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Abstract— Deep learning has made significant advances 

in the previous several years, leading to remarkable 

advancements in a variety of applications, including 

images categorization. Deep learning has emerged as a 

crucial methodology in the domain of medical imaging 

that has significantly improved the categorization of 

medical pictures. Convolutional neural networks (CNNs) 

have shown very high effectiveness in the detection of 

several illnesses, including different dental conditions, 

Parkinson's disease, Alzheimer's disease, malaria, and 

coronary artery disease. Similar to earlier instances, CNN 

shows a lot of potential for diagnosing COVID-19 patients 

via the use of medical imaging methods like computed 

tomography and chest X-rays. The World Health 

Organization (WHO) has officially designated the 

coronavirus illness COVID-19 as a worldwide pandemic. 

Identification of persons who have tested positive for 

COVID-19 is crucial for stopping the spread of this 

contagious illness. In this study, models like ResNet50, 

Alex Net, Google Net, Mobile Net, and Modified 

ResNet50s are developed for using chest X-ray pictures to 

detect COVID-19 patients. A dataset including 3,000 chest 

X-ray (CXR) images is used, encompassing examples of 

both COVID-19 positivity and negativity. All models are 

trained and confirmed using COVID-19 chest X-ray 

images and normal chest X-ray images. The Modified 

ResNet50 model with Channel Shuffle has an F1-score of 

100%, a Receiver Operating Characteristic (ROC) curve 

area of 100%, and precision and accuracy of 100% and 

100%, respectively. This research also compares the 

effects of increasing dataset size and convolutional layer 

alterations on classification performance. 

Keywords- Deep learning · Convolutional Neural 

Networks (CNNs) · COVID-19 · Normal · X-ray images · 

Receiver Operating Characteristic (ROC).  

 

I. INTRODUCTION  

The infectious disease known as COVID-19, which emerged 

in 2019, is caused by the novel virus SARS-CoV-2 and is 

characterized by its high spread. This virus was initially 

observed in Wuhan, Hubei Province, China, in December 

2019 and has subsequently disseminated rapidly to nearly all 

nations and regions worldwide. As a consequence, an 

unparalleled global pandemic has ensued, marking a 

significant event in human history [1] [2]. The declaration of 

the COVID-19 epidemic in China as a Public Health 

Emergency of International Concern (PHEIC) was made by 

the Director-General of the World Health Organization 

(WHO) on January 30, 2020. This decision was based on the 

recognition of the outbreak's capacity to have a substantial 

effect on countries with insufficient healthcare infrastructure. 

In March 2020, the World Health Organization (WHO) 

officially classified the outbreak as a pandemic. [3].              

As of March 2021, global reports indicate that the number of 

COVID-19 cases has exceeded 119 million, with a verified 

death toll over 2.6 million. Since the onset of the global 

pandemic, around 94 million individuals have seen recovery 

from the infection, although a substantial number of almost 20 

million cases remain active throughout various regions 

worldwide. The ongoing epidemic continues to exacerbate and 

exhibits no indications of abating or decelerating. The rapid 

spread of the pandemic is being seen in many countries, 

including the United States, India, and Brazil [4]. 

Since the emergence of technology in the field of medical 

science, there has been a notable advancement in medical 

gadgets and diagnostic techniques. The current generation of 

Internet of Things (IoT) devices has significantly simplified 

intricate processes and facilitated real-time monitoring. The 

field of technology is constantly advancing [5]. In 

contemporary times, the use of deep learning techniques has 

enabled the generation of comprehensive and varied feature 

sets beyond the capabilities of even domain experts [6]. 

Over the last several decades, machine learning (ML) and 

deep learning (DL) have gained significant attention and have 

proven to be very valuable in addressing complex medical 

scenarios. In order to effectively discern between pneumonia-

infected lungs and healthy lungs, machine learning algorithms 

rely on well-structured and ordered data. To predict the result, 

a collection of features is necessary. In contrast, within the 

context of deep learning (DL), the classifier is capable of 

discerning between normal and pneumonia images by using 

network properties that are created automatically [7]. There is 

no need to provide sustenance to a domestically produced 

filtration system. Deep learning (DL) has emerged as a 

powerful technology that obviates the need for manually 

creating features, owing to its capability to create features 
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autonomously. Numerous breakthroughs have been achieved 

in deep learning algorithms over the years, resulting in their 

extensive use for the detection of abnormalities in medical 

images. There are deep learning algorithms that are capable of 

using previously obtained knowledge in order to address a 

novel challenge [8]. 

