
  

 

 

Balanced Ant Colony Optmization Algorithm 
for Job Scheduling in Grid Computing 

                                                  
R. Tharani

Assistant Professor 

Dept. of CSE 

JCT College of Engineering and Technology 

Coimbatore, Tamil Nadu, India 

 

.Abstract—Grid computing is a novel technology for building high 

speed computing environment in which heterogeneous, 

distributed and dynamically available resources are integrated. 

However, in Grid environment, it is a big challenge to design an 

efficient scheduler and its implementation. It aims to find a 

suitable allocation of resources for each job. In the natural 

environment, the ants have a tremendous ability to team up to 

find an optimal path to food resources. An ant algorithm 

simulates the behavior of ants. In this paper, we propose a 

Balanced Ant Colony Optimization (BACO) algorithm for job 

scheduling in the Grid environment. The main contributions of 

our work are to balance the entire system load while trying to 

minimize the makespan of a given set of jobs. Compared with the 

other job scheduling algorithms, BACO can outperform them 

according to the experimental results. 

 
Keywords—Grid computing, BACO, Ant colony optimization 

algorithm, Grid scheduling. 

 

I. INTRODUCTION 

 

In grid computing environment, applications are 

submitted for use of grid resources by users from their 

terminals. The resources include computing power, 

communication power and storage. An application consists of 

number of jobs; users want to execute these jobs in an 

efficient manner. There are two possibilities of submission of 

jobs/data on resources; in one of them, job is submitted on the 

resources where the input data is available and in the other, 

on the basis of specific criteria, resource is selected on which 

both job and input data are transferred. This paper uses 

second approach, wherein the job is submitted on a scheduler 

and data on a resource identified by the scheduler. A resource 

in existing algorithms is selected randomly, sequentially or 

according to its Grid Computing enables sharing, selection, 

aggregation of geographically distributed resources 

dynamically at run time depending on their accessibility, 

ability and users Quality of Service requirements. The main 

objective of the grid technology is to maximize the utilization 

of the organization’s computing resources by making them as 

shareable entities, and provide computing on demand to the 

users. Balancing the load of all available resources is another 

important issue in the grid. 

     The demand for scheduling is to achieve high performance 

computing. Typically, it is difficult to find an optimal resource 

allocation for specific job that minimizes the schedule length of 

jobs. The scheduling problem is defined NP-hard problem 

 and it is not trivial. The motivation of this paper is to 

develop a grid scheduling algorithm that can perform 

efficiently and effectively in terms of minimizing total 

tardiness time. Not only does it improve the overall 

performance of the system but  

 

it also adapts to the dynamic grid system. First of all, this 

paper proposes an Ant Colony Optimization (ACO) 

algorithm  
 

to find the optimal resource allocation of each job within 

the dynamic grid system. Secondly, the simulation of the 

experiment is presented. This simulation is an extension of 

GridSim toolkit version 4.0, which is a popular discrete-

event simulator and grid scheduling algorithm. The 

simulator defines the different workload of resources, the 

arrival time of independent jobs, the length of each job, the 

criteria of a scheduler, etc. Finally, this paper compares the 

performance of various job schedulers and dispatching 

rules for grid environment within fully controlled 

conditions. The experiment considers: 

• First Come First Served (FCFS) 

• Minimum Time Earliest Due Date (MTEDD) 

• Minimum Time Earliest Release Date (MTERD) 

• Ant Colony Optimization (ACO) 

   

                                                 

 
 

.              Fig.1. Steps for job submission on a resource 

 

II. LITREATURE REVIEW 

 

In the past few years, researchers have proposed 

scheduling algorithms for parallel system [2 - 6]. However, 
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the problem of grid scheduling is still more complex than the 

proposed solutions. Therefore, this issue attracts the interests of 

the large number of researchers [7- 11]. Current systems [17] 

of grid resource management was surveyed and analyzed based 

on classification of scheduler organization, system status, 

scheduling and rescheduling policies. However, the 

characteristics and various techniques of the existing grid 

scheduling algorithms are still complex particularly with extra 

added components. At the present time, job scheduling on grid 

computing is not only aims to find an optimal resource to 

improve the overall system performance but also to utilize the 

existing resources more efficiently. Recently, many researchers 

have been studied several works on job scheduling on grid 

environment. Some of those are the popular heuristic 

algorithms, which have been developed, are min-min [12], the 

fast greedy [12], tabu search [12] and an Ant System [13]. The 

heuristic algorithms proposed for job scheduling in [12] and 

[13] rely on static environment and the expected value of 

execution times. H. Casanova et al. [18] and R. Baraglia et al. 

