

Balanced Ant Colony Optmization Algorithm
for Job Scheduling in Grid Computing

R. Tharani

Assistant Professor

Dept. of CSE

JCT College of Engineering and Technology

Coimbatore, Tamil Nadu, India

.Abstract—Grid computing is a novel technology for building high

speed computing environment in which heterogeneous,

distributed and dynamically available resources are integrated.

However, in Grid environment, it is a big challenge to design an

efficient scheduler and its implementation. It aims to find a

suitable allocation of resources for each job. In the natural

environment, the ants have a tremendous ability to team up to

find an optimal path to food resources. An ant algorithm

simulates the behavior of ants. In this paper, we propose a

Balanced Ant Colony Optimization (BACO) algorithm for job

scheduling in the Grid environment. The main contributions of

our work are to balance the entire system load while trying to

minimize the makespan of a given set of jobs. Compared with the

other job scheduling algorithms, BACO can outperform them

according to the experimental results.

Keywords—Grid computing, BACO, Ant colony optimization

algorithm, Grid scheduling.

I. INTRODUCTION

In grid computing environment, applications are

submitted for use of grid resources by users from their

terminals. The resources include computing power,

communication power and storage. An application consists of

number of jobs; users want to execute these jobs in an

efficient manner. There are two possibilities of submission of

jobs/data on resources; in one of them, job is submitted on the

resources where the input data is available and in the other,

on the basis of specific criteria, resource is selected on which

both job and input data are transferred. This paper uses

second approach, wherein the job is submitted on a scheduler

and data on a resource identified by the scheduler. A resource

in existing algorithms is selected randomly, sequentially or

according to its Grid Computing enables sharing, selection,

aggregation of geographically distributed resources

dynamically at run time depending on their accessibility,

ability and users Quality of Service requirements. The main

objective of the grid technology is to maximize the utilization

of the organization’s computing resources by making them as

shareable entities, and provide computing on demand to the

users. Balancing the load of all available resources is another

important issue in the grid.

 The demand for scheduling is to achieve high performance

computing. Typically, it is difficult to find an optimal resource

allocation for specific job that minimizes the schedule length of

jobs. The scheduling problem is defined NP-hard problem

 and it is not trivial. The motivation of this paper is to

develop a grid scheduling algorithm that can perform

efficiently and effectively in terms of minimizing total

tardiness time. Not only does it improve the overall

performance of the system but

it also adapts to the dynamic grid system. First of all, this

paper proposes an Ant Colony Optimization (ACO)

algorithm

to find the optimal resource allocation of each job within

the dynamic grid system. Secondly, the simulation of the

experiment is presented. This simulation is an extension of

GridSim toolkit version 4.0, which is a popular discrete-

event simulator and grid scheduling algorithm. The

simulator defines the different workload of resources, the

arrival time of independent jobs, the length of each job, the

criteria of a scheduler, etc. Finally, this paper compares the

performance of various job schedulers and dispatching

rules for grid environment within fully controlled

conditions. The experiment considers:

• First Come First Served (FCFS)

• Minimum Time Earliest Due Date (MTEDD)

• Minimum Time Earliest Release Date (MTERD)

• Ant Colony Optimization (ACO)

. Fig.1. Steps for job submission on a resource

II. LITREATURE REVIEW

In the past few years, researchers have proposed

scheduling algorithms for parallel system [2 - 6]. However,

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

COCODANTR - 2016 Conference Proceedings

Volume 4, Issue 11

Special Issue - 2016

1

the problem of grid scheduling is still more complex than the

proposed solutions. Therefore, this issue attracts the interests of

the large number of researchers [7- 11]. Current systems [17]

of grid resource management was surveyed and analyzed based

on classification of scheduler organization, system status,

scheduling and rescheduling policies. However, the

characteristics and various techniques of the existing grid

scheduling algorithms are still complex particularly with extra

added components. At the present time, job scheduling on grid

computing is not only aims to find an optimal resource to

improve the overall system performance but also to utilize the

existing resources more efficiently. Recently, many researchers

have been studied several works on job scheduling on grid

environment. Some of those are the popular heuristic

algorithms, which have been developed, are min-min [12], the

fast greedy [12], tabu search [12] and an Ant System [13]. The

heuristic algorithms proposed for job scheduling in [12] and

[13] rely on static environment and the expected value of

execution times. H. Casanova et al. [18] and R. Baraglia et al.