Computer-Aided Detection (CAD) provides a considerable 

degree of precision in the identification and diagnosis of 

COVID-19, while simultaneously reducing the workload and 

time required for these tasks. The use of imaging analysis and 

processing, in combination with the suitable picture modality 

and diagnostic techniques. This thesis makes a dual 

contribution of significant importance. Firstly, it presents the 

development of an automated detection system that exhibits 

high precision and efficiency in identifying COVID-19 from 

CXR images. The CAD system reported in this study, 

however, has been trained and optimized using data from 

digital X-ray datasets via the implementation of five-fold 

validations [9].  

I. LITERATURE REVIEWE 

 

In [10], the authors proposed and evaluate various 

architectures for the task of COVID-19 detection using X-

ray images. Their proposed architectures include the pre-

trained MobileNetv2 and ResNet50 models. They tested 

these computer designs using a big collection of X-ray 

images. Then, they compared how well their designs 

worked with other methods that people already use to find 

COVID-19 in X-rays. Their proposed models are compared 

to existing COVID-19 detection algorithms in terms of 

accuracy. The proposed models achieve an accuracy of 

96.71% and an F1-score of 91.89%. These results 

demonstrate that the proposed models outperform the most 

advanced algorithms currently available. 

In [11], they conducted a thorough assessment of ten 

different CNN architectures, considering both their 

performance with and without enhancement techniques. 

These models encompass InceptionV3, 

InceptionResNetV2, MobileNet, MobileNetV2, Vgg19, 

NASNetMobile, ResNet101, DenseNet121, DenseNet169, 

and DenseNet201. Their proposed methodology, when 

augmented with TVF + Gamma, demonstrated notably 

superior results in terms of classification accuracy and 

sensitivity. In the 4-way classification scenario, MobileNet 

with TVF + Gamma stood out, achieving an impressive 

accuracy of 93.25%. This represented a substantial 

improvement of 1.91% in accuracy score. Moreover, it 

demonstrated a remarkable COVID-19 sensitivity of 

98.72% and an F1-score of 92.14%. This indicates that 

their proposed approach substantially enhanced the model's 

ability to accurately identify COVID-19 cases. 

In [12], they used an examination of image features 

extracted from MobileNet to ascertain their validity and 

medical significance. The process demonstrated the ability 

to identify abnormal X-rays with an accuracy of 95.45 ± 

1.54% and effectively differentiate COVID-19 cases with 

an accuracy of 89.88 ± 3.66%. The visual representations 

generated by the Grad-CAM algorithm offered compelling 

proof that the methodology pinpointed meaningful regions 

within the images. 

In [13], they employed various deep learning techniques, 

including deep feature extraction, fine-tuning of pre-trained 

convolutional neural networks (CNNs), and end-to-end 

training of a customized CNN model, to differentiate 

between COVID-19 and healthy chest X-ray images. Pre-

trained deep CNN models such as ResNet18, ResNet50, 

ResNet101, VGG16, and VGG19 were utilized for deep 

feature extraction. The experiment utilized a dataset 

containing 180 COVID-19 and 200 healthy chest X-ray 

images. The fine-tuned ResNet50 model demonstrated an 

impressive accuracy of 92.6%. 

In [14], they introduced a new AI-powered deep learning 

model for automatically detecting COVID-19 in chest X-

ray images. They employed advanced deep learning 

architectures like ResNet50, VGG19, Xception, and 

DarkNet19. The model was evaluated accessible datasets 

and demonstrated an accuracy of 96.10%. Their findings 

suggested that this approach held significant promise in 

healthcare, offering a quicker, cost-effective, and highly 

accurate method for COVID-19 detection. 

