Binary Cyclic Codes in Extending Circular Cliques

K.Ranga Devi Research Scholar, Department of Mathematics, S.V.University, Tirupati- 517502, A.P, India.

Dr.D.Bharathi Professor, Department of Mathematics, S.V.University, Tirupati- 517502, A.P, India.

ABSTRACT: **Let G be a coloring graph with circular chromatic number (** G **)= {** k/d **:** $G \rightarrow Gk/d$ **, gcd(k,d)=1 and d≤|−|≤−d}, ,d are prime circular cliques. If the two circular cliques** Gk,d **at distance** d **such that some** (k',d) **′)-precolouring of the two cliques is non-extendible. In this section, we examine extending circular colourings of** Gk ,d M *Pn*, *Pn* is the path of length $n-1$ with vertex set **{1,2,…,}. In view of the homomorphism G admits a (k,d)-colouring if and only if, there is a homomorphism** $f: G \rightarrow Gk$,d. there exist a uniquely extendible **homomorphisms between circular cliques.**

KEY WORDS: **Edge coloring, Vertex coloring, Circular chromatic number, Homomorphism, Binary cyclic codes.**

I. INTRODUCTION:

Graph coloring theory has a central position in discrete mathematics — for its own interest as well as for the large variety of applications, dating back to the famous four-color problem stated by Guthrie in 1852 Zhu[9].

Define $a(k,d)$ -colouring of a graph G is an assignment $c:V(G) \rightarrow \{0,1,2,...,k-1\}$ such that for $uv\in E(G)$, d≤|c(u)-c(v)|≤k-d, d is any positive integer. The *circular complete graph* or *circular clique* G_k ,d has vertices $\{0,1,\ldots,k-1\}$ and edges $\{ij:\mathrm{d}\leq|i-j|\leq k-\mathrm{d}\}\$. Thus $Gk,1$ is simply the (classical) complete graph on k -vertices. Graph

coloring is the procedure of assignment of colors to each [vertex of a graph](https://www.tutorialspoint.com/edges-and-vertices-of-graph) G such that no adjacent vertices get same color.

The minimum k for which G admits a k -coloring is called the *chromatic number* of G and denoted by (G) .

There are now many papers on colouring extensions. The introduction of [\[3\]](https://www.sciencedirect.com/science/article/pii/S0012365X11000562#br000015) provides a nice overview on coloring. We focus on the situation where the precoloured vertices

induce a collection of cliques. Let G be a graph with circular chromatic number $(G)=k/d$ [8] is isomorphic to the circular clique $G_{k,d}$. Suppose the vertices of P have been precoloured with a (k', d') -colouring. In [\[2\]](https://www.sciencedirect.com/science/article/pii/S0012365X11000562#br000010) Albertson and Moore study the problem of extending a $(k+1)$ -colouring of a k-colourable graph where the precoloured components are k -cliques. They also study the problem when the precoloured components are general subgraphs. In the latter case the penalty for having general subgraphs is a larger number of colours may be required for the extension. In this spirit we now turn attention to extending a (k', d') -colouring of a (k,d) -colourable graph where the precoloured components are circular cliques.

We now consider extending (classical) k' -colourings where the precoloured components are $G_{k,d}$. The general problem of extending colourings where the precoloured components are not cliques is considered in [\[2\].](https://www.sciencedirect.com/science/article/pii/S0012365X11000562#br000010) In our work the assumption that the precoloured components are circular cliques

II. PRELIMINARIES:

DEFINITION 2.1: An undirected graph is a type of graph where the edges have no specified direction assigned to the them..

DEFINITION 2.2: A binary code is **cyclic code** if it is a linear $[n, k]$ code and if for every codeword $(c_1,$ c_2, \ldots, c_n) ∈ C we also have that $(c_n, c_1, \ldots, c_{n-1})$ is again a codeword in C.

- **Vertex coloring** is a concept in **graph theory** that refers to assigning colors to the vertices of a graph in such a way that no t[wo](https://www.baeldung.com/cs/graph-theory-intro) [adjacent vertices h](https://www.baeldung.com/cs/graph-theory-intro)ave the same color..
- In graph theory, **Edge coloring** of a graph is an assignment of "colors" to the edges of the graph so that no two adjacent edges have the same color

DEFINITION 2.3: Graph coloring is the procedure of assignment of colors to each [vertex of a graph](https://www.tutorialspoint.com/edges-and-vertices-of-graph) such that no adjacent vertices get same color.

