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Abstract—The flexural-wave band-gap and vibration 

transmission characteristics of a periodic compound plate with 

free boundary condition are studied in this paper. The exact 

solutions of the band-gap frequency and the vibration response 

are obtained by solving governing equations and Bloch-Floquet 

periodic boundary equations. The finite-element-method (FEM) 

validation shows that the theoretical solutions have high 

accuracy and have excellent agreement with the FEM results. In 

the pass band, the flexural wave propagates normally without 

attenuation, while in the band-gap, the wave is attenuated with 

significant attenuation levels. Compared with the previous 

plane-wave model, the present model gives more accurate 

results and can represent the realistic situation of a periodic 

plate structure. Further study shows that the transmission 

characteristic of a finite periodic compound plate is dependent 

on the excitation distribution. The band-gap width of a 

symmetric or anti-symmetric excitation is broader than that of a 

general excitation. Therefore, when the periodic plate is under 

symmetric or anti-symmetric load, the attenuation performance 

of vibration can be improved. 

 

Keywords— Periodic compound plate; band-gap; vibration 

suppression; transfer matrix method 

I.  INTRODUCTION 

Periodic structure is composed of a number of identical 

elements repeated in one, two, and three dimensions [1]. 

Owing to the Bragg-scattering effect [2] or locally resonant 

effect [3], the wave filtering phenomenon exists in a periodic 

structure, with waves in the pass band propagating freely and 

waves in the band-gap being attenuated gradually [4]. Thus 

the periodic structure has given a new method to reduce 

vibration and wave propagation. Attracted by the great 

potential in vibration and noise control, extensive studies 

about periodic structures on structure types [5-7], band-gap 

calculation methods [8-10], and band-gap formation 

mechanisms [2, 3] have been conducted. In last two decades, 

phononic crystal [11, 12] and metamaterial [13-15] based on 

periodic theory have renewed our sight and injected new life 

to periodic structure. 

As plate-type structure is widely used in the engineering 

applications, the spatial periodicity was introduced in the 

plate-type structure to reduce noise and vibration in extensive 

studies, including periodically supported plate [16], 

periodically stiffened plate [17], a plate with periodically 

attached spring–mass resonators [18], and a plate with 

periodically filled-in scattering units [19, 20]. In addition, 

there were also a number of works related to periodic plate in 

various points of views [21-24]. In the previous works about 

periodic plate, only a couple of studies were associated with 

periodic compound plate, where two different sub-plates 

repeat periodically along one direction. Sorokin [25] studied 

the band-gap performance of a periodic compound plate. 

However, in Sorokin’s model, only plane wave was 

considered and the effects of non-plane wave modes were 

neglected. Thus, the model was quite like a periodic 

compound beam, while the effects of Poisson’s ratio were 

considered. In fact, the non-plane wave modes have great 

effect on the band-gap characteristic. Therefore, the previous 

model cannot predict the real band-gap characteristic of a 

periodic compound plate when the plane wave and non-plane 

wave are coupled together. 

In this paper, Sorokin’s work is extended, with both the 

plane wave modes and the non-plane wave modes being 

included in the present model, resulting that the one-

dimensional model in Sorokin’s work becomes a special case 

in the present model. By considering all the modes, the 

present model gives more accurate prediction for the band-gap 

and transmission characteristic of a periodic compound plate. 

In addition, the effect of excitation distribution on 

transmission characteristic of a finite periodic plate is also 

studied. Symmetric excitation and anti-symmetric excitation 

are respectively associated with symmetric band-gap and anti-

symmetric band-gap, which are constituted by symmetric 

propagation modes and anti-symmetric propagation modes, 

respectively. Although free boundary condition is considered 

in this paper, the present model can be easily applied to the 

clamped, simply supported, or even elastic boundary 

conditions by simply changing the boundary equations. 