In [4], they classified COVID-19, non-COVID-19 viral 

pneumonia, bacterial pneumonia, and normal CXR scans 

gathered from several public sources using a deep learning 

strategy based on a pre-trained AlexNet model. Their 

model was prepared to implement two-way classification 

(i.e., Coronavirus versus ordinary, bacterial pneumonia 

versus typical, non-Coronavirus viral pneumonia versus 

ordinary, and Coronavirus versus bacterial pneumonia), 

three-way classification (i.e., Coronavirus versus bacterial 

pneumonia versus typical), and four-way classification 

(i.e., Coronavirus versus bacterial pneumonia versus non-

Coronavirus viral pneumonia versus typical). Their model 

obtained 94.43% accuracy, 98.19% sensitivity, and 95.78% 

specificity for non-COVID-19 viral pneumonia and normal 

(healthy) CXR images. Their model obtained 91.43% 

accuracy, 91.94% sensitivity, and 100% specificity for 

bacterial pneumonia and ordinary CXR images. Their 

model obtained 99.62% accuracy, 90.63% sensitivity, and 

99.89% specificity for classification CXR images of 

COVID-19 pneumonia and non-COVID-19 viral 

pneumonia. Their model obtained 94.00% accuracy, 

91.30% sensitiv- ity, and 84.78% for the three-way 

classification. Lastly, for the four-way classification, their 

model obtained 93.42%, sensitivity of 89.18%, and 

specificity of 98.92%. 

In [15], they used eight different deep learning 

techniques to identify people with COVID-19 in a set of 

400 chest X-ray images. The techniques were VGG16,  

InceptionResNetV2, ResNet50, DenseNet201, VGG19, 

MobileNetV2, NasNetMobile, and ResNet15V2. Among 

these, Net-Mobile outperformed all other models on the 

chest X-ray datasets, achieving an impressive accuracy of 

93.94%. 

In [16], in this paper, they aimed to diagnose COVID-19 

disease from X-ray images using deep learning 
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architectures. Additionally, a 96.30% accuracy rate was 

achieved with the hybrid architecture they had improved. 

While developing the hybrid model, the last 5 layers of the 

Resnet 50 architecture were ejected. 10 layers were added 

in place of the 5 layers that were removed. The count of 

layers, which was 177 in the Resnet50 architecture, was 

increased to 182 in the hybrid model. Thanks to these layer 

changes made in Resnet50, the accuracy rate was increased 

more. Classification was performed with AlexNet, 

Resnet50, GoogLeNet, VGG16 and developed hybrid 

architectures using COVID-19 Chest X-Ray dataset and 

Chest X-Ray images (Pneumonia) datasets. In [17], they 

devised a deep learning system tailored to extract features 

and identify COVID-19 in chest X-ray images. They fine-

tuned three potent networks, namely ResNet50, 

InceptionV3, and VGG16, using an enriched dataset 

constructed by pooling COVID-19 and normal chest X-ray 

images from various public databases. To augment the 

dataset, they employed techniques like random rotations 

within -10 to 10 degrees, the addition of random noise, and 

horizontal flips to artificially generate a substantial number 

of chest X-ray images. The experimental outcomes were 

exceptionally encouraging: the proposed models achieved 

remarkable accuracy, specifically 97.20% for Resnet50, 

98.10% for InceptionV3, and 98.30% for VGG16, in the 

classification of chest X-ray images as Normal or COVID-

19. These results underscore the effectiveness of transfer 

learning, offering robust performance and easily 

implementable methods for COVID-19 detection.  

TABLE 1  AN OVERVIEW OF RESULTS FROM EARLIER STUDIES, RESNET50 

(RN50), AND MOBILENET (MON), AND NOT CALCULATED (NC). 

  

 

 

 

    

 

II. METHODOLOGY 

 

In this study, MATLAB was used to evaluate data from 3000 

x-ray images. Three stages were used throughout the study to 

distinguish between normal and abnormal COVID-19. These 

stages are shown in figure 1. 

3.1 DATABASE SOURCE: 

The databases of the University of Dhaka and Qatar 

University will be utilized in this study [18]. A total of 

13,808 chest X-ray (CXR) images are included in the 

database (including both COVID-19 positive and negative 

cases). 10,192 normal and 3,616 COVID-19 cases make up 

the datasets. 

3.1 PREPROCESSING: 

Preprocessing is essentially the stage for locating and 

minimizing images artifacts. This step is required in CXR 

images because many CXR images consist of noise and 

undesired artifacts such as patient clothing and wire which 

must be eliminated in order to appropriately diagnose 

COVID-19. Initially, the RGB images were transformed into 

grayscale using the MATLAB tool, and then they were 

resized to prepare them for input into the system. 

