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Abstract— Data normalization is a technical database 

operation performed by a database analyst with the assistance of 

normalization tools; the goal is to associate similar forms of the 

same data item into a single data form. Based on how close the 

association of these various data permutations of the "same" 

data item are, the data variants can be normalized as a first 

normal, a second normal, or a third normal form, with the third 

normal form representing the loosest association of two data 

forms. This paper reviews the theoretical and experimental for 

retrieving the required data from large databases in 

computational complexity with respect to Comparison of CPU 

time taken for data retrieving from the database before and 

using normal forms, Elimination of data redundancy and Less 

volume of data stores in Main Memory. 
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I. INTRODUCTION 

“Information explosion is the rapid increase in the amount 

of published information and the effects of this abundance of 

data. As the amount of available data grows, the problem of 

managing the information becomes more difficult, which can 

lead to information overload.” [1] 

     Big Data analytics is rapidly becoming a commonplace 

task for many companies. For example, banks, 

telecommunication companies, and big web companies, such 

as Google, Facebook, and Twitter produce large amounts of 

data. Nowadays business users also know how to monetize 

such data. For example, various predictive marketing 

techniques can transform data about customer behavior into 

great monetary worth. The main issue, however, remains to 

be implementations and platforms fast enough to execute ad-

hoc analytical queries over Big Data. Until now, Hadoop has 

been considered a universal solution, but it has its own 

drawbacks, especially in its ability to process difficult queries, 

such as analyzing and combining heterogeneous data, and 

performing fast ad-hoc analysis. 

 

     To store digital data is not sufficient, its needs to be 

queried as well. But with such huge volumes of data, there is 

a need to look at query algorithms from a different 

perspective. For instance, algorithms need to be storage-

aware in order to load and retrieve data efficiently. There is 

tremendous amount of research being undertaken towards 

creating such algorithms, for example, Google’s BigTable [8] 

or Facebook’s Cassandra [1] which is now open-source and 

is maintained by the Apache Software Foundation. Many of 

the leading Information Technology companies have 

invested a lot into this research and have come up with a 

number of innovative ideas and products. 

One of the most common operations in query evaluation is a 

Join. Joins combine records from two or more tables, usually 

based on some condition. They have been widely studied and 

there are various algorithms available to carry out joins. For 

example, the Nested-Loops Join, the Sort-Merge Join and the 

Hash Join are all examples of popular join algorithms. These 

algorithms (and more) are used for joining two as well as 

more datasets. But more often than not, when multiple 

datasets are involved, selectivity factor is exploited to 

structure the order in which the joins are made. Selectivity 

factor can be defined as the fraction of the datasets involved 

in the join that will be present in the output of the join. Join 

Algorithms have been studied extensively with many variants 

existing for each algorithm. For instance, Hash-Join itself has 

three different variations – Simple Hash Join, Grace Hash 

Join and Hybrid Hash Join [17]. 

The MapReduce framework is a widely used 

programming paradigm for distributed environments [2]. 

MapReduce provides an abstraction away from the details 

of parallelizing computation; the framework automatically 

divides a job into individual tasks, handles scheduling of 

individual tasks, distributes data and deals with machine 

failures. The basic MapReduce model expresses 

computations as a ‘Map’ and a ‘Reduce’ function. Hadoop 

is a framework for the execution of MapReduce jobs. 

Classic Hadoop has been widely used and studied since its 

release, but we focus on the more recently developed 

Hadoop YARN [3]. Both Classic Hadoop and Hadoop 

YARN use the idea of dividing resources into logical 

partitions (called ‘slots’ and ‘containers’ respectively) 

which are as-signed to executing tasks. 

    Map/Reduce framework hides management of data and 

job partitioning from the programmer and provides in-built 

fault-tolerance mechanisms. This lets the programmer 

concentrate on the actual problem at hand instead of 

worrying about the intricacies involved in a distributed 

system. It was designed for processing large amounts of 

raw data (like crawled documents and web-request logs) to 

produce various kinds of derived data (like inverted 

indices, web-page summaries, etc.). It is still a prominently 

used model at Google for many of its applications and 

computations [9]. Map/Reduce was not developed for 

Database Systems in the conventional sense. It was 

designed for computations that were conceptually quite 

straightforward, but involved huge amounts of input data. 