[19] proposed the heuristic algorithms to solve the scheduling

problem based on the different static data, for example, the

execution time and system load. Unfortunately, all of

information such as execution time and workload cannot be

determined in advance of dynamic grid environments. In 1999,

the Ant Colony Optimization (ACO) metaheuristic was

proposed by Dorigo, Di Caro and Gambardella which has been

successfully used to solve many NP-problem, such as TSP, job

shop scheduling, etc. In the past few years, several researchers

proposed solutions to solve grid scheduling problem by using

ACO [20]. Several studies have been trying to apply ACO for

solving grid scheduling problem. Z. Xu et al. [21] proposed a

simple ACO within grid simulation architecture environment

and used evaluation index in response time and resource

average utilization. E. Lu et al. [22] and H. Yan et al. [23] also

proposed an improved Ant Colony algorithm, which could

improve the performance such as job finishing ratio.

III. THE PROPOSED SYSTEM

Ant Colony Optimization (ACO) is one of the

metaheuristics. It can be applied not only to solve discrete

optimization problems but also to solve both static and dynamic

combinational optimization problems. ACO is inspired by a

colony of artificial ants cooperate in foraging behavior.This

behavior enables ants to find the shortest paths between food

sources and their nest. In fact, they deposit a chemical pheromone

tail on the ground after they walk from the nest to food sources

and vice versa. Hence, they choose the way with higher

probability paths, which are marked by stronger pheromone

concentrations. This behavior is the basis for a cooperative

interaction.

. Fig.2. illustrate of how real ants can lead to identify the

shortest path around an obstacle.

A. The balanced ant colony optimization (BACO)

algorithm

BACO inherits the basic ideas from ACO

algorithm to decrease the computation time of jobs

executing in Taiwan UniGrid environment and it also

considers about the loading of each resource. BACO

changes the pheromone density according to the resource

status by applying the local pheromone update and the

global pheromone update functions. The purpose is to try to

minimize the complete time for each job while balancing

the system load.

B. System architecture

The system architecture is shown in Fig. 3. There

are four main components: Portal, Information Server, Jobs

Scheduler and grid resources. The Portal provides an

interface to users for job execution. The Information Server

collects resource information by using the NWS (Network

Weather Service). The NWS demon reports system

information back to Information Server periodically. The

Jobs Scheduler selects the most appropriate resources to

execute the request according to the proposed BACO

algorithm. Finally, the execution results would be sent back

to the user.

Fig.3. System architecture

C. The proposed BACO algorithm

In order to map the ant system to the grid system, we

explain

their relationships below:

a. An ant

An ant in the ant system is a job in the grid

system.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

COCODANTR - 2016 Conference Proceedings

Volume 4, Issue 11

Special Issue - 2016

2

b. Pheromone

Pheromone value on a path in the ant system is a

weight for a resource in the grid system. A resource with a

larger weight value means that the resource has a better

computing power. The scheduler collects data from

Information Server and uses the data to calculate a weight

value of a resource. The pheromone (weight) of each resource

is stored in the scheduler and the scheduler uses it as the

parameters for BACO algorithm. At last, the scheduler selects

a resource by a scheduling algorithm and it sends jobs to the

selected resource by the APIs of the Globus Toolkit.

Fig.4. shows the mapping between the ant system and the grid

system.

