Binary Cyclic Codes in Extending Circular Cliques

K.Ranga Devi Research Scholar, Department of Mathematics, S.V.University, Tirupati- 517502, A.P, India.

Dr.D.Bharathi Professor, Department of Mathematics, S.V.University, Tirupati- 517502, A.P, India.

ABSTRACT: Let G be a coloring graph with circular chromatic number $(G) = \{k/d: G \rightarrow Gk, d, \gcd(k, d)=1 \text{ and } d \leq |i-j| \leq k-d\}, Gk, d$ are prime circular cliques. If the two circular cliques Gk, d at distance d such that some (k', d')-precolouring of the two cliques is non-extendible. In this section, we examine extending circular colourings of $Gk, d \bowtie Pn$, Pn is the path of length n-1 with vertex set $\{1,2,...,n\}$. In view of the homomorphism G admits a (k,d)-colouring if and only if, there is a homomorphism f: $G \rightarrow Gk, d$. there exist a uniquely extendible homomorphisms between circular cliques.

KEY WORDS: Edge coloring, Vertex coloring, Circular chromatic number, Homomorphism, Binary cyclic codes.

I. INTRODUCTION:

Graph coloring theory has a central position in discrete mathematics — for its own interest as well as for the large variety of applications, dating back to the famous four-color problem stated by Guthrie in 1852 Zhu[9].

Define a(k,d)-colouring of a graph G is an assignment $c:V(G) \rightarrow \{0,1,2,...,k-1\}$ such that for $uv \in E(G)$, $d \leq |c(u)-c(v)| \leq k-d$, d is any positive integer. The *circular complete graph* or *circular clique Gk*,d has vertices $\{0,1,...,k-1\}$ and edges $\{ij:d \leq |i-j| \leq k-d\}$. Thus Gk,1 is simply the (classical) complete graph on *k*-vertices. Graph

coloring is the procedure of assignment of colors to each vertex of a graph G such that no adjacent vertices get same color.

The minimum k for which G admits a k-coloring is called the *chromatic number* of G and denoted by (G).

There are now many papers on colouring extensions. The introduction of [3] provides a nice overview on coloring. We focus on the situation where the precoloured vertices induce a collection of cliques. Let *G* be a graph with circular chromatic number (G)=k/d [8]is isomorphic to the circular clique $G_{k,d}$. Suppose the vertices of *P* have been precoloured with a (k',d')-colouring. In [2] Albertson and Moore study the problem of extending a (k+1)-colouring of a *k*-colourable graph where the precoloured components are *k*-cliques. They also study the problem when the precoloured components are general subgraphs. In the latter case the penalty for having general subgraphs is a larger number of colours may be required for the extension. In this spirit we now turn attention to extending a (k',d')-colouring of a (k,d)-colourable graph where the precoloured components are circular cliques.

We now consider extending (classical) k'-colourings where the precoloured components are $G_{k,d}$. The general problem of extending colourings where the precoloured components are not cliques is considered in [2]. In our work the assumption that the precoloured components are circular cliques

II. PRELIMINARIES:

DEFINITION 2.1: An undirected graph is a type of graph where the edges have no specified direction assigned to the them..

DEFINITION 2.2: A binary code is **cyclic code** if it is a linear [n, k] code and if for every codeword $(c_1, c_2, \ldots, c_n) \in C$ we also have that $(c_n, c_1, \ldots, c_{n-1})$ is again a codeword in C.

- Vertex coloring is a concept in graph theory that refers to assigning colors to the vertices of a graph in such a way that no two adjacent vertices have the same color..
- In graph theory, Edge coloring of a graph is an assignment of "colors" to the edges of the graph so that no two adjacent edges have the same color

DEFINITION 2.3: Graph coloring is the procedure of assignment of colors to each vertex of a graph such that no adjacent vertices get same color.

DEFINITION 2.4: The **chromatic number** of a graph is the minimal number of colours needed to colour the vertices in such a way that no two adjacent vertices have the same colour.

III. RESULT AND DISCUSSION:

We find Vertex chromatic number, edges chromatic number, Degree and Dimensions of the generator matrix.

