
Automated Model Based Testing 
 

#1
 Jyoti Mishra, 

#2
 Irphan Ali,

 #3
Anubhaw Kumar Upadhyay 

#1
 Research Scholars, NIET Greater Noida 

#2
 Assistant Professor, NIET Greater Noida 

#3
 Research Scholars, Tula’s Institute Dehradun 

 

 

Abstract 
 

Software testing is becoming more and more 

difficult task every day because in the 

current software engineering cycle the 

design and testing activities are separated, 

which leads to a situation where test cases 

are not in harmony with the actual 

application. Traditional testing techniques 

may not always be suitable for adequate, 

thorough, and extensible testing of critical 

and complex software in a resource and time 

constrained software development 

environment.  One way to solve this 

problem is to take a model of the application 

into use, which can be, e.g., a user interface 

model and from which the test cases can be 

derived automatically. This technique is 

known as model based testing. The model 

can also be used for, e.g., automatic code 

generation. Model-based testing (MBT) is 

an evolving technique for generating test 

cases automatically from a behavioral model 

of a system under test. 

The main objectives of this paper were to 

deploy the model based approach into an 

organization, to develop an automated 

model based testing tool in order to test the 

approach and to show proof of financial 

benefits of the approach as compared to the 

Traditional testing technique. In this paper 

we first thoroughly explore the model based 

Testing technique and then deploy it in an  

 

 

Organization and then comparison between 

traditional testing methods and automated 

model based testing is conducted. 

1 Traditional Software Testing 

Traditional software testing consists of the 

tester studying the software system and then 

writing and executing individual test 

scenarios that exercise the system. These 

scenarios are individually crafted and then 

can be executed either manually or by some 

form of capture/playback test tool. 

This method of creating and running tests 

faces at least two large challenges: 

First, these traditional tests will suffer badly 

from the “pesticide paradox” (Beizer, 1990) 

in which tests become less and less useful at 

catching bugs, because the bugs they were 

intended to catch have been caught and 

fixed. 

Second, handcrafted test scenarios are static 

and difficult to change, but the software 

under test is dynamically evolving as 

functions are added and changed. When new 

features change the appearance and behavior 

of the existing software, the tests must be 

modified to fit. If it is difficult to update the 

tests, it will be hard to justify the test 

maintenance costs. 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012
ISSN: 2278-0181

1www.ijert.org



Model-based testing alleviates these 

challenges by generating tests from explicit 

descriptions of the application. It is easier, 

therefore, to generate and maintain useful, 

flexible tests. 

2 Test Automation 

Organizations often seek to reduce the cost 

of testing. Most organizations aren't 

comfortable with reducing the amount of 

testing so instead they look at improving the 

efficiency of testing. Luckily, there are a 

number of software vendors who claim to be 

able to do just this! They offer automated 

tools which take a test case, automate it and 

run it against a software target repeatedly. 

Music to management ears! However, there 

are some myths about automated test tools 

that need to be dispelled: 

2.1 Automated testing does not find more 

bugs than manual testing – an experienced 

manual tester who is familiar with the 

system will find more new defects than a 

suite of automated tests. 

2.2 Automation does not fix the 

development process – as harsh as it 

sounds, testers don’t create defects, and 

developers do. Automated testing does not 

improve the development process although 

it might highlight some of the issues. 

2.3 Automated testing is not necessarily 

faster-The upfront effort of automating a 

test is much higher than conducting a 

manual test, so it will take longer and cost 

more to test the first time around. 

Automation only pays off over time. It will 

also cost more to maintain.  

2.4 Everything does not need to be 

automated-some things don’t lend 

themselves to automation, some systems 

change too fast for automation, some tests 

benefit from partial automation – you need 

to be selective about what you automate to 

reap the benefits. But, in their place, 

automated test tools can be extremely 

successful. 