II. THEORETICAL MODEL 

A. Vibration Transmission 

A finite periodic compound plate is shown in Fig. 1, which 

consists of alternating sub-plates repeated in x-direction. A 

unit element is composed of cell A and cell B, with Young’s 

moduli 
AE  and 

BE , densities 
A  and 

B , Poisson ratios 
A  

and 
B , lengths 

Aa  and 
Ba , thicknesses 

Ah  and 
Bh , and 

widths 
Ab  and 

Bb  ( A B=b b ). The lattice constant is expressed 

as 
A B= +a a a . The forced response is obtained in this sub-

section to study the vibration transmission under a harmonic 

force excitaion 0

j tf e  applied at the first cell (cell 0). 
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Fig. 1. Schematics of a finite periodic compound plate 

 

The harmonic governing equation of the ith thin plate is 

                 4 2( , ) ( , )  − =i i i i i i i i i iD w x y h w x y f  () 

with bending moment ( )3 212 1 = −i i i iD E h  and 

4 4 4 4 2 2 4 42 =   +    +  i i i ix x y y . The harmonic solution 

of (1) can be expressed as [26] 

    ( )
0 0

( , y ) cos cos , 
= =

= +
M N

i i i imn im i in i i i

m n

w x A x y p x y   () 

where ( )
4

1 0 0

, ( ) cos ( ) cos   
= = =

 
= + 

 
  

M N
l l l l

i i ib i im im i ia i in in i

l m n

p x y y c x x d y , 

 =im i
m a , and  =in in b . The terms 

imnA , l

imc , and l

ind  

are unknown coefficients and the terms ( ) l

ia ix  and ( ) l

ib iy  

can be obtained from the expression of ( )is iξ  ( =s a ,  = x  

or =s b , = y ) 

T
1 2 3 4( ) ( ) ( ) ( ) ( )         =  is i is i is i is i is iξ ,  (3) 

where ( )1 ( ) sin 2  =is i i is , ( )2 ( ) cos 2  =is i i is , 

( )3 ( ) sin 3 2  =is i i is , and ( )4 ( ) cos 3 2  =is i i is . ( )is iξ  

can be expanded to series as 

0

( ) cos  


=

= is i r isr i

r

ξ γ .  (4) 
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Fig. 2. Boundary conditions of a finite periodic plate 

The boundary conditions of a finite periodic plate are 

shown in Fig. 2, including free (FBC) and continuous (CBC) 

boundary conditions. The boundary equations are expressed 

respectively as: 

(1) FBCs along x-direction ( 0=iy  and =i iy b ) 

( )
0 0

0, 0,

0,1, , I
0, 0

= =

= =

 = =


= 
= =



i i

i i i i

iy iyy y

iy iyy b y b

M Q

i
M Q

  (5) 

(2) FBCs along y-direction (
0 0=x  and 

I I=x a ) 

0 0 I I I I
0 0 I I0 0

0, 0, 0, 0
= = = =

= = = =x x x xx x x a x a
M Q M Q   (6) 

(3) CBCs between the (i-1)th cell and the ith cell 

( 1 1− −=i ix a  or 0=ix ) 

( ) ( ) ( )
( ) ( )

( )

1 1

1 1

1 11 1

1

1 0

1 0

1 1
0 0

, ,
1, 2

, , I
,

− −

− −

− −− −

−

− = =

− = =

− −
= = = =

  
= =

=   
  

   = =


i i i

i i i

i ii ii i

i i

i ix a x

i ix a x

i x i x i x i x
x a x x a x

w w
w w

ix x

M M Q Q

 (7) 

where the bending moments and the shearing forces in the 

above boundary conditions can be expressed respectively as 
2 2 3 3

2 2 3 2

2 2 3 3

2 2 3 2

, (2 ) ,

, (2 )

       
= − + = − + −    

        


      
= − + = − + −           

i i i i

ix i i ix i i

i i i i i

i i i i

iy i i iy i i

i i i i i

w w w w
M D v Q D v

x y x x y

w w w w
M D v Q D v

y x y x y

.(8) 

By substituting (2-4, 8) into (5-7), the boundary equations 

can be obtained in a matrix form 

=Hp Qa ,  (9) 

where T

0 1 I[ ]= p p p p  and T

0 1 I[ ]= a a a a . 