A(k,d)-colouring of a graph G is an assignment $c:V(G) \rightarrow \{0,1,2,\ldots,k-1\}$ such that for $uv \in E(G)$, $d \leq |c(u) - c(v)| \leq k - d$, d is any positive integer. The *circular* complete graph or **circular** clique G_{k,d} has **vertices** {0,1,...,*k*-1} and edges $\{ij:d \le |i-j| \le k-d\}$. Thus $G_{k,1}$ is simply the (classical) complete graph on k-vertices. The circular complete graphs play the role in circular colourings as do the complete graphs in classical colourings. Adopting the homomorphism point of view, see [4], [5], G admits a (k,d)-colouring if and only if, there is a homomorphism $f: G \rightarrow G_{k,d}$. Recall, a homomorphism $f: G \rightarrow H$ is a mapping $f:(G) \rightarrow V(H)$ such that $uv \in E(G)$ implies $f(u)f(v) \in E(H)$. We

write $G \rightarrow H$ to indicate the existence of a

homomorphism. It turns out that $G_{k,d} \rightarrow G_{k',d'}$ if and only if $k/d \le k'/d'$. Thus, given a graph *G*, if $G \rightarrow G_{k,d}$, then $G \rightarrow G_{k',d'}$ for any $k'/d' \ge k/d$ is surjective. Suppose ($k \ge 2d$), d is positive integer and k is prime number with gcd(k,d)=1, the circular chromatic numbers includes all chromatic numbers $\chi(G) = \chi_c(G)$ as well as odd holes see the below figures.

The circular chromatic number of a graph G is defined as $\chi_c(G)= \inf\{k/d : G \to G_{k,d} \text{ and } gcd(k,d)=1\}.$

In [4], Bondy and Hell show the infimum may be replaced by a minimum. The proof depends on the fact that optimum colourings must be surjective. The surjective mappings play a key role in our constructions of non-extendible families. **Example 3.1.1**: The circular chromatic number of a graph G is defined as $\chi_c(G) = \inf\{5/1 : G \to G_{5,1} \text{ and } gcd(5,1)=1\}$.

The adjacency matrix of X is

(Fig 1.1)

The polynomial represented by X is $k(x)=1+x^4$

In above Figure 1.1, the vertex chromatic number (G)=3 and Edge chromatic number is 3.

Hence X corresponds to the cyclic code $C = \langle x \rangle$. Since the degree of the generator polynomial k(x) is 4, dimension of the code is 5 and has no error correcting codes. ($G_{5/1}$)=3

Example 3.1.2: The *circular chromatic number* of a graph *G* is defined as $\chi_c(G)=\inf\{5/2 : G \to G_{5,2} \text{ and } gcd(5,2)=1\}$.

The adjacency matrix of X is

Vertex coloring graph Edge coloring graph (Fig 1.2)

The polynomial represented by X is $k(x)=x^2+x^3$

Vol. 13 Issue 9, September 2024

In above Figure 1.2, the vertex chromatic number (G)=5 and Edge chromatic number is 5.

Hence X corresponds to the cyclic code C =<x>. Since the degree of the generator polynomial k(x) is 3, dimension of the code is **5** and has no error correcting codes. ($G_{5/2}$)=**5**

Example 3.1.3: The *circular chromatic number* of a graph *G* is defined as $\chi_c(G)=\inf\{5/3 : G \to G_{5,3} \text{ and } gcd(5,3)=1\}$.

The adjacency matrix of X is

Vertex coloring graph

Edge coloring graph

(Fig 1.3)

The polynomial represented by X is $k(x) = x^2 + x^3$

In above Figure 1.3, the vertex chromatic number (G) = 5 and Edge chromatic number is 5.

Hence X corresponds to the cyclic code C =<x>. Since the degree of the generator polynomial k(x) is **3**, dimension of the code is **5** and has no error correcting codes. ($G_{5/3}$)=**5**

(G)=inf{ 5/1, 5/2 and 5/3} is 5/1=3

Example 3.2.1: The *circular chromatic number* of a graph *G* is defined as $\chi_c(G) = \inf\{7/1: G \rightarrow G_{7,1} \text{ and } gcd(7,1)=1 \}$.