 The initial pheromone value of each resource for each job

is calculated based on the estimated transmission time and
execution time of a given job when assigned to this
resource. The estimated transmission time can be

determined

by

S j

where S j is the size of a

 bandwidthr

given job j and bandwidthr is the bandwidth available

between the grid resource broker and the resource. The initial
pheromone value is defined by:

S j C j

PVij
 (1)





 bandwidthr MIPSr * (1− load r)

where PVij is the pheromone value for job j assigned to

resource r, C j is the CPU time needed of job j, MIPSr is
the processer speed of resource r and 1 − load is the current

load of resource r. The load, processor speed and bandwidth

can be obtained from grid information server.
Assume there are n jobs and m resources in the PV

matrix:
j1 j2 .. jn

 r PV PV .. PV

 1

11 12 1n

PV = r2

..

 r

 m PVm1 PVm2 ..
PV

mn

The largest entry from PV matrix which reflects the best

resource, will be selected in each iteration. Assuming PVij is
selected then job j will be processed by resource r. The local
pheromone update is performed after job j has been assigned to
resource r. This formula can only be applied to unassigned jobs

in the PV matrix. The local pheromone update is
formulated as follow:

τ jr  1− ξ .τ jr  ξ .τ 0

(2)

where ξ,0< ξ<1 and
τ

0
 are two parameters. The value of

τ

0
is set to be the same as the initial value for the pheromone

trails. A good value for
ξ

 was found to be 0.1, while a good

value for
τ

0
 was found to be

1/

nC

nn

 , where

n
is the number of resources and C nn is the resource

with high pheromone value. The effect of the local

pheromone update is to ensure an already chosen resource less

desirable for the following ant [10] which will increase the

exploration of not yet visited resource.

When a job is completely processed, global pheromone

update is performed to recalculate the entire PV matrix.
After all ants have constructed a solution, the pheromone
trails are updated according to the following formula:

τ jr t  1  1 − ρ .τ jr  ρ τ jr
bs

 (3)

where ∆ τjr
best

 = 1/L
best

. This global pheromone update is
limited to a specific upper and lower trail limit. The ant
which is allowed to add pheromone may be the iteration-
best solution or global best solution. If a specific resource
is often used in the best solution, it will receive a larger
amount of pheromone and stagnation will occur. So, lower
and upper limits on the possible pheromone strengths on
any resource are imposed to avoid stagnation. The imposed

trails limits have the effects of limiting the probability ρiu
of selecting resource u when ants is in resource i to an

interval[pmin,pmax], with 0< pmin≤pij≤pmax≤ 1. With this

minimum trail limit, the resource is less desire to be selected
by the jobs.since it will select the resource that has the

upper trail limit. For example, there are three jobs (j 1, j 2,

and j 3) that need to be processed by three resources (r1, r2,

and r3) in the grid system. The initial status of each resource

is shown in Table I and size of each job is 5MB, 3MB and
1MB. The CPU cycles needed for each job are 5M, 3M and
1M respectively.

 TABLE I.STATUS OF EACH RESOURCE

Status r1 r2 r3

Processor Speed (MIPS) 217 464 195

Load 15% 10% 20%

Bandwidth (Megabits/s) 10.62 24.50 12.62

The initial pheromone values of each entry obtained

from equation (1) are shown in the following PV matrix:

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

COCODANTR - 2016 Conference Proceedings

Volume 4, Issue 11

Special Issue - 2016

3

r

 j 1 j 2 j 3

 PV  2.01 PV  3.35 PV  10.04

PV =
1

PV
11 12 13

 23.14

r  4.63 PV  7.71 PV

 2 21 22 23

 r PV  2.34 PV  3.89 PV  11.68

 3 31 32 33

The resource with high pheromone value will be selected

by grid resource broker. So j3 will be processed by r2. After

assigning j3 to r2, the local pheromone update is performed to

the second row of r2. Column 3 is no longer needed because j3
has been assigned. The new PV matrix is as follows:

PV11

PV12
Local update

 2.01  3.35
PV

PV
31  2.34 PV32  3.89

 After r2 finished processing j3, the global pheromone

update is performed to get the newest pheromone value for the
next job submission. The newest status of each resource after

the execution of j3 is as shown in Table II. The load status of

each resource will be changed according to the size of the
current load. On the other hand, the value is used in
evaporation process.