The region of interest (ROI) for training and testing was 

extracted to eliminate superfluous text and machine 

annotations around the images. Meaningful information was 

obtained by defining the ROI on the chest X-ray images, 

mainly covering the lung region [19].  

Reference

s No. 

[10] [11] [12] [13] [4] 

Methods 

Used 

 

RN50 

and 
MON 

 

 

MON 
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RN50 

 

AlexNet 

Accuracy 
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F1-
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NC 
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Initially, a rectangle is employed to delineate the region of 

interest (ROI), and a mask is generated based on this 

rectangle. Subsequently, through logical indexing, the area 

outside the ROI is zeroed out, and the isolated portion is 

presented. Filtering methods maintain valuable information 

while effectively addressing noise present in an image. 

When it comes to extracting significant features from noisy 

images, information-preserving filtering techniques are 

particularly well-suited [20].  

In this study, the Modified Anisotropic Diffusion Filtering 

(MADF) technique was employed to preserve detailed 

information while reducing noise and distortion in the 

images. This filtering technique is noted for its superior 

performance compared to other filtering methods, attributed 

to its capacity for eliminating multiplicative speckle noise in 

plane regions.  

The method being introduced relies on correlation and 

kurtosis measurements of noise to retain valuable edge 

information. In Equation (1), Io represents a noisy image that 

combines speckle noise (n) with the original image I [21, 

22]. The noise component is described in Equation (1), 

where the noise intensity, denoted as G, is computed based 

on image characteristics using MATLAB. The average noise 

intensity, denoted as µ and determined by Equation (2), 

along with the kurtosis value, calculated using Equation (3), 

play essential roles. The objective is to minimize the 

correlation between the image class and noise class, serving 

as the stopping criterion for the iteration. This speckle 

reduction process persists until the noise component of the 

image approaches a Gaussian value, at which point the 

kurtosis value should ideally reach zero. The iterative 

process concludes when the kurtosis value drops below 

0.001 (as specified in Equation (4)),  

 

 

 

 

 

 

 

 

 

 

 

 

Signifying effective speckle reduction while preserving 

edges. The iteration halts once the correlation between the 

image class and noise class reaches its minimum. Equation 

(5) computes the correlation of image intensities (ρI), and 

Equation (6) calculates the correlation of noise intensities 

(ρG). The filtering method's optimal outcome is achieved 

when ρI and ρG exhibit the least deviation from each other. 
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Fig. 1 Visual representation of the experiment's workflow 
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Figure 2 illustrates original images, noisy images, and the 

results after applying modified anisotropic diffusion filtering. 

It is evident that the proposed MADF technique effectively 

preserves edges. 

Fig. 2 A visual representation of the results of applying modified anisotropic 

diffusion on the images. 

3.1 Predicting COVID-19 Using Pre-Trained CNN Models: 

 

Convolutional neural networks (CNNs) have demonstrated 

exceptional performance in various medical image 

processing applications. However, training CNN models 

from scratch for COVID-19 case prediction poses a 

challenge due to the scarcity of X-ray samples. This is where 

transfer learning (TL) comes into play. TL leverages the 

knowledge acquired from a deep learning (DL) model 

trained on a massive dataset to tackle a related task with a 

relatively smaller dataset. This approach eliminates the need 

for a large dataset and lengthy training times, which are 

inherent in training DL models from scratch [23]. This study 

employs four pre-trained models, namely ResNet50, 

AlexNet, GoogLeNet, and MobileNet, to classify COVID-19 

cases from normal ones. These models have proven highly 

effective in various computer vision and medical image 

analysis tasks, making them suitable for differentiating 

COVID-19 infections from normal cases. Notably, these 

models were initially trained on a large-scale labeled dataset 

called ImageNet [11] and subsequently fine-tuned using 

chest X-ray images. The final layer of these models was 

removed and replaced with a new Fully Connected (FC) 

layer having an output size of two, corresponding to the two 

classes (normal and COVID-19). In these refined models, 

only the final Fully Connected (FC) layer undergoes 

training, while the remaining layers retain their pre-trained 

weights. The hyperparameters, which are crucial for 

optimizing these deep learning models, were held constant to 

ensure a fair comparison. 