3 Need of Automated Testing 

Automated Testing is automating the 

manual testing process currently in use. This 

requires that a formalized "manual testing 

process" currently exists in the company or 

organization. Minimally, such a process 

includes:  

 Detailed test cases, including 

predictable "expected results", which 

have been developed from Business 

Functional Specifications and Design 

documentation  

 A standalone Test Environment, 

including a Test Database that is 

restorable to a known constant, such 

that the test cases are able to be 

repeated each time there are 

modifications made to the 

application  

The real use and purpose of automated test 

tools is to automate regression testing. To 

perform it there should be a database of 

detailed test cases that are repeatable, and 

this suite of tests must be run every time 

there is a change to the application to ensure 

that the change does not produce unintended 

consequences.  

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012
ISSN: 2278-0181

2www.ijert.org



An automated test script is a program. 

Automated script development, to be 

effective, must be subject to the same rules 

and standards that are applied to software 

development.  

According to Customer request, the needed 

automated testing tool should provide ability 

to perform the following types of testing:  

 Regression Testing (for Web 

interfaces) - not just navigation and 

links, expected and actual results  

 Load/Stress/Volume Testing  

 Unit/Integration Testing  

 

There are also some additional features of 

the automated testing tool that should be 

taken into consideration:  

 Cost  

 Inter-operability – ability to work 

together with other tools  

 Capacity - particularly on load 

testing, how many users at once, 

virtual clients, multiple physical 

client spanning etc  

 

4 Automated Testing Tools 
 

There are a number of Automated Testing 

tools on the market today. The following is 

just a representative list of the major vendor 

products that are most widely used. 

 Android  

 Atesto Functional Testing Service  

 AutoTester for Windows  

 AutoTester for OS/2  

 CitraTest  

 e-Monitor  

 e-Tester  

 eValid  

 SilkTest  

 Smalltalk Test Mentor  

 SQA TeamTest: ERP Extension for 

SAP  

 TestBench400  

 SQA TestFoundation for PeopleSoft  

 Tasker  

 Test Now  

 TestQuest Pro Test Automation 

System  

 TestRunner  

 Unified TestPro (UTP)  

 Vermont High Test Plus  

 Visual Test  

 WebKing  

 WinRunner  

 xrc - X Remote Control  

 XRunner  

 

5 Automated Models Based Testing  

 
Model based testing can be summarized in 

one sentence; it is essentially a technique for 

automatic creation of test cases from 

specified software model. The key 

advantage of this technique is that the test 

generation can systematically derive all 

combination of tests associated with the 

requirements represented in the model to 

automate both the test design and test 

execution process [5]. 

Generating test cases from a finite state 

machine is usually straightforward and easy 

task. The states in the machine contain 

information about what the state is; in the 

case of actions, they describe the action that 

is executed, and in the case of responses, 

they describe formally, what the response is. 

If the test cases are to be executed manually, 

this is all the information that is needed. If 

the goal is to generate automated test cases, 

the states also need to contain all the 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012
ISSN: 2278-0181

3www.ijert.org



necessary test automation parameters that 

are needed by the test automation system 

used. The test automation parameters can of 

course be derived also from some other 

information, e.g. by using a text parser to 

generate the parameters from the verbal 

descriptions automatically. 

As the states contain all the necessary 

information, actual test case generation is 

simple. The simplest approach is to traverse 

randomly through the state transition 

diagram, from start to the end. One test case 

is constituted of the states visited during 

traversing. Frequently it is wanted that the 

transition coverage criterion is 100% and 

then random traversing is out of the question 

and a more sophisticated algorithm is 

needed. In [4], some graph traversal 

algorithms are presented that aim to meet 

the criterion, and the challenge is to choose 

the most effective one. 

5.1 Benefits of Automated Model Based 

Testing 

Many studies conducted have shown that 

model based testing is effective, especially 

when used to test small applications, 

embedded systems, user interfaces and state-

rich systems with reasonably complex data. 