DEFINITION 2.4: The **chromatic number** of a graph is the minimal number of colours needed to colour the vertices in such a way that no two adjacent vertices have the same colour.

III. RESULT AND DISCUSSION:

We find Vertex chromatic number, edges chromatic number, Degree and Dimensions of the generator matrix.

A(k,d)-colouring of a graph G is an assignment $c:V(G) \rightarrow \{0,1,2,...,k-1\}$ such that for $uv \in E(G)$, d≤|c(u)-c(v)|≤k-d, d is any positive

integer. The *circular complete graph* or *circular clique* $G_{k,d}$ has **vertices** $\{0,1,\ldots,k-1\}$ and **edges {** i **j**:**d≤|** i **−j|≤** k **−d}.** Thus $G_{k,1}$ is simply the $(classical)$ complete graph on k -vertices. The circular complete graphs play the role in circular colourings as do the complete graphs in classical colourings. Adopting the homomorphism point of view, see [\[4\],](https://www.sciencedirect.com/science/article/pii/S0012365X11000562#br000020) [\[5\],](https://www.sciencedirect.com/science/article/pii/S0012365X11000562#br000025) G admits a (k,d) -colouring if and only if, there is a homomorphism $f:G\rightarrow G_{k,d}$. Recall, a *homomorphism* $f:G \rightarrow H$ is a mapping $f:(G) \rightarrow V(H)$ such that $uv \in E(G)$ implies $f(u)f(v) \in E(H)$. We write $G \rightarrow H$ to indicate the existence write $G \rightarrow H$ to indicate the existence of a

homomorphism. It turns out that $G_{k,d} \rightarrow G_{k',d'}$ if and only if $k/d \leq k'/d'$. Thus, given a graph G, if $G \rightarrow G_{k,d}$, then $G \rightarrow G_{k',d'}$ for any $k'/d' \geq k/d$ is surjective. Suppose $(k \geq 2d)$, d is positive integer and k is prime number with $gcd(k,d)=1$, the circular chromatic numbers includes all chromatic numbers $\chi(G)=\chi_c(G)$ as well as odd holes see the below figures.

The *circular chromatic number* of a graph *G* is defined as $\chi_c(G)=\text{Inf}\{k/d : G \rightarrow G_{k,d} \text{ and } G_{k,d} \}$ **gcd(k,d)=1}.**

In [\[4\],](https://www.sciencedirect.com/science/article/pii/S0012365X11000562#br000020) Bondy and Hell show the infimum may be replaced by a minimum. The proof depends on the fact that optimum colourings must be surjective. The surjective mappings play a key role in our constructions of non-extendible families.

Example 3.1.1: The *circular chromatic number* of a graph G is defined as $\chi_c(G)=\inf\{5/1 : G \rightarrow G_{5,1} \text{ and }$ **gcd(5,1)=1}.**

The adjacency matrix of X is

 (Fig 1.1)

The polynomial represented by X is $k(x)=1+x^4$

In above Figure 1.1, the vertex chromatic number $(G)=$ 3 and Edge chromatic number is 3.

Hence X corresponds to the cyclic code $C = \langle x \rangle$. Since the degree of the generator polynomial $k(x)$ is 4, dimension of the code is **5** and has no error correcting codes. **(5/1)=3**

Example 3.1.2: The *circular chromatic number* of a graph G is defined as $\chi_c(G)=\inf\{5/2 : G \rightarrow G_{5,2} \text{ and }$ **gcd(5,2)=1}.**

The adjacency matrix of X is

Vertex coloring graph Edge coloring graph (Fig 1.2)

The polynomial represented by X is $k(x)=x^2+x^3$

Vol. 13 Issue 9, September 2024

In above Figure 1.2, the vertex chromatic number $(G)=5$ and Edge chromatic number is 5.

Hence X corresponds to the cyclic code $C = \langle x \rangle$. Since the degree of the generator polynomial $k(x)$ is 3, dimension of the code is **5** and has no error correcting codes. $(G_{5/2})=5$

Example 3.1.3: The *circular chromatic number* of a graph G is defined as $\chi_c(G)=\inf\{5/3 : G \rightarrow G_{5,3} \text{ and }$ **gcd(5,3)=1 }.**

The adjacency matrix of X is

$$
\begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}
$$

Vertex coloring graph Edge coloring graph

(Fig 1.3)

The polynomial represented by X is $k(x)=x^2+x^3$

In above Figure 1.3, the vertex chromatic number $(G)= 5$ and Edge chromatic number is 5.