  

The architectural summary of the pre-trained CNN models is 

presented in   Table 2. 

Table 2 Descriptions of the architecture of the pre-trained CNN models 

utilized in this study. 

 

 

3.1 Performance Evaluation: 
 

Following model training experiments, this study has yielded 

six models (ResNet50, AlexNet, GoogLeNet ,and 

MobileNet) that exhibit strong COVID-19 detection 

capabilities when applied to x-ray images. Subsequently, this 

paper introduces a set of evaluation metrics tailored to 

medical image classification. These metrics encompass 

accuracy, sensitivity, specificity, precision, recall, F1-score, 

a confusion matrix, and a graphical representation 

illustrating how accuracy evolves with the number of 

training epochs. Each classification metric was computed, 

enabling us to provide a detailed evaluation of the detection 

and classification prowess of each model. These calculations 

are outlined as follows [24]: 

• True positives (TP): The image actually has COVID-

19, and the model correctly predicts that it does. 

• False positives (FP): The image actually does not have 

COVID-19, but the model incorrectly predicts that it 

does. 

• True negatives (TN): The image actually does not have 

COVID-19, and the model correctly predicts that it does 

not. 

• False negatives (FN): The image actually has COVID-

19, but the model incorrectly predicts that it does not. 

• Receiver Operating Characteristic Curve: The graph 

that plots the true positive rate (TPR) against the false 

positive rate (FPR). The area under the curve (AUC) is a 

measure of the overall performance of the classifier [25]. 

• Confusion Matrix: The table that summarizes the 

performance of a classifier. It shows the number of 

instances that were correctly classified and incorrectly 

classified for each class. 

• Accuracy (ACC): The percentage of instances that are 

correctly classified. In the context of mass lesions, 

accuracy measures how many patients with mass lesions 

are correctly predicted to have mass lesions. In the 

context of diagnosis, accuracy measures how many 

patients with malignant pathology are correctly classified 

as having malignant pathology, or how many patients 

with benign pathology are correctly classified as having 

benign pathology. 

Model Layers Parameters 

(in million) 

Input layer 

size 

Output 

layer size 

AlexNet 8 60 (224,224,3) (2,1) 

GoogleNet  22 5 (224,224,3) (2,1) 

MobileNet 53 3.4 (224,224,3) (2,1) 

ResNet50 50 25.6 (224,224,3) (2,1) 
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• Sensitivity (SEN) or Recall (REC): The proportion of 

positive instances that are correctly classified. In other 

words, it shows how many patients with malignant 

pathology are correctly classified as having malignant 

pathology, out of all patients with malignant pathology. 

           

• Specificity: the proportion of negative instances that are 

correctly classified. In other words, it shows how many 

patients without malignant pathology are correctly 

classified as not having malignant pathology, out of all 

patients without malignant pathology. 

                   

• Precision: The proportion of positive predictions that are 

actually positive. In other words, it shows how many 

patients who are predicted to have malignant pathology 

actually have malignant pathology. 

                  

• F1-score: The harmonic mean of precision and recall. It 

is a measure of how well a model performs at both 

detecting positive instances and avoiding false positives. 

              

 

II. RESULTS 

 

4.1 Configuration of Experimental Parameters and Results: 

MATLAB software was used to train the suggested deep 

transfer learning models. Pre-trained CNN models included 

ResNet50, AlexNet, GoogLeNet, and MobileNet. The 

dataset was divided into two separate datasets at random, 

with 20% and 80% of each dataset utilized for testing and 

training, respectively. K-fold was selected as the cross 

validation technique, and results were obtained for 5 

distinct k values (k=1-5). 

In this study, two classes were used for classifications 

(2000 Normal and 1000 COVID-19 cases). In order to get a 

robust result in this research, the 5-fold cross validation 

approach was used to the four pre-trained models 

ResNet50, Alex Net, Google Net and Mobile Net. Table 2 

provides a detailed breakdown of performance metrics for 

every fold value of each model. 

 

 

 

Table 3 All performances of 4 different models on each fold for Normal / 

COVID-19 cases, Accuracy (ACC), Sensitivity (SEN), Recall (REC), 

Specificity (SPE), Precision (PRE), F1-Score (F1), and Average (AVE). 