For example, finding the set of most frequent queries 

submitted to Google’s search engine on any given day. It 
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is very different from the traditional database paradigm, in 

that it does not expect a predefined schema, does not have 

a declarative query language and any indices are the 

programmers prerogative. But at the same time, 

Map/Reduce hides the details of parallelization, has built-

in fault tolerance and load balancing in a simple 

programming framework. The novel idea was so appealing 

that it led to an open-source version called Hadoop. 

Hadoop has become extremely popular in the past few 

years and boasts of big Web 2.0 companies like Facebook, 

Twitter and Yahoo! as part of its community. 

 

    For relational datasets, normalization is applied to 

minimize data redundancy so there is only one way to 

know a fact. The goal is relevant to big data analytics 

because factual confusion generated by disparate data 

variations can impair one's ability to arrive at accurate 

information. If the pathway to meaningful results from big 

data queries is clouded with these inaccuracies, enterprises 

begin to lose on their big data investments because the 

results they get from analytics are diluted by the inaccurate 

data the analytics are using. 

 

    To implement reasoning with uncertainty, it must be 

concerned with three things, they are: 

 

1. To represent uncertain data 

2. To select or add two or more different parts of     

          data with uncertainty. 

3. To draw inference using this uncertain data 

 

II. RELATED WORK 

Map/Reduce was primarily designed at Google for use 

with its web-indexing technologies. These included things like 

keeping track of the web-pages crawled so far, creating 

inverted-indices from them and summarizing the web-pages 

for search-result views. Over time, they started considering it 

for more interesting computations like query processing on the 

raw or derived data that they already had. This led to its wide-

spread adoption and led to uses that were not envisioned at the 

time of designing. Companies have started using Map/Reduce 

to manage large amounts of data [11]. And when there are 

multiple datasets involved, there will always be a need for 

joining these datasets. The goal of this research is to test the 

viability of Map/Reduce framework for joining datasets as 

part of database query processing. There are three main 

contributions of this research: 1. Comparison of CPU time 

taken for data retrieving from the database before and using 

normal forms. 2. Elimination of data redundancy. 3. Less 

volume of data stores in Main Memory. 

III. MODEL 

    Apache Hadoop is an open-source software framework for 

distributed storage and distributed processing of very large 

data sets on computer clusters built from commodity hardware. 

Hadoop File System was developed using distributed file 

system design. It is run on commodity hardware. Unlike other 

distributed systems, HDFS (Hadoop Distributed File System) 

is highly fault tolerant and designed using low-cost hardware. 

The general structure of HDFS is described in the figure Fig.1. 

 

Fig. 1. General Structure of HDFS 

    

 HDFS holds very large amount of data and provides easier 

access. To store such huge data, the files are stored across 

multiple machines. These files are stored in redundant fashion 

to rescue the system from possible data losses in case of 

failure. HDFS also makes applications available to parallel 

processing. The following diagram describes a query 

processing in HDFS using normal forms to produce the output. 

 

 
Fig. 2. Model of HDFS for using NFs 

 

Terminology and notations used in the above Fig. 2 are MR: 

MapReduce NF: Normal Form 

IV.  TWO STAGE COMPUTATION IN HDFS FOR JOINING 

FILES 

Avito [20] proposed an Anchor modeling for normalizing 

the data.  For an Anchor model the hand-made execution plan 

aims to maximize merge join utilization. Hash join can be 

almost as fast as merge, but it requires a lot of RAM. If 

limited, the join must again be spilled during execution. 