The terms 
ip  and 

ia  (i=0,1,···,I) are defined as 
ip =[ 1

0ic , 1

1ic , 

···, 1

iMc , 2

0ic , ···, 2

iMc , 3

0ic , ···, 3

iMc , 4

0ic , ···, 4

iMc , 1

0id , 1

1id , ···, 

1

iNd , 2

0id , ···, 2

iNd , 3

0id , ···, 3

iNd , 4

0id  , ··· , 4

iNd ] and 
ia =[ 00iA , 

01iA , ···, 
0i NA , 

10iA , 
11iA , ···, 

1i NA , ···, 
imnA , ···, 

0iMA , 
1iMA , 

iMNA ], respectively. 

Thus from the boundary equation, p  is expressed by a  as 

1−=p H Qa . For the governing equations, the excitation force 

if  in (1) is expressed by modal forces in series form 

4 2

0 0

( , ) ( , ) cos cos   
= =

 − = 
M N

i i i i i i i i i imn im i in i

m n

D w x y h w x y F x y . (10) 

Substituting (2-4) into (10) gives 

( )2

1 1+ − + =K a Sp M a Tp F ,                 (11) 

where  00 01 0 10 1 0, , , , , , , , , ,=       i i i i N i i N iM iMNF F F F F F FF  

and  
T

0 1 I= F F F F . Substituting the formulation 

1−=p H Qa  into (11) gives 

2 − = K M a F                              (12) 

where 1

1

−= +K K SH Q  and 1

1

−= +M M TH Q . 

At a given frequency, the eigenvector a  can be obtained 

by solving (12), and then p  is also determined by (9). As a  

and p  become known, the vibration response of each cell will 

be finally determined. 

B. Band-gap Formulation 

The band-gap frequency can be determined by the analysis 

of a unit element with Bloch–Floquet periodic condition. As 

shown in Fig. 3, a unit element consists of three types of 

boundary conditions, including free (FBC), continuous (CBC), 

and periodic (PBC) boundary conditions. 
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Fig. 3. Boundary conditions of a unit element 

 

The boundary equations of FBC and CBC have been 

shown in (5) and (7), while the boundary equations of PBC 

can be expressed as 

0 1 1

1 10

0 01 1 1 1

0 1

0 10

0 10

0 1 0 10 0

, ,

,

− −

= =
==

− −

= == =

  
= =  




= =

iqa iqa

x x a
x ax

iqa iqa

x x x xx xx a x a

w w
w e w e

x x

M e M Q e Q

,         (13) 

where q  is wavenumber, which represents the wave 

propagation and wave attenuation performance. Equation (13) 

can be rewritten as a matrix form 

( ) ( )=q qH p Q a ,                            (14) 

where T

0 1[ ]=a a a  and T

0 1[ ]=p p p . From (14), p  can be 

expressed as ( ) ( )
1−

= q qp H Q a . By substituting (2–4) into 

the homogeneous plate equation (set 0=if  in (1)), it is 

obtained that 

( )2

1 1+ − + =Κ a Sp M a Tp 0 .               (15) 

Substituting ( ) ( )
1−

= q qp H Q a  into (15) gives 

( ) ( )2 − = q qK M a 0                     (16) 

where ( ) ( )
1

1

−
= + q qK K SH Q  and ( ) ( )

1

1

−
= + q qM M TH Q . 

When the wavenumber q  is given, the stiffness matrix K  

and mass matrix M  become known. The normalized 

wavenumber is defined as =nq qa . Sweeping 
nq  in one 

period from −1 to 1 will give rise to the dispersion curves (the 

frequency   as a function of 
nq ), and then the band-gap 

properties of the periodic compound plate can be finally 

determined. 