Hence X corresponds to the cyclic code $C = \langle x \rangle$. Since the degree of the generator polynomial $k(x)$ is **3**, dimension of the code is **5** and has no error correcting codes. $(G_{5/3})=5$

()=inf{ 5/1, 5/2 and 5/3} is 5/1=3

Example 3.2.1: The *circular chromatic number* of a graph G is defined as $\chi_c(G)=\inf\{7/1: G \rightarrow G_{7,1}\}$ and **gcd(7,1)=1 }.**

The adjacency matrix of X is

.

 (Fig 1.4)

The polynomial represented by X is $k(x)=x+x^6$ In above Figure 1.4, the vertex chromatic number $(G)=3$ and Edge chromatic number is 3.

Hence X corresponds to the cyclic code $C = \langle x \rangle$. Since the degree of the generator polynomial $k(x)$ is **6**, dimension of the code is **7** and has no error correcting codes. $(G_{7/1})=3$

Example 3.2.2: The *circular chromatic number* of a graph G is defined as $\chi_c(G)=\inf\{7/2: G\rightarrow G_{7,2} \text{ and }$ **gcd(7,2)=1 }.**

The adjacency matrix of X is

Vertex coloring graph Edge coloring graph (Fig 1.5)

The polynomial represented by X is $k(x) = x^2 + x^5$ In above Figure 1.3, the vertex chromatic number $(G)= 4$ and Edge chromatic number is 7.

Hence X corresponds to the cyclic code $C = \langle x \rangle$. Since the degree of the generator polynomial $k(x)$ is **5**, dimension of the code is **7** and has no error correcting codes. $(G_{7/2})=4$

Example 3.2.3: The *circular chromatic number* of a graph G is defined as $\chi_c(G)=\inf\{7/3: G \rightarrow G_{7,3} \text{ and }$ **gcd(7,3)=1 }.**

The adjacency matrix of X is

Vertex coloring graph Edge coloring graph (Fig 1.6)

The polynomial represented by X is $k(x)= x^3+x^4$

In above Figure 1.3, the vertex chromatic number $(G)= 4$ and Edge chromatic number is 7.

Hence X corresponds to the cyclic code $C = \langle x \rangle$. Since the degree of the generator polynomial $k(x)$ is **4**, dimension of the code is **7** and has no error correcting codes. $(G_{7/3})=4$

 ()=inf{ 7/1, 7/2 and 7/3} is 7/1=3

Example 3.3.1:The *circular chromatic number* of a graph G is defined as $\chi_c(G)=\inf\{11/1: G \rightarrow G_{11,1} \text{ and }$ **gcd(11,1)=1 }.**

The adjacency matrix of X is

Vertex coloring graph Edge coloring graph (Fig 1.7)

The polynomial represented by X is $k(x)=x+x^{10}$

In above Figure 1.7, the vertex chromatic number $(G)=$ 3 and Edge chromatic number is 3.

Hence X corresponds to the cyclic code $C = \langle x \rangle$. Since the degree of the generator polynomial $k(x)$ is 10, dimension of the code is 11 and has no error correcting codes. $(G_{11/1})=3$

Example 3.3.2:The *circular chromatic number* of a graph G is defined as $\chi_c(G)=\inf\{11/2: G \rightarrow G_{11,2} \text{ and }$ **gcd(11,2)=1 }.**

The adjacency matrix of X is

(Fig 1.8)

The polynomial represented by X is $k(x)=x^2+x^9$ In above Figure 1.8, the vertex chromatic number $(G)= 4$ and Edge chromatic number is 6.

Hence X corresponds to the cyclic code $C = \langle x \rangle$. Since the degree of the generator polynomial $k(x)$ is 9, dimension of the code is 11 and has no error correcting codes. $(G_{11/2})=4$

Example 3.3.3:The *circular chromatic number* of a graph G is defined as $\chi_c(G)=\inf\{11/3: G \rightarrow G_{11,3} \text{ and }$ **gcd(11,3)=1 }.**

The adjacency matrix of X is

Vertex coloring graph Edge coloring graph

 (Fig 1.9)

The polynomial represented by X is $k(x)=x^3+x^7$ In above Figure 1.9, the vertex chromatic number $(G)= 4$, edge chromatic number is 6.