Broadcast Join was studied by Blana [6]. If one of the 

datasets is very small, such that it can fit in memory, then 

there is an optimization that can be exploited to avoid the 

data transfer overhead involved in transferring values from 

Mappers to Reducers. This kind of scenario is often seen in 

real-world applications. For instance, a small users database 

may need to be joined with a large log. This small dataset can 

be simply replicated on all the machines. This can be 

achieved by simply using –files or -archive directive to send 
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the file to each machine while invoking the Hadoop job. 

Broadcast join is a Map-only algorithm. 

 Map Phase 
    The Mapper loads the small dataset into memory and calls 

the map function for each tuple from the bigger dataset. For 

each (key, value), the map function probes the in memory 

dataset and finds matches. This process can be further 

optimized by loading the small dataset into a Hashtable. It 

then writes out the joined tuples. The below shown configure 

function is part of the Mapper class and is called once for 

every Mapper. The below code reads the ‘broadcasted’ file 

and loads the same into an in memory hash table. 

 public void configure(JobConf conf) { 

       //Read the broadcasted file 

      T1 = new File(conf.get("broadcast.file")); 

      //Hashtable to store the tuples 

      ht = new HashMap <String , ArrayList <String >>(); 

      BufferedReader br = null; 

      String line = null; 

      try{ 

             br = new BufferedReader (new FileReader(T1)); 

             while(( line = br.readLine ())!=null) 

             { 

                    String record [] = line.split("\t", 2); 

                    if(record.length == 2) 

                    { 

                           //Insert into Hashtable 

                           if(ht. containsKey(record [0])) 

                           { 

                                ht.get(record [0]).add(record [1]); 

                            } 

                          else 

                          { 

                             ArrayList <String > value = new 

ArrayList < String >(); 

                             value.add(record [1]); 

                             ht.put(record [0], value); 

                           } 

                      } 

                 } 

              } 

            catch(Exception e) { e. printStackTrace (); } } 

 

Listing 1: Loading the small dataset into a Hash table 

 

    The next piece of code is the actual map function that 

receives the records from the HDFS and probes the 

HashTable containing the tuples from the broadcasted file. 

Notice that it takes care of duplicate keys as well. 

 

public void map( LongWritable lineNumber , Text value , 

OutputCollector <Text , Text > output , Reporter reporter) 

throws IOException { 

       String [] rightRecord = value.toString ().split("\t" ,2); 

       if(rightRecord.length == 2) 

       { 

           for(String leftRecord : ht.get( rightRecord [0])) 

           { 

               output.collect(new Text( rightRecord [0]) , new 

Text (leftRecord + "\t"   

               + rightRecord [1])); 

            } 

         } 

 } 

 

Listing 2: Broadcast Join Map Function 

 

    Broadcast Join benefits from the fact that it uses a small 

‘local’ storage on the individual nodes instead of the HDFS. 

This makes it possible to load the entire dataset into an in-

memory hash table, access to which is very fast. 

V. EXPERIMENTAL EVALUATIONS 

 

We have considered the following type of sample data in 

the experimental evaluation of our proposed model. 

 

 
 

Table 1 Core Dataset 

 

    A series of experiments conducted increasing the data 

(number of tuples), noted CPU time, redundancy data and   

amount of memory used. While the data is increasing, runtime, 

redundancy and usage of memory is increasing. 

 

Experiment 1: Performance of query output using core dataset 

 

    The Normal Forms are not applied to the dataset. But 

MapReduce is used to get the require output for the given 

query. 

 

 
 

Fig. 3. Comparison between Data Size and CPU Time Without using 

Normal Forms 
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Experiment: 2 Performance of query output using Normalized 

Data 

 

    The Normal Forms are applied up to third using 

MapReduce and produced multiple files by removing 

redundancy. The same query is used on this data to produce 

the required output by joining the files using Broadcast Join. 

 

 
 
Fig. 4. Comparison between Data Size and CPU Time with using Normal 

Forms  

VI. CONCLUSION 

To produce the required result for the given query by 

joining files using Broadcast Join technique after applying 

normal forms on the core data takes less number of CPU 

cycles, removes redundancy and used less memory space. 

Experimental results show that Two-stage computation has 

better than Anchor modeling. 
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