
 Big Data Normalization for Massive Databases

Suresh Varma Penmasta
Department of CSE

Adikavi Nannaya University

Rajahmundry, A.P, India

K. B. V. Brahma Rao
Department of MCA

B. V. Raju College

Bhimavaram, A. P, India

R Krishnam Raju Indukuri
Department of MCA

B. V. Raju College

Bhimavaram, A. P, India

Abstract— Data normalization is a technical database

operation performed by a database analyst with the assistance of

normalization tools; the goal is to associate similar forms of the

same data item into a single data form. Based on how close the

association of these various data permutations of the "same"

data item are, the data variants can be normalized as a first

normal, a second normal, or a third normal form, with the third

normal form representing the loosest association of two data

forms. This paper reviews the theoretical and experimental for

retrieving the required data from large databases in

computational complexity with respect to Comparison of CPU

time taken for data retrieving from the database before and

using normal forms, Elimination of data redundancy and Less

volume of data stores in Main Memory.

Keywords— Big Data, MPP, database, normalization,

analytics, Map/Reduce, Broadcast Join, HDFS, commodity

hardware

I. INTRODUCTION

“Information explosion is the rapid increase in the amount

of published information and the effects of this abundance of

data. As the amount of available data grows, the problem of

managing the information becomes more difficult, which can

lead to information overload.” [1]

 Big Data analytics is rapidly becoming a commonplace

task for many companies. For example, banks,

telecommunication companies, and big web companies, such

as Google, Facebook, and Twitter produce large amounts of

data. Nowadays business users also know how to monetize

such data. For example, various predictive marketing

techniques can transform data about customer behavior into

great monetary worth. The main issue, however, remains to

be implementations and platforms fast enough to execute ad-

hoc analytical queries over Big Data. Until now, Hadoop has

been considered a universal solution, but it has its own

drawbacks, especially in its ability to process difficult queries,

such as analyzing and combining heterogeneous data, and

performing fast ad-hoc analysis.

 To store digital data is not sufficient, its needs to be

queried as well. But with such huge volumes of data, there is

a need to look at query algorithms from a different

perspective. For instance, algorithms need to be storage-

aware in order to load and retrieve data efficiently. There is

tremendous amount of research being undertaken towards

creating such algorithms, for example, Google’s BigTable [8]

or Facebook’s Cassandra [1] which is now open-source and

is maintained by the Apache Software Foundation. Many of

the leading Information Technology companies have

invested a lot into this research and have come up with a

number of innovative ideas and products.

One of the most common operations in query evaluation is a

Join. Joins combine records from two or more tables, usually

based on some condition. They have been widely studied and

there are various algorithms available to carry out joins. For

example, the Nested-Loops Join, the Sort-Merge Join and the

Hash Join are all examples of popular join algorithms. These

algorithms (and more) are used for joining two as well as

more datasets. But more often than not, when multiple

datasets are involved, selectivity factor is exploited to

structure the order in which the joins are made. Selectivity

factor can be defined as the fraction of the datasets involved

in the join that will be present in the output of the join. Join

Algorithms have been studied extensively with many variants

existing for each algorithm. For instance, Hash-Join itself has

three different variations – Simple Hash Join, Grace Hash

Join and Hybrid Hash Join [17].

The MapReduce framework is a widely used

programming paradigm for distributed environments [2].

MapReduce provides an abstraction away from the details

of parallelizing computation; the framework automatically

divides a job into individual tasks, handles scheduling of

individual tasks, distributes data and deals with machine

failures. The basic MapReduce model expresses

computations as a ‘Map’ and a ‘Reduce’ function. Hadoop

is a framework for the execution of MapReduce jobs.

Classic Hadoop has been widely used and studied since its

release, but we focus on the more recently developed

Hadoop YARN [3]. Both Classic Hadoop and Hadoop

YARN use the idea of dividing resources into logical

partitions (called ‘slots’ and ‘containers’ respectively)

which are as-signed to executing tasks.

 Map/Reduce framework hides management of data and

job partitioning from the programmer and provides in-built

fault-tolerance mechanisms. This lets the programmer

concentrate on the actual problem at hand instead of

worrying about the intricacies involved in a distributed

system. It was designed for processing large amounts of

raw data (like crawled documents and web-request logs) to

produce various kinds of derived data (like inverted

indices, web-page summaries, etc.). It is still a prominently

used model at Google for many of its applications and

computations [9]. Map/Reduce was not developed for

Database Systems in the conventional sense. It was

designed for computations that were conceptually quite

straightforward, but involved huge amounts of input data.

For example, finding the set of most frequent queries

submitted to Google’s search engine on any given day. It

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACC - 2016 Conference Proceedings

Volume 4, Issue 34

Special Issue - 2016

1

is very different from the traditional database paradigm, in

that it does not expect a predefined schema, does not have

a declarative query language and any indices are the

programmers prerogative. But at the same time,

Map/Reduce hides the details of parallelization, has built-

in fault tolerance and load balancing in a simple

programming framework. The novel idea was so appealing

that it led to an open-source version called Hadoop.

