Best Simultaneous Approximation in 2-Normed Almost Linear Space

T. Markandeya Naidu & Dr. D. Bharathi

1. Department Of Mathematics, P.V.K.N.Govt.Degree College, Chittoor, Andhra Pradesh, India

2. Department Of Mathematics, S.V. University, Tirupathi, Andhra Pradesh, India.

i)

ii)

ABSTRACT

In this paper we establish some of the results of best simultaneous approximation in linear 2- normed space in the context of 2- normed almost linear space.

1.INTRODUCTION

In (1) Gliceria Godini introduced the concept "almost linear space" which is defined as "A non empty set X together with two mappings s: $XxX \rightarrow X$ and m:RxX \rightarrow X Where s(x,y)=x +y and m(λ , x) = λ x is said to be an almost linear space if it satisfies the following properties.

For every x, y, z $\in X$ and for every $\lambda, \mu \in R$

i)
$$x + y \in X$$
,

ii)
$$(x + y) + z = x + (y + z)$$
,

iii) x + y = y + x,

iv) There exists an element $0 \in X$ such that x+0=x,

$$v) \qquad 1 \ x = x ,$$

vi)
$$\lambda(x + y) = \lambda x + \lambda y$$
,

vii) 0 = 0,

viii) $\lambda(\mu x) = (\lambda \mu)x$, ix) $(\lambda + \mu)x = \lambda x + \mu x$ for $\lambda \ge 0, \mu \ge 0$.

In (1 & 4) Gliceria Godini also introduced the concept" normed almost linear space" which is defined as "an almost linear space X together with $||| \cdot ||| : X \rightarrow R$ is said to be normed almost linear space if it satisfies the following properties

- $\label{eq:1.1} \begin{array}{l} ||| \ x \ ||| = 0 \ \ if \ and \ only \ if \ x = 0, \\ & ||| \ \lambda x \ ||| = I \lambda I \ ||| \ x \ ||| \ , \end{array}$
- iii) ||| x-z ||| \leq |||x-y|||+|||y-z||| for every x,y \in X and $\lambda \in$ R.

The concept of linear 2-normed space has been initially investigated by S. Gähler(17) and has been extensively by Y.J.Cho, C.Diminnie, R.Freese and many other, which is defined as

" a linear space X over R with dim>1 together with II .II is called Linear 2normed space if II . II satisfy the following properties

- i) II x, y II>0 and II x , y II=0 if and only if x and y are linearly dependent,
- ii) II x , y II = II y , x II,
- iii) II λx , y II = I λ I II x, y II, and
- iv) II x , y+z II = II x , z II + II y ,z II for every x,y,z $\in X$ and $\lambda \in R$.

In (23) T.Markandeya naidu and Dr D.Bharathi introduced a new concept called 2-normed almost linear space and established some of the results of best approximation in 2-nomed almost linear space.In (22) S.Elumalai & R.Vijayaragavan established some of the results of best simultaneous approximation in linear space in the context of linear2-normed space. In this paper we extend some of the results of best simultaneous approximation on linear2normed space in to 2-normed almost linear space.

2. PRELIMINARIES

Definition 2.1. Let X be an almost linear space of dimension> 1 and

||| .|||: X x X \rightarrow R be a real valued function. If ||| . ||| satisfy the following properties

- i) $||| \alpha, \beta |||=0$ if and only if α and β are linearly dependent,
- ii) $||| \alpha, \beta ||| = ||| \beta, \alpha |||,$
- iii) ||| $a\alpha$, β ||| = IaI ||| α , β |||,
- iv) $||| \alpha, \beta \delta ||| \le ||| \alpha, \beta \gamma ||| + ||| \alpha,$ $\gamma - \delta |||$ for every $\alpha, \beta, \gamma, \delta \in X$ and $a \in \mathbb{R}$.

then (X, |||.|||) is called **2-normed almost** linear space.