III. BAND-GAP CHARACTERISTIC AND 

VALIDATION 

 

The band-gap characteristic of an infinite periodic plate is 

studied in this section. The plate parameters are given as 

A 2 GPa=E , B 210 GPa=E , 
3

A 1142 kg m = , 

3

B 7800 kg m = , 
A 0.39 = , 

B 0.30 = , 
A 0.15 m=a , 

B 0.35 m=a , A B 0.5 m= =b b , and A B 5 mm= =h h . The 

dispersion curves below 400 Hz are shown in Fig. 4. As we 

can see in the figure, the dispersion curves of a periodic 

compound plate are constituted by several dispersion 

branches, with each branch corresponding to a specific wave-

propagation mode (see Fig. 5). These branches are divided 

into several modal groups according to their cross-stream 

modal shapes. As shown in Fig. 4 and Fig. 5, the dispersion 

branches below 400 Hz are divided into four groups, the 1st-

mode group (11#, 12#, 13#, and 14#), the 2nd-mode group (21#, 

22#, and 23#), the 3rd-mode group (31#, 32#, and 33#), and the 4th-

mode group (41# and 42#). 
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Fig. 4. Dispersion curves of the 1st-mode group (‘—’), 2nd-mode group (‘—

’), 3rd-mode group (‘---’), and 4th-mode group (‘…..’) (BG: band-gap) 
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Fig. 5. Modal shapes of a periodic compound plate at qn=0.25 for the 1st-

mode group ((a) 11#, (b) 12#, (c) 13#, and (d) 14#), 2nd-mode group (I 21#, (f) 

22#, and (g) 23#), 3rd-mode group ((h) 31#, (i) 32#, and (j) 33#), and 4th-mode 
group ((k) 41# and (l) 42#) 

 

The dispersion branches from the same modal group are 

separated between each other, and the frequency gap between 

neighboring dispersion branches constitute the modal band-

gap. For each modal band-gap, the wave cannot propagate 

with its corresponding modal shape, while it may propagate 

with the modal shapes belonging to other modal groups. For 

example, the wave of 100 Hz cannot propagate with the modal 

shape in the 1st-mode group, however, it can propagate with 

mode 22# in the 2nd-mode group. For the wave with a specific 

frequency, if there’s no any dispersion curve related to this 

frequency, the wave cannot propagate with any modal shape. 

Thus the general band-gap is the intersection of all the modal 

band-gaps. 

As shown in Fig. 4, the band-gap and band-pass alternate 

with each other. Three band-gaps exist below 400 Hz, namely 

57.5 Hz – 86.5 Hz, 112.1 Hz – 182.3 Hz, and 277.5 Hz –

 289.5 Hz. The first band-gap is in low frequency range, thus 

it can be used in the low frequency vibration control. The total 

band-gap width is 111.2 Hz, with the band-gap ratio 

exceeding 25%, which indicates that more than a quarter of 

flexural wave between 0 Hz and 400 Hz are suppressed. The 

dispersion curves are also calculated with FEM by COMSOL-
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Multiphysics software with the results shown in Fig. 6(a). It 

can be seen that the dispersion curves from present model 

have an excellent agreement with the results of an FEM 

model, with no more than 2.5 Hz difference. Thus, the 

theoretical model derived in this paper has an excellent 

accuracy. 
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Fig. 6. Dispersion curves and band-gaps for (a) comparisons between 

present model and FEM model and (b) comparisons between the 1st-mode 

group in present model and Sorokin model (The shaded region in gray are 
band-gaps.) 

 

S.V. Sorokin has studied the band-gaps of a periodic 

compound plate where only plane-wave propagation modes 

are considered, where the dispersion curves correspond to the 

dispersion branches of the 1st-mode group in Fig. 4. The two 

results are compared in Fig. 6(b) showing perfect coincidence. 

As shown in Fig. 6, the dispersion curves of present model 

(Fig. 6(a)) are more complicated than those of plane wave 

model (Fig. 6(b)), and the plane-wave model in Sorokin’s 

work has become a special case of this general plate model. 