Rosaria and Robinson (2000) studied testing 

graphical user interfaces, Agrawal and 

Whittaker (1993) embedded control 

software and Avritzer and Larson (1993) 

phone systems. 

Usually the most attractive attribute of 

model based testing is thought to be the 

automatic generation of test cases, but that is 

not all. Model of software can help refining 

unclear and poorly defined requirements. By 

eliminating model defects before the coding 

begins and automating the test case creation 

the result is significant cost savings and 

higher quality code. Figure 6 shows the 

differences between current defect discovery 

and elimination process (marked “Old”) and 

early defect discovery (marked “New”).  

 

 

Figure 1: Savings caused by earlier defect 

discovery 

The figure shows that the sooner the defects 

are detected and fixed, the less the costs of 

fixing them will be. Other benefits that are 

more related to testing include e.g. the 

following. 

Comprehensive tests: if the model is a 

complete abstraction of the software, it is 

possible to automatically create test cases 

which cover every possible transition of the 

model by using graph algorithms. 

Defect discovery: model based test 

automation discovers defects more 

effectively than manual methods. The article 

demonstrated this with a case study in which 

manual method uncovered 33 defects in a 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012
ISSN: 2278-0181

4www.ijert.org



system, and model based method all of those 

and in addition 56 more. 

As it was shown in this section the benefits 

of model based testing are huge if modeling 

and all the related tasks are done efficiently, 

but it also has some difficulties and 

drawbacks. 

5.2 Difficulties and Drawbacks of 

Automated Model Based Testing 

Almost every research on model based 

testing agrees on one thing: deployment of 

model based testing into an organization 

requires significant efforts and investments. 

In [4], the following three reasons for the 

needed efforts and investments are 

presented: 

Excessive amount of skills is required 

from the testers. They need to be familiar 

with the model, which means knowledge of 

different forms of state machines, formal 

languages, and automata theory. In addition, 

expertise in tools and scripts is required 

when test automation is going to be used. 

A large initial effort in terms of man-

hours is required. The type of the model 

has to be carefully selected, different parts 

of software have to be divided so that the 

modeling is easier because of the smaller 

areas and the actual model has to be built. 

6 Conclusions 

 
Usually the most attractive attribute of 

model based testing is thought to be the 

automatic generation of test cases, but that is 

not all. Model of software can help refining 

unclear and poorly defined requirements. By 

eliminating model defects before the coding 

begins and automating the test case creation 

the result is significant cost savings and 

higher quality code. 

On the basis of above study we can say that 

model based testing is effective, especially 

when used to test small applications, 

embedded systems, user interfaces and state-

rich systems with reasonably complex data.  

References 

 
The result of the comparison shows that the 

automated model based testing techniques 

have benefits over traditional technique of 

testing. The main benefits are in fields of 

time and money.  

[1] Beizer, B. Software Testing Techniques. 2nd 

Ed. New York, USA: Van Nostrand Reinhold 

Co, 1990. 550 p. ISBN 0-442-20672-0. 

[2] El-Far, I. K. & Whittaker, J. A. Model-based 

Software Testing. In:Marciniak, J. (ed.), 

Encyclopedia on Software Engineering, Volume 

1. New York, USA: John Wiley & Sons Inc, 

2001. pp. 825-837. ISBN 0-471-21008-0. 

[3] Robinson, H. Finite state model-based 

testing on a shoestring.International Conference 

on Software Testing Analysis and Review, San 

Jose, California, USA, 1999. 

[4] Robinson, H. Graph Theory Techniques in 

Model-Based Testing. 16
th
 International 

Conference and Exposition on Testing Computer 

Software, Los Angeles, California, USA, 1999. 

[5] Blackburn, M., Busser, R. & Nauman, A. 

Why Model-Based Test Automation is Different 

and What You Should Know to Get Started. 

International Conference on Practical Software 

Quality and Testing, Washington, USA, 2004.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012
ISSN: 2278-0181

5www.ijert.org



 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012
ISSN: 2278-0181

6www.ijert.org