Definition 2.2. Let X be a 2-normed almost linear space over the real field R and G a non empty subset of V_x . For a bounded sub set A of X let us define

 $rad_G(A) = inf_{g \in G} sup_{a \in A} \parallel \parallel x , a - g \parallel \parallel for$ every $x \in X \setminus V_x$ **2.1**

and

 $cent_G(\mathbf{A}) = g_0 \epsilon \mathbf{G}: sup_{a \epsilon A} ||| \mathbf{x} , \mathbf{a} - g_0 ||| = rad_G(\mathbf{A}) \text{ for every } \mathbf{x} \epsilon \mathbf{X} \setminus V_x.$ 2.2

The number $rad_G(A)$ is called the chebyshev radius of A with respect to G and an element $g_0 \epsilon cent_G(A)$ is called a **best simultaneous approximation** or chebyshev centre of A with respect to G.

Definition 2.3. When A is a singleton say $A=\{a\}$, $a \in X \setminus \overline{G}$ then $rad_G(A)$ is the distance of a to G, denoted by dist(a,G) and defined by dist(a,G)= $inf_{g\in G} ||| ||x,a-g|||$ for every $x \in X \setminus V_x$ **2.3**

and $cent_G(A)$ is the set of all best approximations of a out of G denoted by $P_G(a)$ and defined by

$$P_{G}(a) = \{ g_{0} \in G: |||x, a - g_{0}||| = dist(a, G), \}$$

for every x $\in X \setminus V_x$ } **2.4**

It is well known that for any bounded subset A of X we have

 $rad_{G}(A) = rad_{G}(C_{0}(A)) = rad_{G}(\overline{A})$

 $cent_G(A) = cent_G(C_0(A)) = cent_G(\overline{A})$

Where $C_0(A)$ stands for the convex hull of A and \overline{A} stands for the closure of A.

Definition 2.4. Let X be a 2-normed almost linear spaces and $\phi \neq G \subset V_x$. We difine

 $R_x(G) \subset X$ in the following way $a \in R_x(G)$ if for each g $\in G$ there exists $v_g \in V_x$ such that the following conditions are hold

- i) ||| x, a-g ||| = ||| x, v_g -g ||| for each $v_g \in V_x$ 2.5
- **ii)** ||| x, a- v ||| \geq ||| x, v_g v ||| for every x ϵ X\ V_x . **2.6** We have $V_x \subset R_x(G)$. If $G_1 \subset G_2$ then $R_x(G_2)$ $\subset R_x(G_1)$.

Definition 2.5. Let X be a 2-normed almost linear space. The set G is said to be proximinal if $P_G(a)$ is nonempty for each $a \in X \setminus V_x$.

3.Main Results

Theorem 3.1 Let (X, ||| . |||) be a

2- normed almost linear space. Let $G \subset X$ and A be a bounded subset of X. Then the function $\Psi(h,g)$ defined by sup ||| h, a-g |||, h $\epsilon X \setminus V_x$, g ϵ G, a ϵ A is a continuous function on X.

Proof: For any a ϵ A and g, $g' \epsilon$ G we have $||| h, a-g ||| \le ||| h, a-g' ||| +$ $||| h, g' - g ||| , h \epsilon X \setminus V_x.$ Then $sup_{a\epsilon A} ||| h, a-g ||| \le$ $sup_{a\epsilon A} \{ ||| h, a-g' ||| + ||| h, g' - g ||| \}$ Now if $||| h, g' - g ||| \le \epsilon$ then $\Psi(h,g) \le \Psi(h, g') + \epsilon$ By interchanging g and g' we obtain $\Psi(h,g') \le \Psi(h,g) + \epsilon$ that implies $| \Psi(h,g) - \Psi(h,g') | < \epsilon$ That is $\Psi(h,g)$ is continuous on X.