The adjacency matrix of X is

0	1	0	0	0	0	1
1	0	1	0	0	0	0
0	1	0	1	0	0	0
			0			
			1			
0	0	0	0 0	1	0	$1_{\mathbf{I}}$
L1	0	0	0	0	1	01

(Fig 1.4)

Vertex coloring graph

Edge coloring graph

The polynomial represented by X is $k(x) = x + x^6$ In above Figure 1.4, the vertex chromatic number (*G*)=3 and Edge chromatic number is 3.

Hence X corresponds to the cyclic code C =<x>. Since the degree of the generator polynomial k(x) is 6, dimension of the code is 7 and has no error correcting codes. ($G_{7/1}$)=3

Example 3.2.2: The *circular chromatic number* of a graph *G* is defined as $\chi_c(G)=\inf\{7/2: G \rightarrow G_{7,2} \text{ and } gcd(7,2)=1\}$.

The adjacency matrix of X is

0	0	1	0	0	1	0
0	0	0	1	0	0	1
1	0	0	0	1	0	0
0	1	-		0	1	0
0	0	1	0	0	0	1
\lfloor_0^1	0	0	1 0	0	0	0
LO	1	0	0	1	0	0]

Vertex coloring graph Edge coloring graph (Fig 1.5)

The polynomial represented by X is $k(x)=x^2+x^5$ In above Figure 1.3, the vertex chromatic number (G)=4 and Edge chromatic number is 7.

Hence X corresponds to the cyclic code C =<x> . Since the degree of the generator polynomial k(x) is 5, dimension of the code is 7 and has no error correcting codes. ($G_{7/2}$)=4

Example 3.2.3: The *circular chromatic number* of a graph *G* is defined as $\chi_c(G) = \inf\{7/3: G \rightarrow G_{7,3} \text{ and } gcd(7,3)=1\}$.

The adjacency matrix of X is

Vertex coloring graph Edge coloring graph (Fig 1.6)

The polynomial represented by X is $k(x) = x^3 + x^4$

In above Figure 1.3, the vertex chromatic number (G) = 4 and Edge chromatic number is 7.

Hence X corresponds to the cyclic code C =<x>. Since the degree of the generator polynomial k(x) is 4, dimension of the code is 7 and has no error correcting codes. ($G_{7/3}$)=4

(**G**)=inf{ 7/1, 7/2 and 7/3} is 7/1=3

Example 3.3.1: The *circular chromatic number* of a graph *G* is defined as $\chi_c(G) = \inf\{11/1: G \rightarrow G_{11,1} \text{ and } gcd(11,1)=1 \}$.

The adjacency matrix of X is

0	1	0	0	0	0	0	0	0	0	1
1	0	1	0	0	0	0	0	0	0	0
0	1	0	1	0	0	0	0	0	0	0
0	0	1					0	0	0	0
0	0	0	1	0	1	0	0	0	0	0
0	0	0	0	1	0	1		0	0	0
0	0	0	0	0	1	0	1	0	0	0
0	0	0	0	0		1	0	1	0	0
0	0	0	0	0	0	0	1	0	1	0
\lfloor_1^0	0	0	0	0	0	0	0	1	0	1_{I}
L_1	0	0	0		0	0	0	0	1	01

Vertex coloring graph Edge coloring graph (Fig 1.7) The polynomial represented by X is $k(x)=x+x^{10}$

In above Figure 1.7, the vertex chromatic number (G)=3 and Edge chromatic number is 3.

Hence X corresponds to the cyclic code C =<x>. Since the degree of the generator polynomial k(x) is 10, dimension of the code is 11 and has no error correcting codes. ($G_{11/1}$)=3

Example 3.3.2: The *circular chromatic number* of a graph *G* is defined as $\chi_c(G) = \inf\{11/2 : G \rightarrow G_{11,2} \text{ and } gcd(11,2)=1\}$.