[19] proposed the heuristic algorithms to solve the scheduling 

problem based on the different static data, for example, the 

execution time and system load. Unfortunately, all of 

information such as execution time and workload cannot be 

determined in advance of dynamic grid environments. In 1999, 

the Ant Colony Optimization (ACO) metaheuristic was 

proposed by Dorigo, Di Caro and Gambardella which has been 

successfully used to solve many NP-problem, such as TSP, job 

shop scheduling, etc. In the past few years, several researchers 

proposed solutions to solve grid scheduling problem by using 

ACO [20]. Several studies have been trying to apply ACO for 

solving grid scheduling problem. Z. Xu et al. [21] proposed a 

simple ACO within grid simulation architecture environment 

and used evaluation index in response time and resource 

average utilization. E. Lu et al. [22] and H. Yan et al. [23] also 

proposed an improved Ant Colony algorithm, which could 

improve the performance such as job finishing ratio.  

III. THE PROPOSED SYSTEM 

 
Ant Colony Optimization (ACO) is one of the 

metaheuristics. It can be applied not only to solve discrete 

optimization problems but also to solve both static and dynamic 

combinational optimization problems. ACO is inspired by a 

colony of artificial ants cooperate in foraging behavior.This 

behavior enables ants to find the shortest paths between food 

sources and their nest. In fact, they deposit a chemical pheromone 

tail on the ground after they walk from the nest to food sources 

and vice versa. Hence, they choose the way with higher 

probability paths, which are marked by stronger pheromone 

concentrations. This behavior is the basis for a cooperative 

interaction.  

 
.  Fig.2. illustrate of how real ants can lead to identify the 

shortest path around an obstacle.  

 

A. The balanced ant colony optimization (BACO) 

algorithm 

BACO inherits the basic ideas from ACO 

algorithm to decrease the computation time of jobs 

executing in Taiwan UniGrid environment and it also 

considers about the loading of each resource. BACO 

changes the pheromone density according to the resource 

status by applying the local pheromone update and the 

global pheromone update functions. The purpose is to try to 

minimize the complete time for each job while balancing 

the system load. 
 

B. System architecture 

The system architecture is shown in Fig. 3. There 

are four main components: Portal, Information Server, Jobs 

Scheduler and grid resources. The Portal provides an 

interface to users for job execution. The Information Server 

collects resource information by using the NWS (Network 

Weather Service). The NWS demon reports system 

information back to Information Server periodically. The 

Jobs Scheduler selects the most appropriate resources to 

execute the request according to the proposed BACO 

algorithm. Finally, the execution results would be sent back 

to the user. 

 

 
Fig.3. System architecture 

 

C. The proposed BACO algorithm 

In order to map the ant system to the grid system, we 

explain 

their relationships below: 

a. An ant 

An ant in the ant system is a job in the grid 

system. 
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b. Pheromone 

Pheromone value on a path in the ant system is a 

weight for a resource in the grid system. A resource with a 

larger weight value means that the resource has a better 

computing power. The scheduler collects data from 

Information Server and uses the data to calculate a weight 

value of a resource. The pheromone (weight) of each resource 

is stored in the scheduler and the scheduler uses it as the 

parameters for BACO algorithm. At last, the scheduler selects 

a resource by a scheduling algorithm and it sends jobs to the 

selected resource by the APIs of the Globus Toolkit. 

 
Fig.4. shows the mapping between the ant system and the grid 

system. 

 
  The initial pheromone value of each resource for each job 

is calculated based on the estimated transmission time and 
execution time of a given job when assigned to this 
resource. The estimated transmission time can be 

 

determined 

 

by 

S j   

where S j is  the size of  a 

 

 bandwidthr  
 

given  job j and bandwidthr is  the bandwidth available 
 

between the grid resource broker and the resource. The initial 
pheromone value is defined by: 

 

 

 

 

S j C j  

 
 

PVij 
           (1)  

  

  

 

 

   
 

 bandwidthr MIPSr  * (1− load r )  
 

where PVij is the pheromone value for job j assigned to 

resource r, C j is the CPU time needed of job j, MIPSr is  
the processer speed of resource r and 1 − load is the current 

load of resource r. The load, processor speed and bandwidth 

can be obtained from grid information server. 
Assume there are  n jobs and  m resources in the PV 

matrix:   
j1 j2 .. jn 

 
 

    
 

 r PV PV .. PV  
 

 1 
 

11 12  1n 
 

 

PV = r2 
    

 

.. .. .. ..  
 