 

As demonstrated in the comprehensive evaluation presented 

in the table 2, it became evident that ResNet50 consistently 

delivered outstanding performance. The results displayed in 

the table above clearly indicate that, among the various 

models examined, ResNet50 consistently achieved the 

highest level of accuracy. In Figure 3, the presented 

confusion matrix serves as a visual aid to assess the overall 

performance of the models. This includes the computation of 

metrics such as accuracy, sensitivity, specificity, precision, 

recall, and F1-score, which are determined using the values 

from Equations (7)–(11). The dataset comprises 3000 data 

samples, with 1000 being COVID-19 samples and 2000 

being normal samples. COVID-19 and normal cases are 

represented by the labels ‘C’ and ‘N’, respectively. 

According to the matrix, the modified ResNet50 successfully 

distinguishes 1998 normal x-ray images and 1000 COVID-

19 x-ray images. In total, the model accurately identifies 

2998 images (comprising both normal and COVID-19 

images), resulting in an impressive accuracy rate of 99.9%. 

The suggested model can handle much deeper networks 

compared to other models that used in this study. This is 

because it uses special connections that help with training 

very deep networks. It also uses shortcuts that speed up 

training by making it easier for the network to learn from its 

mistakes. Additionally, the classification accuracy of the 

proposed framework is competitive with recent research (see 

Models/Fold ACC 

% 

SEN 

% 

PRE 

% 

SPE 

% 

REC 

% 

F1 

% 

 

 

AlexNet 

1 99.3 98.7 98.6 98.3 98.7 99.3 

2 96.5 98.3 93.2 98.3 98.3 99.1 

3 99.3 98.7 98.6 98.7 98.7 98.7 

4 98.5 99.7 100 99.7 99.7 99.8 

5 100 100 100 100 100 98.1 

AVE 98.7 99.1 98.0 99.0 99.1 99.0 

 

 

 
ResNet50 

1 99.9 100 100 100 100 100 

2 99.8 100 100 100 100 99.9 

3 99.9 100 100 100 100 100 

4 99.9 99.5 100 100 100 100 

5 100 100 100 100 100 100 

AVE 99.9 99.9 100 100 99.9 99.9 

 

 

MobileNet 

1 97.5 97.5 99.3 97.5 98.3 99.5 

2 99.6 99.6 99.1 98.6 98.4 98.6 

3 98.7 98.7 98.7 97.7 98.7 98.7 

4 98.3 98.3 99.8 98.3 97.5 98.3 

5 97.9 98.4 98.1 98.9 99.6 98.4 

AVE 98.4 98.5 99.0 98.2 98.5 98.7 

 

 

 
 

GogLeNet 

1 99.9 98.3 99.9 99.0 98.3 99.8 

2 99.8 99.6 99.9 99.9 99.6 99.7 

3 99.9 98.4 99.5 99.8 98.4 99.9 

4 99.9 97.5 99.8 99.9 97.5 99.9 

5 99.5 98.7 99.9 99.9 98.7 99.7 

AVE 99.8 98.5 99.8 99.7 98.5 99.8 
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Table 4). It's important to note that our work deals with a 

large collection of X-ray images, which introduces additional 

challenges for the classification model. 

Table 4 Evaluating our best outcomes in light of other studies, Accuracy 

(ACC), Sensitivity (SEN), Recall (REC), Specificity (SPE), Precision 
(PRE), and F1-Score (F1). 

 

 

Fig. 3 Confusion matrix of ResNet50. 

 

 

4.2 Ablation Experiments: 

 

In the exploration of deep learning model enhancements, 

ablation experiments assume a pivotal role as they involve 

the systematic removal or modification of specific elements 

to evaluate their impact on overall performance [26]. Based 

on the experimental results, ResNet50 model demonstrated 

the most favorable overall performance. The architecture 

under consideration, ResNet50, is well-known for its depth 

and performance. ResNet50 includes input and output layers, 

convolutional layers for feature extraction, and pooling 

layers to reduce spatial dimensions. Residual blocks, each 

with multiple convolutional layers, contribute to deep 

representation learning. Fully connected layers transform 

features for classification. The network's unique design has 

proven effective in diverse computer vision tasks, 

highlighting its significance in deep learning applications 

[27]. However, there is a desire to investigate potential 

modifications that could enhance its capabilities. Three key 

modifications were introduced into our proposed model: the 

addition of a Channel Shuffle layer, the introduction of a 

Softmax layer, and the removal of the Batch Normalization 

layer. 