The adjacency matrix of X is

0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	0	1
1	0	0	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	0	1	0	0	0	1	0	0	0	0
0	0	0	1	0	0	0	1	0	0	0
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	0	0	1	0	0	0	1
1 _ا	0	0	0	0	0	0	1	0	0	0
L ₀	1	0	0	0	0	0	0	1	0	01
							10 9 ct 8.			
Verte	x co	olori	ing	graj		Edg	ge co	olori	ingraph	

(Fig 1.8)

The polynomial represented by X is $k(x)=x^2+x^9$ In above Figure 1.8, the vertex chromatic number (G)=4 and Edge chromatic number is 6.

Hence X corresponds to the cyclic code $C = \langle x \rangle$. Since the degree of the generator polynomial k(x) is 9, dimension of the code is 11 and has no error correcting codes. ($G_{11/2}$)=4

Example 3.3.3: The *circular chromatic number* of a graph *G* is defined as $\chi_c(G) = \inf\{11/3 : G \rightarrow G_{11,3} \text{ and } gcd(11,3)=1\}$.

The adjacency matrix of X is

Edge coloring graph

(Fig 1.9)

The polynomial represented by X is $k(x)=x^3+x^7$ In above Figure 1.9, the vertex chromatic number (G)=4, edge chromatic number is 6.

Hence X corresponds to the cyclic code C =<x>. Since the degree of the generator polynomial k(x) is 7, dimension of the code is 11 and has no error correcting codes. ($G_{11/3}$)=4

Example3.3.4: The *circular chromatic number* of a graph *G* is defined as $\chi_c(G) = \inf\{11/4 : G \rightarrow G_{11,4} \text{ and } gcd(11,4)=1\}$

The adjacency matrix of X is

0	0	0	0	1	0	0	1	0	0	0
0	0	0	0	0	1	0	0	1	0	0
0	0	0	0	0	0	1	0	0	1	0
0	0	0	0	0	0	0	1	0	0	1
1	0	0	0	0	0	0	0	1	0	0
0	1	0	0	0	0	0	0	0	1	0
0	0	1	0	0	0	0	0	0	0	1
1	0	0	1	0	0	0	0	0	0	0
0	1	0	0	1	0	0	0	0	0	0
L_0^0	0	1	0	0	1	0	0	0	0	0
L0	0	0	1	0	0	1	0	0	0	01

Vertex coloring graph Edge coloring graph (Fig 1.10)

The polynomial represented by X is $k(x) = x^4 + x^7$ In above Figure 1.10, the vertex chromatic number (G) = 4 and Edge chromatic number is 6.

Hence X corresponds to the cyclic code $C = \langle x \rangle$. Since the degree of the generator polynomial k(x) is 7, dimension of the code is 11 and has no error correcting codes. ($G_{11/4}$)=4

Example 3.3.5:The *circular chromatic number* of a graph defined as $\chi_c(G) = \inf\{11/5 : G \rightarrow G_{11,5} \text{ and } gcd(11,5)=1\}$ The adjacency matrix of X is

0	0	0	0	0	1	1	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0
0	0	0	0	0	0	0	1	1	0	0
0	0	0	0	0	0	0	0	1	1	0
0	0	0	0	0	0	0	0	0	1	1
1	0	0	0	0	0	0	0	0	0	1
1	1	0	0	0	0	0	0	0	0	0
0	1	1	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0	0	0
10	0	0	1	1	0	0	0	0	0	0
LO	0	0	0	1	1	0	0	0	0	01

Vertex coloring graph Edge coloring graph (Fig 1.11)

The polynomial represented by X is $k(x)=x^5+x^6$ In above Figure 1.11, the vertex chromatic number (G)=4 and Edge

chromatic number is 6.