 ..  .. ..       ..       ..  
 

  

  

 

 r     
 

        

 m      PVm1 PVm2 .. 
PV

mn 
 

The largest entry from PV matrix which reflects the best 

resource, will be selected in each iteration. Assuming PVij is 
selected then job j will be processed by resource r. The local 
pheromone update is performed after job j has been assigned to 
resource r. This formula can only be applied to unassigned jobs 

in the PV matrix. The local pheromone update is 
formulated as follow:  

τ  jr     1− ξ .τ  jr   ξ .τ 0    

(2) 
 

where ξ,0< ξ<1 and 
τ

 
0
 are two parameters. The value of 

τ 

0 
is set to be the same as the initial value for the pheromone 

trails. A good value for 
ξ

 was found to be 0.1, while a good 

value for 
τ

 
0
 was found to be 

1/
 
nC

 
nn

 , where  

n 
is the number of resources and C nn is the resource 

with high pheromone value. The effect of the local 

pheromone update is to ensure an already chosen resource less 

desirable for the following ant [10] which will increase the 

exploration of not yet visited resource. 
 
When a job is completely processed, global pheromone 

update is performed to recalculate the entire PV matrix. 
After all ants have constructed a solution, the pheromone 
trails are updated according to the following formula: 
 

τ  jr t  1   1 −  ρ .τ  jr     ρ     τ  jr 
bs 

       (3) 
 

 
 

where ∆ τjr
best

 = 1/L
best

. This global pheromone update is 
limited to a specific upper and lower trail limit. The ant 
which is allowed to add pheromone may be the iteration-
best solution or global best solution. If a specific resource 
is often used in the best solution, it will receive a larger 
amount of pheromone and stagnation will occur. So, lower 
and upper limits on the possible pheromone strengths on 
any resource are imposed to avoid stagnation. The imposed 

trails limits have the effects of limiting the probability ρiu 
of selecting resource u when ants is in resource i to an 

interval[pmin,pmax], with 0< pmin≤pij≤pmax≤ 1. With this 

minimum trail limit, the resource is less desire to be selected 
by the jobs.since it will select the resource that has the 

upper trail limit. For example, there are three jobs (j 1, j 2, 

and j 3) that need to be processed by three resources (r1, r2, 

and r3) in the grid system. The initial status of each resource 

is shown in Table I and size of each job is 5MB, 3MB and 
1MB. The CPU cycles needed for each job are 5M, 3M and 
1M respectively. 
 
 
           TABLE I.STATUS OF EACH RESOURCE 

 

Status r1 r2 r3 

Processor Speed (MIPS) 217 464 195 
    

Load 15% 10% 20% 
    

Bandwidth (Megabits/s) 10.62 24.50 12.62 
    

 

 

 

The initial pheromone values of each entry obtained 

from equation (1) are shown in the following PV matrix: 
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r 

 j 1   j   2    j   3 
 

 PV   2.01 PV    3.35 PV  10.04 
 

PV = 
1 

PV 
11  12   13 

  23.14 
 

r    4.63 PV    7.71 PV   
 

 2  21   22   23   

 r PV    2.34 PV    3.89 PV   11.68 
 

 3  31   32    33  
  

The resource with high pheromone value will be selected 

by grid resource broker. So j3 will be processed by r2. After 

assigning j3 to r2, the local pheromone update is performed to 

the second row of r2. Column 3 is no longer needed because j3 
has been assigned. The new PV matrix is as follows: 

 

PV11 
 

PV12 
Local update 

  2.01   3.35 
PV    

    

PV
31   2.34 PV32   3.89 

 

 After r2 finished processing j3, the global pheromone 

update is performed to get the newest pheromone value for the 
next job submission. The newest status of each resource after 

the execution of j3 is as shown in Table II. The load status of 

each resource will be changed according to the size of the 
current load. On the other hand, the value is used in 
evaporation process. 
 

TABLE II.UPDATE STATUS OF EACH RESOURCE 

 

Status r1 r2 r3 
 

Processor Speed (MIPS) 217 464 195 
 

     

Load 15% 25% 20% 
 

     

Bandwidth (Megabits/s) 8.67 15.87 10.26 
 

     

 
0.00 0.05 0.00 

 

   
 

 

The value of r2 is 0.05 and values for r1 and r3 are zero 

since they have not been assigned any job for execution. The 

new PV matrix is as follows: 
 

PV  1.64 PV    2.73 
PV =  11  12  
 PV    2.88 PV    4.81 
  21   22  

       

PV
31  1.93 PV32   3.22 

The remaining job will be assigned in the same way. The 
local pheromone update will be performed after a grid resource 
broker assigned a job to a resource. After a resource finished 
processing a job, all entries of the PV matrix will be updated 
by the global pheromone update rules. 