TABLE II.UPDATE STATUS OF EACH RESOURCE

Status r1 r2 r3

Processor Speed (MIPS) 217 464 195

Load 15% 25% 20%

Bandwidth (Megabits/s) 8.67 15.87 10.26

0.00 0.05 0.00

The value of r2 is 0.05 and values for r1 and r3 are zero

since they have not been assigned any job for execution. The

new PV matrix is as follows:

PV  1.64 PV  2.73
PV = 11 12
 PV  2.88 PV  4.81
 21 22

PV
31  1.93 PV32  3.22

The remaining job will be assigned in the same way. The
local pheromone update will be performed after a grid resource
broker assigned a job to a resource. After a resource finished
processing a job, all entries of the PV matrix will be updated
by the global pheromone update rules.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
The performance of the proposed algorithm has been

compared to other algorithms such as particle swarm, space
shared and time shared. The average completion time has been
used to compare the performance of the algorithms.

Two experiments have been conducted to evaluate the
performance of the proposed algorithm in terms of their
processing time. First experiment processed 10 jobs with 100

resources while the second experiment processed 100 jobs
with 1000 resources. Details of the scheduling parameters
are shown in the Table 3.

TABLE III. SCHEDULING PARAMETERS FOR THE

EXPERIMENTS

Experiment 1 2

No. of machine per 1 1

resource

Number of PEs per 1 – 5 1 – 5

machine

PE ratings 10 or 50 10 or 50

 MIPS MIPS

Bandwidth 1000 or 5000 1000 or 5000

 B/S B/S

Number of Gridlet 100 1000

Number of Resource 10 100

The purpose of simulating the mixed size is that

there may be many different jobs in the grid and we want to

know how the BACO algorithm performs in such dynamic

situation. We choose 1000 jobs for execution and set the

number of each size to one third of the total number of

jobs. So the number of jobs is 333, 333, and 334,

respectively for each size whether in matrix multiplication

or in linear programming. We compare the makespan (total

execution time) and the standard deviation of load in each

method.

Fig.5 show the makespan of each method with

mixed sizes. We can find out that BACO uses less time to

complete all jobs. In the case of mixed jobs, the pheromone

update functions of BACO still work well. For iACO, it

applies the encouragement and punishment methods. It

changes each pheromone by variables defined by users and

it ignores the real status of resources. If the resources with

bad computing power never fail to execute jobs, they will

always be encouraged and get more pheromone. Then

iACO will assign more jobs to the bad resources which

have higher pheromone and this will increase the total

execution time of the given jobs. That is the reason why

iACO has larger makespan than BACO.

The prediction means that it uses user-defined

variables to encourage or punish resources after the

assignment of jobs or the completion of jobs. It may not

work sometimes when the pheromone values do not match

the real status of resources. So BACO can work better than

iACO.

DFPLTF and Sufferage have similar performances

and are also comparable to that of BACO. However, they

do not consider the bandwidth issue and assume the data is

readily available in the resources, which is sometimes not

true.

PV21=4.17 PV22=6.95

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

COCODANTR - 2016 Conference Proceedings

Volume 4, Issue 11

Special Issue - 2016

4

FPLTF may have bad performance if the number of

hard tasks is too many and it always assigns jobs to the fastest

resources which may already have a heavy load. It will cause

the system load to be unbalanced and take much time for job

executions. Random has the true random performance. It does

not consider about the status of resources and the size of jobs

and assign jobs to resources randomly.

Fig.1. Makespan of each method with mixed sizes for

matrix multiplication.

V. CONCLUSION

 In this paper, we propose a BACO algorithm to choose

suitable resources to execute jobs according to resources status

and the size of given job in the Grid environment. The local

and global pheromone update functions do balance the system

load. Local pheromone update function updates the status of

the selected resource after jobs assignment. Global pheromone

update function updates the status of each resource for all jobs

after the completion of a job. It offers the Job Scheduler the

newest information of all resource for the next jobs

assignment. The experimental result shows that BACO is

capable of balance the entire system load.

VI. FUTURE WORK

In future, we will study whether there are any other

situations which we do not take into account on our definitions

of the pheromone indicator or the pheromone update functions.

We will also try to apply BACO algorithm to various grid

computing applications. For example, instead of independent

jobs, assume now we are scheduling workflows. That is, there

are precedence relations among jobs.