Theorem 3.2 Let (X, ||| . |||) be a 2- normed almost linear space. Let G be a finite dimensional subspace of X. Then there exist

a best simultaneous approximation g ϵ G to any given compact subset A of X.

Proof: Since A is compact there exist a constant 't ' such that

 $||| a, b ||| \le t$ for all $a \in A$ and $b \in X$.

Now we define the subset H of G as

 $G \equiv G(0,2t)$ then

inf. $sup_{a \in A} \parallel \mid b, a-h \mid \mid =$

 $inf_{a\in G} sup_{a\in A} \parallel b, a-h \parallel b \in X \setminus V_x \leq t$

Since h is compact the continuous function $\Psi(h,b)$ attains its minimum over H for some g ϵ G.

which is the best simultaneous approximation to A.

Theorem 3.3 Let (X, ||| . |||) be a 2- normed almost linear space and let G be a convex subset of X and A \subset X. If g, $g' \in G$ are two best simultaneous approximations to A by elements of G. Then $g'' = \lambda g + (1 - \lambda) g', 0 \le \lambda \le 1$ is also best simultaneous approximation to A. **Proof:** For $x \in X \setminus V_x$,

 $sup_{a \in A} \parallel \mid \mathbf{x}, \mathbf{a} \cdot g^{''} \parallel \mid$

$$= sup_{a \in A} \parallel \mid \mathbf{x}, a - \lambda g + (1 - \lambda) g' \parallel$$

- $= sup_{a \in A} \parallel x, \ \lambda(a-g) + (1-\lambda) \ (a-g') \parallel$
- $\leq sup_{a \in A} \lambda \parallel x, a g \parallel +$

 $(1-\lambda) \parallel \mathbf{x}, \mathbf{a} - g' \parallel$

$$\leq \lambda sup_{a \in A} ||| x, a-g ||| +$$

$$(1-\lambda)sup_{a\in A} \parallel x, a-g' \parallel$$

$$= \lambda d(A,G)_x + (1-\lambda) d(A,G)_x$$

 $= d(A,G)_x$ **3.1**

$$d(A,G)_{x} = inf_{g\in G} \ sup_{a\in A} \parallel \mid x, a-g' \parallel ||$$

$$\leq \ sup_{a\in A} \parallel \mid x, g-g' \parallel \mid 3.2$$

$$d(A,G)_{x} = sup_{a\in A} \parallel \mid x, a-g'' \parallel ||$$

This proves the result.

Theorem 3.4 Let (X, ||| . |||) be a strictly convex 2-normed almost linear space. Let G be a finite dimensional subspace of X. Then there exists one and only one best simultaneous approximation from the element G by any given compact subset A of X.

Proof : The existence of a best simultaneous approximation follows from the Theorem3.2.

Suppose g'and $g''(g' \neq g'')$ are best simultaneous approximations to A then for x ϵ $X \setminus V_x$,

 $inf_{g \in G} \ sup_{a \in A} \parallel \mid x, a-g \mid \parallel$

 $= \sup_{a \in A} ||| \mathbf{x}, \mathbf{a} \cdot g' |||$

 $= \sup_{a \in A} ||| \mathbf{x}, \mathbf{a} - g'' |||$

=k

3.3

Then by theorem (3.3), $\frac{g'+g''}{2}$ is also the best simultaneous approximation. That is

$$\sup_{a \in A} ||| \mathbf{x}, \mathbf{a} - \frac{g' + g''}{2} ||| = \mathbf{k}$$
 3.4

Since A is compact there exist an element a_0 such that

$$sup_{a \in A} \parallel || x, a - \frac{g' + g''}{2} \parallel ||$$

$$= sup_{a \in A} \parallel || x, a_0 - \frac{g' + g''}{2} \parallel ||$$

$$= k \qquad 3.5$$
From eq. 3.3 $\parallel || x, a_0 - g' \parallel || \le k \text{ and } \parallel || x, a_0 - g'' \parallel || \le k$.
Then by strict convexity we have
$$\parallel || x, a_0 - g' + a_0 - g'' \parallel || < 2 k$$
That is $\parallel || x, a_0 - \frac{g' + g''}{2} \parallel || < k$
This contradicts eq.3.5.
Hence the proof.