As the non-plane wave modes are included in present model, 

the band-gap width become narrower. It can observed in 

Fig. 6 that the first band-gap (9.1 Hz – 22.4 Hz) of the plane-

wave model disappears in the present model; the second band-

gap (58.1 Hz – 182.9 Hz) of the plane-wave model is divided 

into two narrow band-gaps (57.5 Hz – 86.5 Hz and 112.1 Hz –

 182.3 Hz) in the present model; the third band-gap 

(230.2 Hz – 321.0 Hz) of the plane-wave model is changed to 

a smaller band-gap (277.5 Hz – 289.5 Hz) in the present 

model. Thus, when the non-plane-wave propagation modes 

are considered, the band-gap performance varies significantly 

and the band-gap properties predicted by the plane-wave 

model cannot represent the realistic wave propagation 

situations, while the present model will provide good results. 

IV. VIBRATION TRANSMISSION 

 

The vibration transmission characteristic of a finite 

periodic compound plate (see Fig. 1) is studied in this section 

with the same material and geometry parameters shown in 

section 3. A harmonic point force is applied at 
0 0 4=x a  and 

0 0 4=y b  in the first plate (cell 0). The vibration 

transmittance is defined as ( )I 020log10=eT v v , where 
0v  

and 
Iv  are the spatially averaged transverse velocities of cell 0 

and cell I, respectively. The vibration transmittances of a 

periodic compound plate with four elements by both the 

present model and the FEM model are shown in Fig. 7(a). It is 

observed that the result from the present model has a good 

coincidence with that from the FEM model. Therefore, the 

present vibrational model has high accuracy in calculating the 

vibration response. 

It can be seen in Fig. 7(a) that there are three transmission 

valleys, where the vibrations are significantly attenuated and 

only very small vibration energy transmits from the first cell 

(excited cell) to the last one. The band-gaps in the infinite 

periodic plate calculated in section 3 are displayed in shaded 

region in gray. As shown in Fig. 7(a), the transmission valleys 

in a finite periodic plate match very well with the band-gaps in 

an infinite periodic plate. Thus, the waves in pass bands can 

propagate freely along the axial direction, while the waves in 

band-gaps are attenuated with considerable levels. This 

filtering phenomenon is beneficial to noise and vibration 

control. 
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Fig. 7. Vibration transmittance of a periodic compound plate with (a) the 

comparison between present model and FEM model and (b) the 

performances with the variation of the number of element (The shaded 

region in gray are band-gaps.) 

 

The effect of the number of element on transmission 

characteristic is studied with the number of element equaling 

one, two, four, and eight and the comparison results are 

plotted in Fig. 7(b). Significant attenuation levels can be 

observed for the first and second band-gaps. Even with one 

element, the averaged attenuation level can reach to about 

12 dB for the first band-gap and 20 dB for the second band-

gap. The attenuation ability of the third band-gap is not as 

strong as the first two and there’s a very little attenuation with 

one element. With the increase of the number of element, the 

attenuation levels in the band-gaps increase significantly. 

When the number of element increases from one to eight, the 

average attenuation levels increase from 12.7 dB to 71.5 dB 

for the first band-gap, from 20.8 dB to 107.9 dB for the 

second band-gap, and from 0.7 dB to 25.0 dB for the third 

band-gap. The attenuation ability of the third band-gap is 

weaker than that of the first two band-gaps, hence more 

elements are needed to achieve a good vibrational 

performance for the third band-gap. 