Then BACO has to be modified to include a

synchronization scheme among resources. When a job is to be

assigned to a resource for execution, we must be certain that all

its precedent jobs running on other resources have been

completed. Finally, this paper focuses on the computing grid.

We may redefine the pheromone indicator and pheromone

update formulations for the data grid to consider the replica

strategy to select or predict which resources have more storage

or are suitable for file replications by their newest status in

future.

REFRENCES
[1] D.A. Reed, Grids, the TeraGrid, and Beyond, IEEE Computer 36 (1)

(2003)62–68.

[2] BOINC website, http://boinc.berkeley.edu/.

[3] D. Kondo, D.P. Anderson, J. McLeod, Performance evaluation of
scheduling policies for volunteer computing, in: Proc. IEEE

International Conference on e-Science and Grid Computing, Dec.

2007, pp. 415–422.
[4] Ruay-Shiung Chang, Jih-Sheng Chang, Shin-Yi Lin, Job scheduling

and datareplication on data grids, Future Generation Computer

Systems 23 (7) (2007)846–860.
[5] Yang Gao, Hongqiang Rong, Joshua Zhexue Huang, Adaptive grid

job scheduling with genetic algorithms, Future Generation Computer

Systems 21(1) (2005) 151–161.
[6] EunJoung Byun, SungJin Choi, MaengSoon Baik, JoonMin Gil,

ChanYeol Park, ChongSun Hwang, MJSA: Markov job scheduler

based on availability in desktop grid computing environment, Future
Generation Computer Systems 23 (4) (2007) 616–622.

[7] F. Dong, S.K. Akl, Scheduling algorithms for grid computing: State

of the art and open problems, Technical Report No. 2006-504,
School of Computing, Queen’s University, Kingston, Ontario,

Canada, January 2006.

[8] M. Dorigo, C. Blum, Ant colony optimization theory: A survey,
Theoretical Computer Science 344 (2–3) (2005) 243–278.

[9] M. Dorigo, Ant colony optimization, http://www.aco-

metaheuristic.org.
[10] M. Dorigo, L.M. Gambardella, Ant colony system: A cooperative

learning approach to the traveling salesman problem, IEEE

Transactions on Evolutionary Computation 1 (1) (1997) 53–66.
[11] E. Salari, K. Eshghi, An ACO algorithm for graph coloring problem,

in: Congress on Computational Intelligence Methods and
Applications, 15–17 Dec. 2005, p. 5.

[12] Xiaoxia Zhang, Lixin Tang, CT-ACO—hybridizing ant colony

optimization with cycle transfer search for the vehicle routing
problem, in: Congress on Computational Intelligence Methods and

Applications, 15–17 Dec. 2005, p. 6.

[13] H. Yan, X. Qin, X. Li, M.-H. Wu, An improved ant algorithm for job
scheduling in grid computing, in: Proceedings of 2005 International

Conference on Machine Learning and Cybernetics, vol. 5, 18–21

Aug. 2005, pp. 2957–2961.
[14] D. Saha, D. Menasce, S. Porto, Static and dynamic processor

scheduling disciplines in heterogeneous parallel architectures,

Journal of Parallel and Distributed Computing 28 (1) (1995) 1–18.
[15] D. Paranhos, W. Cirne, F. Brasileiro, Trading cycles for information:

Using replication to schedule bag-of-tasks applications on

computational grids, in: International Conference on Parallel and
Distributed Computing (Euro-Par), in: Lecture Notes in Computer

Science, vol. 2790, 2003, pp. 169–180.

[16] T. Stutzle, MAX-MIN Ant System for Quadratic Assignment
Problems Technical Report AIDA-97-04, Intellectics Group,

Department of Compute Science, Darmstadt University of

Technology, Germany, July 1997.
[17] B. Bullnheimer, R.F. Hartl, C. Strauss, A new rank-based version of

the ant system: A computational study, Central European Journal for

Operations Research and Economics 7 (1) (1999) 25–38.
[18] E.D. Taillard, L.M. Gambardella, Adaptive memories for the

quadratic assignment problem, Technical Report IDSIA-87-97,

IDSIA, Lugano, Switzerland, 1997.
[19] M. Dorigo, V. Maniezzo, A. Colorni, The ant system: Optimization

by a colony of cooperating agents, IEEE Transactions on Systems,

Man, and Cybernetics, Part B 26 (1) (1996) 29–41.
[20] Kwang Mong Sim, Weng Hong, Sun, Multiple ant-colony

optimization for network routing, in: Proceedings of the First

International Symposium on Cyber Worlds, 6–8 Nov. 2002, pp. 277–
281.