Hence X corresponds to the cyclic code C =<x>. Since the degree of the generator polynomial k(x) is 6, dimension of the code is 11 and has no error correcting codes. ($G_{11/5}$)=4

 $\chi_{\rm c}(G) = \inf\{11/1, 11/2, 11/3, 11/4 \text{ and } 11/5\}$ is 11/1=3

We observe that the above graphs, the two circular cliques $G_{k,d}$ at distance d such that some (k',d')-precolouring of the two cliques (Vertex chromatic number and Edge chromatic

number $d \ge 2$) are non-extendible. And the dimensions of generator matrix are same. Also the circular chromatic numbers are

- \succ $\chi_c(G) = \inf\{5/1, 5/2 \text{ and } 5/3\} \text{ is } 5/1=3$
- \succ $\chi_c(G)=\inf\{7/1, 7/2 \text{ and } 7/3\} \text{ is } 7/1=3$
- ➤ (G)= inf{11/1, 11/2, 11/3, 11/4 and 11/5} is 11/1=3.

HOMOMORPHISM OF A CIRCULAR GRAPHS:

A k-coloring, for some integer k, is an assignment of one of k colors to each vertex of a graph G such that the endpoints of each edge get different colors. The k-colorings of G correspond exactly to homomorphisms from G to the <u>complete</u> graph K_k .[3] Indeed, the vertices of K_k correspond to the k colors, and two colors are adjacent as vertices of K_k if and only if they are different. Hence a function defines a homomorphism to K_k if and only if it maps adjacent vertices of G to different colors (i.e., it is a k-coloring). In particular, G is k-colorable if and only if it is K_k -colorable.[3]

If there are two

homomorphisms $G \to H$ and $H \to K_k$, then their composition $G \to K_k$ is also a homomorphism.[1] In other words, if a graph H can be colored with k colors, and there is a homomorphism from G to H, then G can also be k-colored. Therefore, $G \to H$ implies $\chi(G) \leq \chi(H)$, where χ denotes the chromatic number of a graph (the least k for which it is k-colorable).[4]

DIRECT PRODUCT GRAPHS: The direct product

 $G \times H$ of graphs G and H is the graph with the vertex set V (G) \times V (H), two vertices (x, y) and (v, w) being adjacent in $G \times H$ if and only if $xv \in E(G)$ and $yw \in E(H)$.

PREPOSITION3.3: Let $\varphi: G \rightarrow H$ be a homomorphism and let $v \in V(G)$. The homomorphism φ is *uniquely extendible at v* if whenever $g: G \rightarrow H$ is a homomorphism with $g(u) = \varphi(u)$ for all $u \neq v$, then $g(v) = \varphi(v)$. If φ is uniquely extendible at v for all $v \in V(G)$, we simply say φ is *uniquely extendible*[1].

PREPOSITION 3.4: Let *G* and *H* be graphs. The *extension product G* X *H* has as its vertex set $V(G) \times V(H)$ with $(g_1,h_1)(g_2,h_2)$ an edge if $g_1g_2 \in E(G)$ and either $h_1h_2 \in E(H)$ or $h_1=h_2$. The direct product of *G* with a reflexive copy (a loop on each vertex) of *H*. **Proof:** The direct product of G and H is the graph, denoted as $G \times H$, whose vertex is V (G)×V (H), and for which vertices (g, h) and(g', h') are adjacent precisely if $gg' \in E(G)$ and $hh' \in E(H)$.

Thus, V (G×H) = {(g, h) : $g \in V$ (G) and $h \in V$ (H)},

 $E(G \times H) = \{(g, h)(g', h') : gg' \in E(G) \text{ and } hh' \in E(H)\}.$

Other names for the direct product that have appeared in the literature are tensor product, Kronecker product, cardinal product, relational product, cross product, conjunction, weak direct product, or categorical product.

A product $G \times H$ has a loop at (g, h) if and only if both G and H have loops at g and h, respectively.

Moreover, if G has no loop at g, then the Hlayer H(g,h) is disconnected; whereas if G has a loop at g, then H(g,h) is isomorphic to H.

Suppose (g, h) and (g', h') are vertices of a direct product G×H and n is an integer for which G has a g, g'- walk of length n and H has an h, h'- walk of length n. Then G×H has a walk of length n from (g, h) to (g', h'). The smallest such n (if it exists) equals d((g, h),(g', h')). If no such n exists, then $d((g, h), (g', h')) = \infty$.