Theorem 3.5 Let G be a closed and convex subset of a uniformly convex

2-Banach space X.Then for any compact subset A of X there exist unique best approximation to A from the element of G.

Proof:

Let $k=inf_{g\in G} \sup_{a\in A} ||| x,a-g |||: x \in X \setminus V_x$ and $\{g_n\}$ be any sequence of elements in G Such that

 $\lim_{n\to\infty} \sup_{a\in A} ||| x, a-g_n ||| = k.$ Also $k_m = \sup_{a\in A} ||| x, a-g_m |||, m \ge 1 \text{ and } x \in X \setminus V_x.$

Then $k_m \ge k$ which implies

$$||| \mathbf{x}, \frac{a - g_m}{k_m} ||| \le 1 \text{ for a } \epsilon \text{ A} \qquad \mathbf{3.6}$$

Now we consider $\frac{1}{2} \left[\frac{g_m}{k_m} + \frac{g_n}{k_n} \right] = \frac{k_n g_m + k_m g_n}{2k_m k_n} \left[\frac{k_m + k_n}{k_m + k_n} \right]$

Let
$$y_{m,n} = \frac{k_n g_m + k_m g_n}{k_m + k_n}$$
.

since G is convex, $y_{m,n} \in \mathbf{G}$.

Hence $sup_{a \in A} ||| x, a \cdot y_{m,n} ||| \ge k$ and $sup_{a \in A} |||$ $x, \frac{k_n + k_m}{2k_m k_n} a - \frac{1}{2} \left(\frac{g_m}{k_m} + \frac{g_n}{k_n} \right) ||| = sup_{a \in A} ||| x, a \cdot y_{m,n}$ $||| \left(\frac{k_n + k_m}{2k_m k_n} \right) \ge k \left(\frac{k_n + k_m}{2k_m k_n} \right)$. Since A is compact sub set of X there exist an a ϵ A such that

$$||| \mathbf{x}, \frac{a-g_m}{k_m} + \frac{a-g_n}{k_n} ||| \ge \mathbf{k}(\frac{k_n+k_m}{k_mk_n}).$$

By eq.3.6 and the uniform convexity of the 2-norm it follows that

for given $\varepsilon > 0$ there exits an N such that $||| \mathbf{x}$, $\frac{a-g_m}{k_m} + \frac{a-g_n}{k_n} ||| < \varepsilon$ for

m,n > N and x $\epsilon X \setminus V_x$.

Since $k_m \to k$ as $m \to \infty$ we can easily see that the sequence $\{g_n\}$ is a Cauchy sequence hence it converges to some g ϵ G as G is closed subset of X.

This provides that G is a best simultaneous approximation.

Assume that there exist two best simultaneous approximations g_1 and g_2 .

Then there exist sequences $\{g_n\}$ and $\{g_m\}$ such that $g_n \rightarrow g_1$ as $n \rightarrow \infty$

and $g_m \rightarrow g_2$ as $m \rightarrow \infty$.

 $\begin{array}{ll} \text{Again} \quad lim_{n \to \infty} \, sup_{a \in A} \parallel \parallel \textbf{x}, \textbf{a} - g_n \parallel \parallel = \textbf{k} = \\ lim_{n \to \infty} \, sup_{a \in A} \parallel \parallel \textbf{x}, \textbf{a} - g_m \parallel \parallel . \end{array}$

This implies that $sup_{a \in A} ||| x, a - g_1 ||| =$ $sup_{a \in A} ||| x, a - g_2 ||| and hence$ $g_1 = g_2$.