[21] J. Heinonen, F. Pettersson, Hybrid ant colony optimization and

visibility studies applied to a job-shop scheduling problem, Applied
Mathematics and Computation 187 (2) (2007) 989–998.

[22] Jianfu Li, Wei Zhang, Solution to multi-objective optimization of

flow shop problem based on ACO algorithm, in: Proceeding of 2006
International Conference omputational Intelligence and Security, vol.

1, Nov. 2006, pp.417–420.

[23] E. Burke, G. Kendall, Silva Landa, R. O’Brien, E. Soubeiga, An ant
algorithm hyperheuristic for the project presentation scheduling

problem, IEEE Congress on Evolutionary Computing 3 (2005)

2263–2270.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

COCODANTR - 2016 Conference Proceedings

Volume 4, Issue 11

Special Issue - 2016

5

[24] Walter, J. Gutjahr, M.S. Rauner, An ACO algorithm for a dynamic

regional nurse-scheduling problem in Austria, Computers & Operations
Research 41 (3) (2007) 645–666.

[25] Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, Operating System

Concepts, 7th edition, John Wiley & Sons, 2005.
[26] M. Maheswaran, S. Ali, H.J. Siegel, D. Hensgen, R. Freund, Dynamic

matching and scheduling of a class of independent tasks onto

heterogeneous computing system, Journal of Parallel and Distributed
Computing 59 (1999) 107–131.

[27] Taiwan unigrid project portal site.http://www.unigrid.org.tw.

[28] Network Weather Service (NWS), http://nws.cs.ucsb.edu/ewiki/.
[29] Globus Toolkit v4, http://www.globus.org/toolkit/downloads/4.0.4/.

[30] V. Sarkar, Determining average program execution times and their

variance, in: Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, 1989, pp. 298–312.

[31] C.Y. Park, Predicting program execution times by analyzing static and

dynamic program paths, Real-Time Systems 5 (1) (1993) 31–62.
[32] J. Engblom, A. Ermedahl, Modeling complex flows for worst-case

execution time analysis, in: Proceedings of the 21st IEEE Real-Time

Systems Symposium, 2000, pp. 163–174.
[33] F. Stappert, P. Altenbernd, Complete worst-case execution time analysis

of straight-line hard real-time programs, Journal of Systems Architecture

46 (4) (2000) 339–355.
[34] Yuanyuan Zhang, Wei Sun, Yasushi Inoguchi, Predict task running time

in grid environments based on CPU load predictions, Future Generation

Computer Systems 24 (6) (2008) 489–497.
[35] The globus alliance, http://www.globus.org/.

[36] Academia sinica, http://www.sinica.edu.tw/.
[37] National Center for High Performance Computing,

http://www.nchc.org.tw/.

[38] Hsing Kuo University of Management (HKU), http://www.hku.edu.tw.
[39] National Dong Hwa University (NDHU), http://www.ndhu.edu.tw.

[40] Daniel P. Bovet, Marco Cesati, Understanding the Linux Kernel, O’reilly

Media, Oct. 2000.
[41] R.L. Henderson, Job scheduling under the portable batch system, in:

Lecture Notes in Computer Science, vol. 949, 1995, pp. 279–294.

[42] Load sharing facility http://www.platform.com/Products/platform-lsf.
[43] GLPK, http://www.gnu.org/software/glpk/.

[44] Robert G. Bland, Donald Goldfarb, Michael J. Todd, Ellipsoid method, a

survey, Operations Research 29 (6) (1981) 1039–1091.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

COCODANTR - 2016 Conference Proceedings

Volume 4, Issue 11

Special Issue - 2016

6

