical Analysis : This component is responsible for parsing the

input file and identify all tokens from the file. Each line in the file is

checked for predefined keyword to separate them into tokens.This token

is then used later for analysis.

• Analyze : The analyzer is used to identify sections of code that

can be executed concurrently. The analyzer uses the static data

information provided by the scanner-parser. The analyzer will first

find all the totally independent functions and mark them as

individual tasks. The analyzer then finds which tasks have

dependencies.
• Identify blocks that can be parallalized : Independent blocks with non-

overlapping resource access can be separated

for parallelization, while these non-overlapping sections might require

sequence, they can be parallelized independently.
• Code Generation : The scheduler will generate a list of all the tasks

and the details of the cores on which they will execute along with the

time that they will execute for. The code Generator will insert special

constructs in the code that will be read during execution by the

scheduler. These constructs will instruct the scheduler on which core a

particular task will execute along with the start and end times.
• Write Output : Write parallel code in C as output to the

storage.

Fig. 2. Data Flow diagram: Level 1

3) Data Flow Diagram (Level 2):

• Read Input : Read sequential code in C as input from

storage.
• Lexical Analysis : This component is responsible for parsing the

input file and identify all tokens from the file. Each line in the file is

checked for predefined keyword to separate them into tokens.This token

is then used later for analysis.
• Dependency Analysis : Dependence analysis is the basis for the

parallelizer to decide whether a loop is parallelizable. AutoPar

invokes the dependence analysis from the loop opti-mizer, which

implements algorithms to effectively transform both perfectly nested

loops and non-perfectly nested loops. An extended direction matrix

(EDM) dependence representation is used to cover non-common

loop nests that surround only one of the two statements in order to

handle non-perfectly nested loops.
• Data Flow Analysis : Data-flow analysis is a technique for

gathering information about the possible set of values cal-culated

at various points in a computer program. A program’s control-

flow graph (CFG) is used to determine those parts of a program

to which a particular value assigned to a variable might

propagate.
• Identify blocks that can be parallalized : Independent blocks with non-

overlapping resource access can be separated for parallelization, while these

non-overlapping sections might require sequence, they can be parallelized

independently.

• Determine order of blocks to be executed : List all the tasks and their

dependencies on each other in terms of execution and

352

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS060153
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 06, June-2023

www.ijert.org
www.ijert.org
www.ijert.org

start times. The scheduler will produce the optimal schedule in

terms of number of processors to be used or the total execution

time for the application.
• Code generation : Code generation is done after analysis phase

is complete. Here we can choose to generate code for different

architecture such as CUDA or MPI based on user choice. Code

generation is done based on the previous analysis and techniques like

polyhedral models for transforming code into different architectures.
• Write Output : Write parallel code in C as output to the

storage.

Fig. 3. Data Flow diagram: Level 2

V. RESULTS AND PERFORMANCE ANALYSIS

For testing purpose, Intel Core i3 is used which has two cores with Hyper

Threading (HT) technology. Operating Sys-tem is Ubuntu 14.04. The

compiler version is gcc 4.8.2 which supports OpenMP version 3.1. A dual

core machine with HT has 2 physical cores but scheduler treats them as 4

logical cores. For the logical processors in a HT enabled machine, the

architectural state of the processor is duplicated. We used OpenMPI to

connect up to 6 computers having the same processing power and used them

for testing various algorithms.
Fig. 4, shows the execution time on different numbers of

processors connected with OpenMPI, executing sum of array

program for different array sizes. It can be observed that sequential

execution time is lesser than execution time on one processor with

MPI, this is because of the network overhead and communication

overhead caused due to MPI. Also it is observed that for increase in

number of processors the execution time is drastically reduced.
Fig. 5, shows the execution time for matrix multiplication

[13] for different dimension of matrix using sequential and MPI

parallel code (no. of processors used = 3 here). It can be seen for

higher dimension matrix MPI parallel code is working much

better than sequential one.

Fig. 4. Time Comparison: Sum Of Array

Fig. 5. Execution time for matrix multiplication

VI. CONCLUSION

In this paper, we aim to design an auto parallelization compiler,

which converts the source program such that its compatible with

parallel systems and ensure maximum con-currency. We analyze

various techniques to parallelize certain sections of source program.

It allows us to maximize the throughput and effective utilization of

parallel systems without manually writing parallel code.

Automation of parallelization tasks allows us to make more effective

use of multi-core processors, with development of tools such as OpenMP

and CUDA, it is now possible to have true concurrency, and an effective

way to parallelize programs with minimal human intervention will be

very useful and allow complex computation on commodity hardware,

thereby increasing it’s reach to researchers who do not have access to

high-end supercomputers.
Data Flow analysis, and dependency analysis helps in identifying

which sections of code can be parallelized, and also helps us in

understanding limitations of such Auto-parallelization mechanisms,

Having shared memory access poses complexity if the parallel

sections of code have a non-atomic read-modify-write operations

which might result in inconsistent data flow. While we are limited by

this, it is

353

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS060153
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 06, June-2023

www.ijert.org
www.ijert.org
www.ijert.org

possible to have lock-free techniques but are infeasible to

automate with current advancements in auto-parallelization

techniques.
The development of an auto-parallelization compiler will

enhance the performance of sequential codes which can run on

hardware with no parallelization support and also hardware

which support parallelization and it would be automatic so we

won’t have any development overhead. This paper aims to

describe and propose ideas which can help in development in this

domain.