Hadoop has become extremely popular in the past few

years and boasts of big Web 2.0 companies like Facebook,

Twitter and Yahoo! as part of its community.

 For relational datasets, normalization is applied to

minimize data redundancy so there is only one way to

know a fact. The goal is relevant to big data analytics

because factual confusion generated by disparate data

variations can impair one's ability to arrive at accurate

information. If the pathway to meaningful results from big

data queries is clouded with these inaccuracies, enterprises

begin to lose on their big data investments because the

results they get from analytics are diluted by the inaccurate

data the analytics are using.

 To implement reasoning with uncertainty, it must be

concerned with three things, they are:

1. To represent uncertain data

2. To select or add two or more different parts of

 data with uncertainty.

3. To draw inference using this uncertain data

II. RELATED WORK

Map/Reduce was primarily designed at Google for use

with its web-indexing technologies. These included things like

keeping track of the web-pages crawled so far, creating

inverted-indices from them and summarizing the web-pages

for search-result views. Over time, they started considering it

for more interesting computations like query processing on the

raw or derived data that they already had. This led to its wide-

spread adoption and led to uses that were not envisioned at the

time of designing. Companies have started using Map/Reduce

to manage large amounts of data [11]. And when there are

multiple datasets involved, there will always be a need for

joining these datasets. The goal of this research is to test the

viability of Map/Reduce framework for joining datasets as

part of database query processing. There are three main

contributions of this research: 1. Comparison of CPU time

taken for data retrieving from the database before and using

normal forms. 2. Elimination of data redundancy. 3. Less

volume of data stores in Main Memory.

III. MODEL

 Apache Hadoop is an open-source software framework for

distributed storage and distributed processing of very large

data sets on computer clusters built from commodity hardware.

Hadoop File System was developed using distributed file

system design. It is run on commodity hardware. Unlike other

distributed systems, HDFS (Hadoop Distributed File System)

is highly fault tolerant and designed using low-cost hardware.

The general structure of HDFS is described in the figure Fig.1.

Fig. 1. General Structure of HDFS

 HDFS holds very large amount of data and provides easier

access. To store such huge data, the files are stored across

multiple machines. These files are stored in redundant fashion

to rescue the system from possible data losses in case of

failure. HDFS also makes applications available to parallel

processing. The following diagram describes a query

processing in HDFS using normal forms to produce the output.

Fig. 2. Model of HDFS for using NFs

Terminology and notations used in the above Fig. 2 are MR:

MapReduce NF: Normal Form

IV. TWO STAGE COMPUTATION IN HDFS FOR JOINING

FILES

Avito [20] proposed an Anchor modeling for normalizing

the data. For an Anchor model the hand-made execution plan

aims to maximize merge join utilization. Hash join can be

almost as fast as merge, but it requires a lot of RAM. If

limited, the join must again be spilled during execution.

Broadcast Join was studied by Blana [6]. If one of the

datasets is very small, such that it can fit in memory, then

there is an optimization that can be exploited to avoid the

data transfer overhead involved in transferring values from

Mappers to Reducers. This kind of scenario is often seen in

real-world applications. For instance, a small users database

may need to be joined with a large log. This small dataset can

be simply replicated on all the machines. This can be

achieved by simply using –files or -archive directive to send

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACC - 2016 Conference Proceedings

Volume 4, Issue 34

Special Issue - 2016

2

the file to each machine while invoking the Hadoop job.

Broadcast join is a Map-only algorithm.

 Map Phase
 The Mapper loads the small dataset into memory and calls

the map function for each tuple from the bigger dataset. For

each (key, value), the map function probes the in memory

dataset and finds matches. This process can be further

optimized by loading the small dataset into a Hashtable. It

then writes out the joined tuples. The below shown configure

function is part of the Mapper class and is called once for

every Mapper. The below code reads the ‘broadcasted’ file

and loads the same into an in memory hash table.

 public void configure(JobConf conf) {

 //Read the broadcasted file

 T1 = new File(conf.get("broadcast.file"));

 //Hashtable to store the tuples

 ht = new HashMap <String , ArrayList <String >>();

 BufferedReader br = null;

 String line = null;

 try{

 br = new BufferedReader (new FileReader(T1));

 while((line = br.readLine ())!=null)

 {

 String record [] = line.split("\t", 2);

 if(record.length == 2)

 {

 //Insert into Hashtable

 if(ht. containsKey(record [0]))

 {

 ht.get(record [0]).add(record [1]);

 }

 else

 {

 ArrayList <String > value = new

ArrayList < String >();

 value.add(record [1]);

 ht.put(record [0], value);

 }

 }

 }

 }

 catch(Exception e) { e. printStackTrace (); } }

Listing 1: Loading the small dataset into a Hash table

 The next piece of code is the actual map function that

receives the records from the HDFS and probes the

HashTable containing the tuples from the broadcasted file.