Example 3.4.1:Let *G* and *H* be graphs. The *extension product* $\boldsymbol{\varphi}$: $\boldsymbol{G}_{2,2} \rightarrow \mathbf{P}_2 \times \mathbf{P}_2$ has as its vertex set $V(G_2) \times V(H_2)$ with $(g_1,h_1)(g_2,h_2)$ an edge if $g_1g_2 \in E(G)$ and either $h_1h_2 \in E(H)$ or $h_1=h_2$.

Vertex and Edge coloring graphs of G2 and G3

Let φ : $G_{2,2} \rightarrow P_2 \times P_2$ the generatoer of a matrix is $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

 $\begin{array}{c} P_2 {\times} P_2 {-} \ Vertex \ and \ Edge \ graphs \\ (Fig \ 1.12) \end{array}$

The polynomial represented by X is k(x)=1+x

In above Figure 1.12, the vertex chromatic number $(G) = \varphi: G_{2,2} \rightarrow P_2 \times P_2$ is 4, edge chromatic number is 2.

Hence X corresponds to the cyclic code $C = \langle x \rangle$. Since the degree of the generator polynomial k(x) is 1, dimension of the code is 2 and has no error correcting codes.

Example 3.4.2: Let *G* and *H* be graphs. The *extension product* $\mathbf{P_2} \times \mathbf{P_3}$ has as its vertex set $V(G_2) \times V(H_3)$ with $(g_1,h_1)(g_2,h_2)$ an edge if $g_1g_2 \in E(G)$ and either $h_1h_2 \in E(H)$ or $h_1=h_2$.

Let $\varphi: G_{2,3} \to P_2 \times P_3$, the generator of a matrix is $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

 $P_2 \times P_3$ – Vertex and Edge graphs (Fig 1.13)

The polynomial represented by X is $k(x)=1 + x+x^2$ In above Figure 1.13, the vertex chromatic number $(G)=\varphi:G_{2,3} \rightarrow P_2 \times P_3$ is 4, edge chromatic number is 4.

Hence X corresponds to the cyclic code C =<x>. Since the degree of the generator polynomial k(x) is 2, dimension of the code is 2 and has no error correcting codes.

Example 3.4.3 :Let *G* and *H* be graphs.The *extension product* $\varphi:G_{2,5} \rightarrow P_2 \times P_5$ has as its vertex set $V(G_2) \times V(H_5)$ with $(g_1,h_1)(g_2,h_2)$ an edge if $g_1g_2 \in E(G)$ and either $h_1h_2 \in E(H)$ or $h_1=h_2$.

Let $\varphi: G_{2,5} \rightarrow P_2 \times P_5$, the generator of a matrix is $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$

P₂×P₅- Vertex and Edge graphs (Fig 1.14)

The polynomial represented by X is $k(x)= 1 + x + x^2 + x^3 + x^4$

In above Figure 1.14, the vertex chromatic number $(G) = \varphi: G_{2,5} \rightarrow P_2 \times P_5$ is 4, edge chromatic number is 6.

Hence X corresponds to the cyclic code C =<x>. Since the degree of the generator polynomial k(x) is 4, dimension of the code is 2 and has no error correcting codes.

Example 3.4.4:Let *G* and *H* be graphs. The *extension product* φ :*G*_{2,7} \rightarrow **P**₂×**P**₇ has as its vertex set $V(G_2) \times V(H_7)$ with $(g_1,h_1)(g_2,h_2)$ an edge if $g_1g_2 \in E(G)$ and either $h_1h_2 \in E(H)$ or $h_1=h_2$.

The polynomial represented by X is k(x)= $1 + x + x^2 + x^3 + x^4 + x^5 + x^6$

In above Figure 1.15, the vertex chromatic number $(G) = \varphi: G_{2,7} \rightarrow \mathbf{P}_2 \times \mathbf{P}_7$ is 4, edge chromatic number is 6.

Hence X corresponds to the cyclic code $C = \langle x \rangle$. Since the degree of the generator polynomial k(x) is 6, dimension of the code is 2 and has no error correcting codes.

We observe that from the graphs, the product of two circular cliques $G_{k,d}$ at distance d such that some (k',d')-precolouring of the two cliques(Vertex chromatic number and Edge chromatic number $d \ge 2$) are non-extendible. And the dimensions of generator matrix are same.