 

• Channel Shuffle Layer: The Channel Shuffle layer is 

introduced to promote cross-channel information flow, 

fostering the improvement of the model's ability to 

capture diverse features. By rearranging feature maps 

across channels, the layer encourages richer 

representations, allowing the model to better extract 

intricate patterns within the data. 

 

• Softmax Layer: Incorporation of a Softmax layer into the 

model is aimed at the enhancement of its classification 

capabilities. The Softmax function is utilized to 

normalize raw output scores into probabilities, 

facilitating a more robust and interpretable prediction 

mechanism. This addition seeks to improve the model's 

ability to provide confident and well-calibrated class 

probabilities. 

 

• Batch Normalization Removal: The decision to omit the 

Batch Normalization layer, a common technique for 

stabilizing and accelerating training, is made to explore 

the impact of its absence. Removal of the Batch 

Normalization layer aims to evaluate whether the model 

can maintain or even enhance its performance in terms of 

convergence speed and generalization. 

 

Through this ablation experiment, the objective is to 

assess the individual contributions of the Channel Shuffle 

layer, Softmax layer, and the absence of Batch 

Normalization to the ResNet50 model. Results obtained 

from these modifications will offer insights into the 

importance of these components, potentially guiding 

future architectural choices and optimizations in deep 

learning models. The following table illustrates the 

comparison between the results of the original ResNet50 

model and those of the modified model. 

Reference

s No. 

Model 

used 

ACC 

% 

SEN 

% 

PRE 

% 

SPE 

% 

REC 

% 

F1 

% 

[10] ResNet50 91.5 NC NC NC NC 91 

[13] ResNet50 94.7 91 NC 98 NC 94.7 

[14] ResNet50 90.6 NC NC NC NC NC 

[15] ResNet50 64.0 NC 79.0 NC 64.0 58.0 

[16] ResNet50 92.5 97.0 NC 98.0 NC NC 

[17] ResNet50 97.2 98.2 97.0 97.0 96.0 97.0 

Our study 

 
 ResNet50 

 

 
99.9 

 
99.9 

 
100 

 
100 

 
99.9 

 
99.9 

Model used ACC 

% 

SEN 

% 

PRE 

% 

SPE 

% 

REC 

% 

F1 

% 

ResNet50+ 

Channel Shuffle 
 

100 100 100 100 100 100 

ResNet50+  

Softmax 
 

99.99 99.99 100 100 99.9 99.99 

ResNet50-  

Batch 

Normalization 
 

99.83 99.75 100 100 99.7 99.87 

Original 

ResNet50 

99.99 99.99 100 100 99.9 99.99 
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Table 5 Comparison between the results of the original ResNet50 model 

and modified ResNet50 model. 

 

As shown in the table above, the ResNet50 model, when 

enhanced with the Channel Shuffle layer, emerged as a 

significant improvement over the original architecture, 

showing a perfect score of 100% across all evaluated 

metrics. This emphasized the effectiveness of promoting 

cross-channel information flow through the strategic 

inclusion of the Channel Shuffle layer, thus improving the 

model's ability to capture diverse features and patterns within 

the dataset. 

In contrast, the addition of the Softmax layer into ResNet50 

seemed to have negligible effects on the overall 

performance, with results closely mirroring those of the 

original ResNet50 model. This observation suggests that 

while Softmax normalization contributed to refining class 

probabilities, its impact on the specific metrics under 

consideration might have been limited in this context. 

Remarkably, removing the Batch Normalization layer added 

an intriguing aspect to the experiment. While Batch 

Normalization is typically used to stabilize training and 

enhance convergence, its absence in this modified model 

slightly decreased performance. This subtle result implies 

that Batch Normalization, despite its computational 

overhead, plays a positive role in the model's capacity to 

generalize and maintain robust training dynamics. 