 

IV. EXPERIMENTAL RESULTS AND DISCUSSION  
The performance of the proposed algorithm has been 

compared to other algorithms such as particle swarm, space 
shared and time shared. The average completion time has been 
used to compare the performance of the algorithms.  

Two experiments have been conducted to evaluate the 
performance of the proposed algorithm in terms of their 
processing time. First experiment processed 10 jobs with 100 

resources while the second experiment processed 100 jobs 
with 1000 resources. Details of the scheduling parameters 
are shown in the Table 3. 

 
TABLE III. SCHEDULING PARAMETERS FOR THE 

EXPERIMENTS 
 

Experiment 1 2 
   

No. of  machine per 1 1 

resource   
   

Number of PEs per 1 – 5 1 – 5 

machine   
   

PE ratings 10 or 50 10 or 50 

 MIPS MIPS 
   

Bandwidth 1000 or 5000 1000 or 5000 
   

 

 B/S B/S 

Number of Gridlet 100 1000 
   

Number of Resource 10 100 
   

 

The purpose of simulating the mixed size is that 

there may be many different jobs in the grid and we want to 

know how the BACO algorithm performs in such dynamic 

situation. We choose 1000 jobs for execution and set the 

number of each size to one third of the total number of 

jobs. So the number of jobs is 333, 333, and 334, 

respectively for each size whether in matrix multiplication 

or in linear programming. We compare the makespan (total 

execution time) and the standard deviation of load in each 

method. 

 

Fig.5 show the makespan of each method with 

mixed sizes. We can find out that BACO uses less time to 

complete all jobs. In the case of mixed jobs, the pheromone 

update functions of BACO still work well. For iACO, it 

applies the encouragement and punishment methods. It 

changes each pheromone by variables defined by users and 

it ignores the real status of resources. If the resources with 

bad computing power never fail to execute jobs, they will 

always be encouraged and get more pheromone. Then 

iACO will assign more jobs to the bad resources which 

have higher pheromone and this will increase the total 

execution time of the given jobs. That is the reason why 

iACO has larger makespan than BACO.  

The prediction means that it uses user-defined 

variables to encourage or punish resources after the 

assignment of jobs or the completion of jobs. It may not 

work sometimes when the pheromone values do not match 

the real status of resources. So BACO can work better than 

iACO. 

 

DFPLTF and Sufferage have similar performances 

and are also comparable to that of BACO. However, they 

do not consider the bandwidth issue and assume the data is 

readily available in the resources, which is sometimes not 

true. 

 

PV21=4.17    PV22=6.95 
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FPLTF may have bad performance if the number of 

hard tasks is too many and it always assigns jobs to the fastest 

resources which may already have a heavy load. It will cause 

the system load to be unbalanced and take much time for job 

executions. Random has the true random performance. It does 

not consider about the status of resources and the size of jobs 

and assign jobs to resources randomly. 

  
Fig.1. Makespan of each method with mixed sizes for 

matrix multiplication. 

 

V. CONCLUSION 

 

 In this paper, we propose a BACO algorithm to choose 

suitable resources to execute jobs according to resources status 

and the size of given job in the Grid environment. The local 

and global pheromone update functions do balance the system 

load. Local pheromone update function updates the status of 

the selected resource after jobs assignment. Global pheromone 

update function updates the status of each resource for all jobs 

after the completion of a job. It offers the Job Scheduler the 

newest information of all resource for the next jobs 

assignment. The experimental result shows that BACO is 

capable of balance the entire system load. 

   

VI. FUTURE WORK 

 

In future, we will study whether there are any other 

situations which we do not take into account on our definitions 

of the pheromone indicator or the pheromone update functions. 

We will also try to apply BACO algorithm to various grid 

computing applications. For example, instead of independent 

jobs, assume now we are scheduling workflows. That is, there 

are precedence relations among jobs.  

Then BACO has to be modified to include a 

synchronization scheme among resources. When a job is to be 

assigned to a resource for execution, we must be certain that all 

its precedent jobs running on other resources have been 

completed. Finally, this paper focuses on the computing grid. 

We may redefine the pheromone indicator and pheromone 

update formulations for the data grid to consider the replica 

strategy to select or predict which resources have more storage 

or are suitable for file replications by their newest status in 

future. 
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