\triangleright	$\chi(G) = \varphi: G_{2,2} \rightarrow \mathbf{P}_2 \times \mathbf{P}_2 \text{ is } 4$
\triangleright	$\chi(G) = \varphi: G_{2,3} \rightarrow P_2 \times P_3$ is 4
\succ	$\chi(G) = \varphi: G_{2,5} \rightarrow \mathbf{P}_2 \times \mathbf{P}_5$ is 4
\succ	$\chi(G) = \varphi: G_{2,7} \rightarrow P_2 \times P_7$ is 4

IV.CONCLUSION:

We finish the paper with an extension result for (k,d)-colourings of $G_{k,d}$ cliques in k-colourable graphs.

1. In above figures, the two circular cliques $G_{k,d}$ at distance d such that some (k',d')-precolouring of the two cliques(Vertex chromatic number and Edge chromatic number) are non-extendible. And the dimensions of generator matrix are same. The circular chromatic numbers are always same.

- \succ $\chi_c(G) = \inf\{ 5/1, 5/2 \text{ and } 5/3 \} \text{ is } 5/1=3$
- \succ $\chi_c(G) = \inf\{ 7/1, 7/2 \text{ and } 7/3 \} \text{ is } 7/1 = 3$
- (G)= inf{11/1, 11/2, 11/3, 11/4 and 11/5} is 11/1=3, etc.

2. $\varphi: G_{k,d} \rightarrow P_n$, fi φ is uniquely extendible at v for all $v \in V(G)$, we simply say φ is *uniquely extendible*. The product of two circular cliques $G_{k,d}$ at distance d such that some (k',d')-precolouring of the two cliques(Vertex chromatic number and Edge chromatic number $d \ge 2$) are non-extendible. Athd dimensions of generator matrix are same, but degree of the polynomials is increasing.

- $\succ \qquad \chi_c(G) = \varphi: G_{2,2} \to \mathbf{P}_2 \times \mathbf{P}_2 \text{ is } 4$
- $\succ \qquad \chi_c(G) = \varphi: G_{2,3} \to \mathbf{P}_2 \times \mathbf{P}_3 \text{ is } 4$
- $\succ \qquad \chi_c(G) = \varphi: G_{2,5} \to \mathbf{P}_2 \times \mathbf{P}_5 \text{ is } 4$

V. REFERENCES:

[1].P. Hell, J. Nešetři Graphs and

Homomorphisms, Oxford Lecture Series in Mathematics and its Applications, vol. 28, Oxford University Press, Oxford (2004)Google Scholar

[2]. M.O. Albertson, E.H. Moore, Extending graph colorings, J. Combin. Theory Ser. B, 77 (1999), pp. 83-95 View PDF View article in Scopus Google Scholar

[3]. M.O. Albertson, D.B. West, Extending precolorings to circular colorings, J. Combin. Theory Ser. B, 96 (2006) P.p. 472-481View PDF article in Scopus Google Scholar

[4]. J.A. Bondy, P. Hell, A note on the star chromatic number, J. Graph Theory, 14 (1990), pp. 479-482 View at publisher Cross Ref in Scopus Google Scholar [5]. M.O. Albertson, You can't paint yourself into a corner, J. Combin. Theory Ser. B, 73 (1998), pp. 189-194 View PDF View article in Scopus Google Scholar

[6]. C. Thomassen Color-critical graphs on a fixed surface, J. Combin. Theory Ser. B, 70 (1997), pp. 67-100 View PDF View article in Scopus Google Scholar

[7]. D.B. West, Introduction to Graph Theory(2nd edition), Prentice Hall Inc., Upper Saddle River, NJ (2001)

Googe Sholar

[8]. Dr.D.Bharathi, K.Ranga Devi, Introduced Binary cyclic codes in circular cliques, IJRASET, Volume 12, ISSN NO: 2321-9653, issueVI June 2024

[9] X. Zhu. Circular chromatic number: a survey. Discrete Mathematics, 229:371–410, 2001.