Hence X corresponds to the cyclic code $C = \langle x \rangle$. Since the degree of the generator polynomial $k(x)$ is 7, dimension of the code is 11 and has no error correcting codes. $(G_{11/3})=4$

Example3.3.4:The *circular chromatic number* of a graph G is defined as $\chi_c(G)=\inf\{11/4: G \rightarrow G_{11,4} \text{ and }$ **gcd(11,4)=1}**

The adjacency matrix of X is

Vertex coloring graph Edge coloring graph (Fig 1.10)

The polynomial represented by X is $k(x)=x^4+x^7$ In above Figure 1.10, the vertex chromatic number $(G)= 4$ and Edge chromatic number is 6.

Hence X corresponds to the cyclic code $C = \langle x \rangle$. Since the degree of the generator polynomial $k(x)$ is 7, dimension of the code is 11 and has no error correcting codes. $(G_{11/4})=4$

Example 3.3.5:The *circular chromatic number* of a graph defined as $\chi_c(G)=\inf\{11/5: G \rightarrow G_{11,5} \text{ and }$ **gcd(11,5)=1}** The adjacency matrix of X is

Vertex coloring graph Edge coloring graph (Fig 1.11)

The polynomial represented by X is $k(x)= x^5+x^6$ In above Figure 1.11, the vertex chromatic number $(G) = 4$ and Edge

chromatic number is 6.

Hence X corresponds to the cyclic code $C = \langle x \rangle$. Since the degree of the generator polynomial $k(x)$ is 6, dimension of the code is 11 and has no error correcting codes. $(G_{11/5})=4$

 $\chi_c(G)$ = inf{11/1, 11/2, 11/3, 11/4 and 11/5} is $11/1=3$

We observe that the above graphs , the two circular cliques $G_{k,d}$ at distance d such that some (k',d') precolouring of the two cliques (Vertex chromatic number and Edge chromatic

.

number $d \geq 2$ are non-extendible. And the **dimensions of generator matrix are same. Also the circular chromatic numbers are**

- $\triangleright \quad \chi_c(G) = \inf\{5/1, 5/2 \text{ and } 5/3\} \text{ is } 5/1=3$
- $\triangleright \quad \chi_c(G) = \inf\{ 7/1, 7/2 \text{ and } 7/3 \} \text{ is } 7/1 = 3$
- \triangleright (G)= inf{11/1, 11/2, 11/3, 11/4 and 11/5} is $11/1=3$

HOMOMORPHISM OF A CIRCULAR GRAPHS:

A k-colori[ng,](https://en.wikipedia.org/wiki/Graph_coloring) for some integer k, is an assignment of one of k colors to each vertex of a graph G such that the endpoints of each edge get different colors. The k-colorings of G correspond exactly to homomorphisms from G to th[e complete](https://en.wikipedia.org/wiki/Complete_graph) [graph](https://en.wikipedia.org/wiki/Complete_graph) K_k . [3] Indeed, the vertices of K_k correspond to the k colors, and two colors are adjacent as vertices of K_k if and only if they are different. Hence a function defines a homomorphism to K_k if and only if it maps adjacent vertices of G to different colors (i.e., it is a k-coloring). In particular, G is k-colorable if and only if it is K_k -colorabl[e.\[3\]](https://en.wikipedia.org/wiki/Graph_homomorphism#cite_note-FOOTNOTECameron20061HellNe%C5%A1et%C5%99il2004Proposition_1.7-12)

If there are two

homomorphisms $G \to H$ and $H \to K_k$, then their composition $G \to K_k$ is also a homomorphism.[\[1\]](https://en.wikipedia.org/wiki/Graph_homomorphism#cite_note-FOOTNOTEHellNe%C5%A1et%C5%99il2004%C2%A71.7-13) In other words, if a graph H can be colored with k colors, and there is a homomorphism from G to H, then G can also be k-colored. Therefore, $G \to H$ implies $\gamma(G) \leq \gamma(H)$, where χ denotes the [chromatic number](https://en.wikipedia.org/wiki/Chromatic_number) of a graph (the least k for which it is k-colorable).[4]

DIRECT PRODUCT GRAPHS: The direct product

 $G \times H$ of graphs G and H is the graph with the vertex set V (G) \times V (H), two vertices (x, y) and (v, w) being adjacent in G \times H if and only if xv \in E(G) and yw \in $E(H)$.