The ablation experiment offered valuable insights into the 

specific impacts of the Channel Shuffle layer, Softmax layer, 

and the absence of Batch Normalization on the ResNet50 

model. These discoveries not only improve our 

understanding of these architectural components but also act 

as a guide for future optimizations and architectural 

decisions in the field of deep learning. 

III.  DISSCUSSION 

In this work, a completely automated diagnostic technique 

for separating COVID-19 instances from healthy individuals 

and pneumonia cases was suggested. The model was 

evaluated using a sizable, unbalanced test dataset, and deeper 

CNN models were added as a benchmark study. As shown in 

table 5, higher accuracy was obtained than the one achieved 

in [10]. Our model showed an accuracy of 100% in 

ResNet50+Channel Shuffle model (compared to their study 

which achieved 91.5% accuracy). Additionally, an 9% 

improvement in F1-score were seen.  

In [15], they used a smaller dataset of 400 x-ray images for 

model evaluation, compared to our dataset of 3000 x-ray 

images. However, this smaller dataset may not be 

representative of the actual clinical setting, where a small 

number of cases in the testing pool can lead to a large 

imbalance in the classes. In [17] reported an overall 

accuracy of 97.2% using the ResNet50 model, which is 

2.8% less than our proposed model. Their precision rate is 

97%, which is 3% lower than ours. Precision is an 

important metric to consider in classification, as it 

measures the proportion of positive instances that are 

correctly classified. 

Our method showed a significant improvement in overall 

accuracy over previous studies. Additionally, our dataset 

was larger than those used in other studies. We ran 

different models on this dataset to differentiate between 

normal and pneumonia cases, all of which came from the 

same source. Our method is highly robust to variations in 

image preprocessing methods, such as removing noise, 

determining regions of interest, and adjusting the contrast 

of images. This robustness was achieved through the use of 

a deep learning model that was trained on a large dataset of 

images collected using a variety of methods. As a result, 

our model was able to achieve a classification accuracy of 

100%, which is significantly higher than the accuracy of 

other models that have been reported in the literature. 

Despite the good outcomes achieved, deep learning models 

come with a set of limitations. One significant challenge 

arises from their sensitivity to image artifacts and noise. 

These limitations in the input data can significantly impact 

the model's performance, leading to wrong classifications 

or reduced accuracy. Additionally, the computational 

demands of deep learning models are noteworthy. They 

often require high-quality central processing units (CPUs) 

and can be computationally intensive, particularly when 

processing large datasets or complex architectures. This 

can lead to extended processing times, potentially impeding 

real-time applications or requiring significant computing 

resources. Another critical limitation related to the 

understanding of these models. Understanding why a 

particular classification decision was made can be a 

complex and difficult task. Deep learning models operate 

by learning complex relationships within the data, often in 

high-dimensional spaces, making it challenging for humans 

to comprehend the exact features or patterns that led to a 

specific outcome. This lack of understanding can be a big 

problem in important situations where it's really important 

to know why a decision was made. Therefore, while deep 

learning models have demonstrated exceptional 

capabilities, it's very essential to recognize and find 

solutions for these challenges so that we can use these 

models in a good and responsible way in different areas. 

III.  CONCLUSION 

Deep learning techniques have demonstrated remarkable 

achievements by drawing insights from vast collections of 

labeled images. This unique capability enables them to 

distinguish complex relationships between the various 

elements within the images and their respective labels. This 

means they can recognize difficult patterns and associations 

that might be challenging for conventional machine 

learning approaches. In this study, the ResNet50 pre-

trained model demonstrated remarkable accuracy, reaching 

an impressive 100%, surpassing the performance of the 

other three models. This highlights its potential as a 

valuable aid for radiologists in clinical settings, enhancing 

their ability to provide precise diagnoses.  

In future research, it is considered important to extend the 

model's capabilities to process CT scan images for COVID-

19 detection. This expansion would allow a more 

comprehensive evaluation of the model's effectiveness 
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across various imaging modalities. Furthermore, the 

potential for adapting the model to identify a range of 

diseases beyond COVID-19, utilizing radiography images, 

is being recognized. This adaptation could significantly 

enhance the model's clinical utility, offering radiologists a 

versatile tool for diagnosing and evaluating various medical 

conditions. By training the model on a diverse dataset 

encompassing different pathologies, it can be refined to 

recognize specific patterns indicative of a wide array of 

diseases.  
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