REFERENCES

- G.Godini : An approach to generalizing Banach spaces. Normed almost linear spaces. Proceedings of the 12th winter school on Abstract Analysis (Srni.1984). Suppl.Rend.Circ.Mat.Palermo II. Ser.5, (1984) 33-50.
- G.Godini : Best approximation in normed almost linear spaces. In constructive theory of functions. Proceedings of the International conference on constructive theory of functions. (Varna 1984) Publ . Bulgarium Academy of sciences ; Sofia (1984) 356-363.
- 3. G.Godini : A Frame work for best simultaneous approximation. Normed almost linear spaces. J.Approxi. Theory 43, (1985) 338-358.
- 4. G.Godini : On "Normed almost linear spaces" Preprint series Mann. INCREST, Bucuresti 38 (1985).
- G.Godini : "Operators in Normed almost linear spaces" Proceedings of the 14th winter school on Abstract Analysis (Srni.1986). Suppl.Rend.Circ.Mat.Palermo II. Numero 14(1987) 309-328.
- 6. A.L.Garkavi : The Chebyshev center of a set in a normed space in "Investigations on current Problems in Constructive Theory of Functions". Moscow (1961) PP. 328-331.
- A.L.Garkavi : On the chebyshev center and the Convex hull of a set. Uspehi Mat. Nank 19 (1964) pp 139-45.
- A.L.Garkavi : "The conditional Chebyshev center of a compact set of continuous functions". Mat. Zam . 14(1973) 469-478 (Russian) = Mat. Notes of the USSR (1973), 827-831.

- 9. J. Mach : On the existence of best simultaneous approximation.J. Approx. Theory 25(1979) 258-265.
- J. Mach : Best simultaneous approximation of bounded functions with values in certain Banach spaces. Math. Ann. 240 (1979) 157-164.
- J. Mach: Continuity properties of Chebyshev centers J. appr. Theory 29 (1980) 223-238.
- P.D. Milman : On best simultaneous approximation in normed linear spaces. J. Approx. Theory 20 (1977) 223-238.
- B.N. Sahney and S.P. Singh : On best simultaneous prroximation in Approx. Theory New York/London 1980.
- I. Singer : Best approximation in normed linear spaces by elements of linear sub-spaces. Publ. House Acad. Soc. Rep. Romania Bucharest and Springer – Verlag, Berlin / Heidelberb / New York (1970).
- 15. I. Singer : The theory of best approximation and functional analysis. Regional Conference Series in Applied Mathematics No:13, SIAM; Philadelplhia (1974).
- 16. D. Yost: Best approximation and intersection of balls in Banach Spaces, Bull, Austral. Math. Soc. 20 (1979, 285-300).
- 17.R.Freese and S.Gähler,Remarks on semi 2-normed space,Math,Nachr. 105(1982),151-161.
- 18.S. Elumalai, Y.J.Cho and S.S.Kim : Best approximation sets in linear 2-Normed spaces comm.. Korean

Math. Soc.12 (1997), No.3, PP.619-629.

- 19. S.Elumalai, R.Vijayaragavan : Characterization of best approximation in linear- 2 normed spaces. General Mathematics Vol.17, No.3 (2009), 141-160.
- 20. S.S.Dragomir : Some characterization of Best approximation in Normed linear spaces. Acta Mathematica Vietnamica Volume 25,No.3(2000)pp.359-366.
- 21. Y.Dominic : Best approximation in uniformly convex 2-normed spaces. Int.journal of Math. Analysis, Vol.6,(2012), No.21, 1015-1021.
- 22.S.Elumalai & R.Vijayaragavan:Best simultaneous approximation in linear 2- normed spaces .Genral Mathematics Vol.16,No. 1 (2008),73-81.
- & 23.T.Markandeya naidu Dr.D.Bharathi:Best approximation in 2-normed almost linear space. International journal of engineering and technology(IJERT) research Vol.2 12 (December-Issue 2013),3569-3573.