Notice that it takes care of duplicate keys as well.

public void map(LongWritable lineNumber , Text value ,

OutputCollector <Text , Text > output , Reporter reporter)

throws IOException {

 String [] rightRecord = value.toString ().split("\t" ,2);

 if(rightRecord.length == 2)

 {

 for(String leftRecord : ht.get(rightRecord [0]))

 {

 output.collect(new Text(rightRecord [0]) , new

Text (leftRecord + "\t"

 + rightRecord [1]));

 }

 }

 }

Listing 2: Broadcast Join Map Function

 Broadcast Join benefits from the fact that it uses a small

‘local’ storage on the individual nodes instead of the HDFS.

This makes it possible to load the entire dataset into an in-

memory hash table, access to which is very fast.

V. EXPERIMENTAL EVALUATIONS

We have considered the following type of sample data in

the experimental evaluation of our proposed model.

Table 1 Core Dataset

 A series of experiments conducted increasing the data

(number of tuples), noted CPU time, redundancy data and

amount of memory used. While the data is increasing, runtime,

redundancy and usage of memory is increasing.

Experiment 1: Performance of query output using core dataset

 The Normal Forms are not applied to the dataset. But

MapReduce is used to get the require output for the given

query.

Fig. 3. Comparison between Data Size and CPU Time Without using

Normal Forms

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACC - 2016 Conference Proceedings

Volume 4, Issue 34

Special Issue - 2016

3

Experiment: 2 Performance of query output using Normalized

Data

 The Normal Forms are applied up to third using

MapReduce and produced multiple files by removing

redundancy. The same query is used on this data to produce

the required output by joining the files using Broadcast Join.

Fig. 4. Comparison between Data Size and CPU Time with using Normal

Forms

VI. CONCLUSION

To produce the required result for the given query by

joining files using Broadcast Join technique after applying

normal forms on the core data takes less number of CPU

cycles, removes redundancy and used less memory space.

Experimental results show that Two-stage computation has

better than Anchor modeling.

REFERENCES

[1] Apache cassandra.

[2] Apache hadoop. Website. http://hadoop.apache.org.
[3] Cloudera inc. http://www.cloudera.com.

Hadoop wiki - poweredby. http://wiki.apache.org/hadoop/PoweredBy.

[4] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and A.
Rasin. Hadoopdb: an architectural hybrid of mapreduce and dbms

technologies for analytical workloads. Proc. VLDB Endow., 2(1):922–

933, 2009.
[5] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y. Tian.

A comparison of join algorithms for log processing in mapreduce.

In SIGMOD ’10: Proceedings of the 2010 international conference on
Management of data, pages 975–986, New York, NY, USA, 2010.

ACM.

[6] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S.
Weaver, and J. Zhou. Scope: easy and efficient parallel processing of

massive data sets. Proc. VLDB Endow., 1(2):1265– 1276, 2008.

[7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M.
Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: a

distributed storage system for structured data. In OSDI ’06:

Proceedings of the 7th USENIX Symposium on Operating Systems

Design and Implementation, pages 15–15, Berkeley, CA, USA,

2006. USENIX Association.

[8] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. Commun. ACM, 51(1):107–113, 2008.

[9] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system.

SIGOPS Oper. Syst. Rev., 37(5):29–43, 2003.
[10] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin:

a notso-foreign language for data processing. In SIGMOD ’08:
Proceedings of the 2008 ACM SIGMOD international conference on

Management of data, pages 1099–1110, New York, NY, USA, 2008.

ACM.

[11] K. Palla. A comparative analysis of join algorithms using the Hadoop

map/reduce framework. Master’s thesis, School of Informatics,

University of Edinburgh, 2009.

[12] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,

and M. Stonebraker. A comparison of approaches to large-scale data
analysis. In SIGMOD ’09: Proceedings of the 35th SIGMOD

international conference on Management of data, pages 165–178, New

York, NY, USA, 2009. ACM.
[13] M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden, E. Paulson, A.

Pavlo, and A. Rasin. Mapreduce and parallel dbmss: friends or foes?

Commun. ACM, 53(1):64–71, 2010.
[14] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H.

Liu, P.Wyckoff, and R. Murthy. Hive: a warehousing solution over a

map-reduce framework. Proc. VLDB Endow., 2(2):1626–1629, 2009.
[15] J. Venner. Pro Hadoop. Apress, 1 edition, June 2009.

[16] S. Viglas. Advanced databases. Taught Lecture, 2010.

http://www.inf.ed.ac.uk/teaching/courses/adbs.
[17] T. White. Hadoop: The Definitive Guide. O’Reilly Media, 1 edition,

June 2009.

[18] H.-C. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker. Map-reduce-
merge: simplified rrelational data processing on large

clusters.Proceedings of the 2007 ACM SIGMOD international

conference on Management of data, pages 1029–1040, 2007.

[19] Nikolay Golov1 and Lars Ronnback2. Big Data Normalization for

Massively Parallel Processing Databases, International Conference on

Conceptual Modeling, 2015.
[20] Jairam Chandar. Join Algorithms using Map/Reduce, Magisterarb.

University of Edinburgh, 2010 - inf.ed.ac.uk

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACC - 2016 Conference Proceedings

Volume 4, Issue 34

Special Issue - 2016

4