V. EFFECT OF EXCITATION DISTRIBUTION 

In this section, the effect of excitation distribution on 

band-gap property is studied, including point and line 

excitations with symmetric and anti-symmetric distributions 

on the plate. Further examination shows that the excitation 

distribution has great effect on the wave transmission 

characteristic of a finite periodic compound plate, with 

significant difference between a symmetric excitation and an 

anti-symmetric excitation. The band-gaps calculated in section 

3 for the infinite periodic plate cannot predict the transmission 

valleys in a finite periodic plate when the excitation is 

symmetrically or anti-symmetrically distributed. In fact, a 

symmetric or anti-symmetric excitation always causes better 

performance than a general excitation. This phenomenon can 

be explained by examining corresponding dispersion curves 

and propagation modes. 
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It is observed in Fig. 5 that the modal shapes are either 

symmetrically distributed (the 1st-mode and 3rd-mode groups) 

or anti-symmetrically distributed (the 2nd-mode and 4th-mode 

groups). As shown in Fig. 8, the symmetric band-gaps are 

constituted by the symmetric dispersion branches (11#, 12#, 13#, 

14#, 31#, 32#, and 33#) and the anti-symmetric band-gaps are 

associated with the anti-symmetric dispersion branches (21#, 

22#, 23#, 41#, and 42#). The band-gap frequencies are listed in 

Table 1. By comparing Fig. 4, Fig. 8, and Table 1, it is found 

that the general band-gaps are the intersection of symmetric 

band-gaps and anti-symmetric band-gaps. For example, the 

first general band-gap (57.5 Hz – 86.5 Hz) is the intersection 

of the second symmetric band-gap (57.5 Hz – 103.7 Hz) and 

the first anti-symmetric band-gap (24.7 Hz – 86.5 Hz). The 

total band-gap widths of the symmetric and anti-symmetric 

band-gaps are respectively 217.1 Hz and 202.4 Hz, which are 

broader than that of the general band-gap width with 

111.2 Hz. Thus, when all of the waves are propagating in 

symmetric or anti-symmetric modes, the periodic compound 

plate will have a better performance in the aspect of band-gap 

width. 
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Fig. 8. Dispersion curves and band-gaps of (a) symmetric modes and (b) 

anti-symmetric modes (BG: band-gap) 

TABLE I.  COMPARISON OF THE BAND-GAPS 

Band-gap 

order 

Symmetric 

band-gaps 

Anti-Symmetric 

band-gaps 

General band-

gaps 

First 9.6–22.2 Hz 24.7–86.5 Hz 57.5–86.5 Hz 

Second 57.5–103.7 Hz 108.2–223.6 Hz 112.1–182.3 Hz 

Third 112.1–182.3 Hz 277.5–289.5 Hz 277.5–289.5 Hz 

Fourth 228.5–311.7 Hz 316.8–325.1 Hz N/A 

Five 342.4–347.3 Hz N/A N/A 

 

The vibration transmittances of a finite periodic compound 

plate (see Fig. 1) with four elements are examined with 

different force excitations. The positions of point and line 

excitations are shown in Fig. 9. Four cases of point excitation 

are examined with case 1: excitation at p1 with 
1 1N=F , case 

2: excitation at position p2 with 2 1N=F , case 3: symmetric 

excitation at p1 and p3 with 
1 1N=F  and 3 1N=F , and case 4: 

anti-symmetric excitation at p1 and p3 with 
1 1N=F  and 

3 1N= −F . The vibration transmittances are shown in Fig. 10. 

It can be seen that the transmittance characteristics of the 

finite periodic compound plate are dependent on excitation 

types. For a symmetric force excitation (see Fig. 10(b, c)), the 

transmittance valleys are in coincidence with the symmetric 

band-gaps. On the contrary, for the anti-symmetric force 

excitation (see Fig. 10(d)), the transmittance valleys are in 

coincidence with the anti-symmetric band-gaps. However 

when the force excitation is neither symmetric nor anti-

symmetric, the transmittance valleys are in coincidence with 

the general band-gaps. 
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Fig. 9. Schematics of (a) point excitation at p1 (a0/4, b0/4), p2 (a0/4, b0/2), 

and p3 (a0/4, 3b0/4)) and (b) line excitation at x0=a0/4) 
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Fig. 10. Vibration transmittances under point excitations of (a) case 1, (b) 
case 2, (c) case 3, and (d) case 4 

 

Five more cases of line excitation applied at x0=a0/4 are 

also studied with case 5: ( )0 1=F y , case 6: 