PREPOSITION3.3: Let $\varphi: G \rightarrow H$ be a homomorphism and let $v \in V(G)$. The homomorphism φ is *uniquely* extendible at ν if whenever $q: G \rightarrow H$ is a homomorphism with $g(u)=\varphi(u)$ for all $u\neq v$, then $g(v)=\varphi(v)$. If φ is uniquely extendible at v for all $v \in V(G)$, we simply say φ is *uniquely extendible*[1].

PREPOSITION 3.4: Let G and H be graphs. The *extension product* G X H has as its vertex set $V(G)\times V(H)$ with $(g_1,h_1)(g_2,h_2)$ an edge if $q_1q_2∈E(G)$ and either $h_1h_2∈E(H)$ or $h_1=h_2$. The direct product of G with a reflexive copy (a loop on each vertex) of H .

Proof: The direct product of G and H is the graph, denoted as $G \times H$, whose vertex is V (G) $\times V$ (H), and for which vertices (g, h) and (g', h') are adjacent precisely if $gg' \in E(G)$ and hh' $\in E(H)$.

Thus, V $(G \times H) = \{(g, h) : g \in V(G) \text{ and } h \in V$ (H)},

 $E(G \times H) = \{(g, h)(g', h') : gg' \in E(G) \text{ and }$ $hh'E(H)$.

 Other names for the direct product that have appeared in the literature are tensor product, Kronecker product, cardinal product, relational product, cross product, conjunction, weak direct product, or categorical product.

A product $G \times H$ has a loop at (g, h) if and only if both G and H have loops at g and h, respectively.

 Moreover, if G has no loop at g, then the Hlayer $H(g,h)$ is disconnected; whereas if G has a loop at g, then $H(g,h)$ is isomorphic to H.

Suppose (g, h) and (g', h') are vertices of a direct product G×H and n is an integer for which G has a g, g′- walk of length n and H has an h, h′- walk of length n. Then G×H has a walk of length n from (g, h) to (g', h) h'). The smallest such n (if it exists) equals $d((g, h),$ (g', h')). If no such n exists, then $d((g, h), (g', h')) =$ ∞.

Example 3.4.1: Let G and H be graphs. The *extension product* φ : $G_{2,2} \rightarrow P_2 \times P_2$ has as its vertex set $V(G_2)\times V(H_2)$ with $(g_1,h_1)(g_2,h_2)$ an edge if $g_1g_2 \in E(G)$ and either $h_1h_2 \in E(H)$ or $h_1=h_2$.

Vertex and Edge coloring graphs of G_2 and G_3

Let $\varphi: G_{2,2} \to P_2 \times P_2$ the generatoer of a matrix is 1 1 1 1]

P2×P2 – Vertex and Edge graphs (Fig 1.12)

The polynomial represented by X is $k(x)=1+x$

Vol. 13 Issue 9, September 2024

In above Figure 1.12, the vertex chromatic number $(G) = \varphi: G_{2,2} \rightarrow P_2 \times P_2$ is 4, edge chromatic number is 2.

Hence X corresponds to the cyclic code $C = \langle x \rangle$. Since the degree of the generator polynomial $k(x)$ is 1, dimension of the code is 2 and has no error correcting codes.

Example 3.4.2: Let G and H be graphs. The *extension product* $P_2 \times P_3$ has as its vertex set $V(G_2) \times V(H_3)$ with $(g_1,h_1)(g_2,h_2)$ an edge if $g_1g_2\in E(G)$ and either $h_1h_2 \in E(H)$ or $h_1=h_2$.

Let $\varphi: G_{2,3} \to P_2 \times P_3$, the generator of a matrix is $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

P2×P3 – Vertex and Edge graphs (Fig 1.13)

The polynomial represented by X is $k(x)=1 + x+x^2$ In above Figure 1.13, the vertex chromatic number $(G) = \varphi: G_{2,3} \rightarrow P_2 \times P_3$ is 4, edge chromatic number is **4**.

Hence X corresponds to the cyclic code $C = \langle x \rangle$. Since the degree of the generator polynomial $k(x)$ is 2, dimension of the code is 2 and has no error correcting codes.