VII. FUTURE SCOPE

The future scope for our project, which is focused on auto

parallelization of C programs to MPI programs, can be expanded

in a number of ways to make it more powerful and versatile.
Currently, our project supports a limited number of algo-rithms

for auto parallelization. We can expand the scope of our project by

adding support for additional algorithms for auto parallelization. We

can also improve the effectiveness of auto parallelization by

incorporating state-of-the-art algorithms that are designed to handle a

wide range of code patterns and architectures. In addition to

supporting MPI, we could add support for CUDA, which is a parallel

computing platform developed by NVIDIA. We also have to

improve the accuracy of the auto parallelization so that output of our

project may always be optimal. While our project is currently

focused on C, we could consider adding support for other

programming languages as well.

VIII. ACKNOWLEDGEMENTS

We would like to express our sincere gratitude and appre-ciation

to Prof. Amroz Siddiqui for his invaluable guidance, support, and

encouragement throughout the course of our project. His expertise,

insight, and willingness to provide constructive feedback have been

instrumental in shaping our work and pushing us to achieve our best.
We extend our heartfelt appreciation to Prof. Shashi R Dugad for his

unwavering support, exceptional guidance, and invaluable contributions,

which have been instrumental in making this project a resounding

success. His remarkable mentor ship has left an indelible mark on our

academic and personal lives, and we will always be grateful for his

unwavering support and guidance. His exceptional leadership,

unwavering dedication, and profound expertise have been a source of

inspiration for us throughout this endeavor.
We would also like to thank the computer department of our

college for their assistance and resources, which have been essential

in completing this project. Their commitment to providing a high-

quality learning environment and state-of-the-art facilities has been

instrumental in our success.
Without their support and guidance, we would not have been able to

complete this project successfully. We are truly grateful for their

contribution and look forward to continuing our work with their

continued support and guidance.
We would also like to express our heartfelt gratitude to Prof.

Lata Ragha, Head of the Computer Department, for her constant

support and guidance throughout the project.

IX. REFERENCES

[1] M. Mathews and J. P. Abraham, ”Automatic Code Par-allelization with

OpenMP task constructs,” 2016 International Conference on Information Science

(ICIS), Kochi, India, 2016, pp. 233-238, doi: 10.1109/INFOSCI.2016.7845333.
[2] V. Beletsky, A. Bagaterenco and A. Chemeris, ”A package for automatic

parallelization of serial C-programs for distributed systems,” Programming

Models for Massively Parallel Computers, Berlin, Germany, 1995, pp. 184-188,

doi: 10.1109/PMMPC.1995.504357.
[3] A. G. Bhat, M. N. Babu and Anala M R, ”Towards automatic

parallelization of “for” loops,” 2015 IEEE Inter-national Advance Computing

Conference (IACC), Banglore, India, 2015, pp. 136-142, doi:

10.1109/IADCC.2015.7154686.
[4] M. Mathews and J. P. Abraham, ”Automatic Code Par-allelization with

OpenMP task constructs,” 2016 International Conference on Information Science

(ICIS), Kochi, India, 2016, pp. 233-238, doi: 10.1109/INFOSCI.2016.7845333.
[5] A. Beletska, W. Bielecki, and P. S. Pietro, “Extracting coarse-grained

parallelism in program loops with the slicing framework, in parallel and

distributed computing.,” tech. rep., ISPDC ’07. Sixth International Symposium,

July 2007.
[6] C. Bastoul, “Code generation in the polyhedral model is easier than you

think,” tech. rep., Laboratoire PRiSM Universit´e de Versailles Saint Quentin 45

avenue des Etats-Unis, 78035 Versailles Cedex, France.
[7] N. Patankar, A. P. Khanbu, H. Bhoir, and A. Siddiqui, “Automated c code

polyhedral parallelizer,” tech. rep., FCRIT Vashi,Maharashtra,India, 2015.
[8] R. Rugina and M. Rinard, “Automatic parallelization of divide and

conquer algorithms,” tech. rep., Laboratory for Computer Science Massachusetts

Institute of Technology Cambridge, MA 02139, 1999.
[9] B. Hertzberg and K. Olukotun, “Runtime automatic speculative

parallelization in code generation and optimization (cgo), 2011,” tech. rep., 9th

Annual IEEEIACM International Symposium, April 2011.
[10] J.-F. Collard, “Automatic parallelization of while-loops using

speculative execution,” tech. rep., 1995.

[11] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Brown-ing, R. L. Carter, L.

Dagum, R. A. Fatoohi, P. O. Freder-ickson, T. A. Lasinski, R. S. Schreiber, H. D.

Simon, V. Venkatakrishnan, and S. K. Weeratunga, “The nas parallel

benchmarks—summary and preliminary results,” in Proceed-ings of the 1991

ACM/IEEE Conference on Supercomputing, Supercomputing ’91, (New York,

NY, USA), p. 158–165, Association for Computing Machinery, 1991.
[12] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The splash2

programs: characterization and methodological considerations,” in Proceedings

22nd Annual International Symposium on Computer Architecture, pp. 24–36,

1995.]

354

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS060153
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 06, June-2023

www.ijert.org
www.ijert.org
www.ijert.org

[13] Ziad A.A. Alqadi, Musbah Aqel and Ibrahiem M. M.El Emary, “ Performance

analysis and evaluation of paral-lel matrix multiplication algorithms, World Applied

Sciences Journal, 5 (2): 211-214, 2008.

355

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS060153
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 06, June-2023

www.ijert.org
www.ijert.org
www.ijert.org