( ) ( )0 2 0cos =F y y , case 7: ( ) ( )0 1 0sin =F y y , case 8: 

( ) ( )0 1 0cos =F y y , and case 9: ( ) ( )0 2 0sin =F y y , where 

1 0 = b  and 
2 02 = b . The force distribution shapes are 

shown in Fig. 11 and the corresponding vibration 

transmittances are shown in Fig. 12. The vibration 

transmittances of line excitations are similar to those of the 

point excitations, with symmetric line excitations associated 

with symmetric band-gaps (see Fig. 12(a)) and anti-symmetric 

line excitations associated with anti-symmetric band-gaps (see 

Fig. 12(b)). 
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Fig. 11. Force distribution shapes of line excitations along y-direction 
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Fig. 12. Vibration transmittances under line excitations of (a) symmetric 

distribution (case 5, case 6, and case 7) and (b) anti-symmetric distribution 
(case 8 and case 9) 

 

Therefore, for both point and line force excitations, the 

excitation distributions have significant effect on wave 

transmission. The vibration transmittance valleys of 

symmetric excitation can be predicted by the symmetric band-

gaps and those of the anti-symmetric excitation can be 

predicted by the anti-symmetric band-gaps. When the periodic 

plate is excited by a symmetric force, half of an anti-

symmetric mode makes positive contribution to the response 

and the other half makes equaling negative contribution, 

resulting that the total contribution from an anti-symmetric 

mode is zero. However, both of the two half symmetric modes 

make positive contribution, causing that the total contribution 

from a symmetric mode is positive. It’s the same reason that 

when the periodic plate is excited by an anti-symmetric force, 

and only anti-symmetric mode makes positive contribution to 

the vibration response. Therefore, the symmetric force is 

associated with the symmetric modes and the anti-symmetric 

force is associated with the anti-symmetric modes. When the 

periodic plate is excited by neither symmetric nor anti-

symmetric force, both the symmetric and anti-symmetric 

modes will make contribution to the vibration response, and 

the transmittance valleys can be predicted by the general 

band-gaps.  

From the above, the vibration suppression performance of 

a finite periodic compound plate is dependent on the force 

distributions. The symmetric or anti-symmetric force causes 

better performance than a general force, because the 

bandwidths of the symmetry band-gap and the anti-symmetry 

band-gap are broader than that of the general band-gap. Thus, 

when the periodic plate is used in the practical application, 

making the engine or excitation set work at a symmetric or 

anti-symmetric excitation situation, the vibration suppression 

performance of the periodic plate can be improved 

significantly. Therefore, in order to reduce more noise and 

vibration, the excitation set should be installed at the middle 

line, and also, if there are two identical excitation sets, 

symmetric installment will be a good choice to reduce noise 

and vibration. 

VI. CONCLUSIONS 

The flexural-wave band-gap characteristic of an infinite 

periodic compound plate and the transmission characteristic of 

a finite periodic compound plate are examined in this paper. 

The exact solutions of band-gap frequency and vibration 

response are obtained by theoretical derivation and are 

validated by FEM model. The vibration can be significantly 

reduced in the band-gaps. Compared with the previous plane-

wave model, the present model gives more accurate results 

and can represent the realistic situation. The dispersion curves 

can be divided into two groups, which are associated with 

symmetric and anti-symmetric modes, resulting that the 

vibration transmission characteristic of a finite periodic 

compound plate is dependent on the force distributions. When 

the force is symmetric, the transmission valleys can be 

predicted by the symmetric band-gaps; while for the anti-

symmetric force, the transmission valleys can be predicted by 

the anti-symmetric band-gaps. A general force, neither 

symmetric nor anti-symmetric, makes the transmission valleys 

depending on the general band-gaps, which is narrower in 

band-gap width than symmetric or anti-symmetric band-gaps. 

Thus when the force is in symmetric or anti-symmetric 

situation, the vibration suppression performance of a periodic 

compound plate will be improved and more vibration can be 

reduced. 
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