Example 3.4.3 :Let G and H be graphs. The *extension product* $\varphi: G_{2,5} \to P_2 \times P_5$ has as its vertex set $V(G_2)\times V(H_5)$ with $(g_1,h_1)(g_2,h_2)$ an edge if $g_1g_2∈E(G)$ and either $h_1h_2∈E(H)$ or $h_1=h_2$.

Let $\varphi: G_{2,5} \to P_2 \times P_5$, the generator of a matrix is 1 1 1 1 1 1 1 1 1 1 $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

 P2×P5 – Vertex and Edge graphs (Fig 1.14)

The polynomial represented by X is $k(x)= 1 + x +$ **x ²+x³+x⁴**

In above Figure 1.14, the vertex chromatic number $(G) = \varphi: G_{2,5} \rightarrow P_2 \times P_5$ is 4, edge chromatic number is **6**.

Hence X corresponds to the cyclic code $C = \langle x \rangle$. Since the degree of the generator polynomial $k(x)$ is 4, dimension of the code is 2 and has no error correcting codes.

Example 3.4.4:Let G and H be graphs. The *extension product* $\varphi: G_{2,7} \to P_2 \times P_7$ has as its vertex set $V(G_2)\times V(H_7)$ with $(g_1,h_1)(g_2,h_2)$ an edge if $g_1g_2 \in E(G)$ and either $h_1h_2 \in E(H)$ or $h_1=h_2$.

The polynomial represented by X is $k(x)= 1 + x +$ $x^2+x^3+x^4+x^5+x^6$

In above Figure 1.15, the vertex chromatic number $(G) = \varphi: G_{2,7} \rightarrow P_{2} \times P_{7}$ is 4, edge chromatic number is **6**.

Hence X corresponds to the cyclic code $C = \langle x \rangle$. Since the degree of the generator polynomial $k(x)$ is 6, dimension of the code is 2 and has no error correcting codes.

We observe that from the graphs , the product of two circular cliques $G_{k,d}$ at distance d such that some (k',d) ′)-precolouring of the two cliques(Vertex chromatic number and Edge chromatic number $d \ge 2$) are nonextendible. And the dimensions of generator matrix are same.

IV.CONCLUSION:

We finish the paper with an extension result for (k,d) -colourings of $G_{k,d}$ cliques in k-colourable graphs.

1. In above figures, the two circular cliques $G_{k,d}$ at distance d such that some (k', d') -precolouring of the two cliques(Vertex chromatic number and Edge chromatic number) are non-extendible. And the dimensions of generator matrix are same. The circular chromatic numbers are always same.

- $\triangleright \quad \chi_c(G) = \inf\{5/1, 5/2 \text{ and } 5/3\} \text{ is } 5/1=3$
- $\triangleright \quad \chi_c(G) = \inf\{ 7/1, 7/2 \text{ and } 7/3 \} \text{ is } 7/1 = 3$
- \triangleright (G)= inf{11/1, 11/2, 11/3, 11/4 and 11/5} is $11/1=3$, etc.

2. $\varphi: G_{k,d} \to P_n$, fi φ is uniquely extendible at ν for all $v \in V(G)$, we simply say φ is *uniquely extendible*. The product of two circular cliques $G_{k,d}$ at distance d such that some $(k'\,d')$ -precolouring of the two cliques(Vertex chromatic number and Edge chromatic number $d \ge 2$) are non-extendible. And dimensions of generator matrix are same, but degree of the polynomials is increasing.

- $\chi_c(G) = \varphi: G_{2,2} \rightarrow P_2 \times P_2$ is 4
- $\triangleright \quad \chi_c(G) = \varphi: G_{2,3} \to P_2 \times P_3$ is 4
- $\triangleright \quad \chi_c(G) = \varphi: G_{2,5} \rightarrow P_2 \times P_5$ is 4
- $\chi_c(G) = \varphi: G_{2,7} \rightarrow P_2 \times P_7$ is 4

V. REFERENCES:

[1].P. Hell, J. Nešetři Graphs and

[Hom](https://www.sciencedirect.com/science/article/pii/S0012365X11000562#bbr000015)omorphisms, Oxford Lecture Series in Mathematics and its Applications, vol. 28, Oxford University Press, Oxford (2004[\)Google](https://scholar.google.com/scholar_lookup?title=Graphs%20and%20Homomorphisms&publication_year=2004&author=P.%20Hell&author=J.%20Ne%C5%A1et%C5%99il) [Scholar](https://scholar.google.com/scholar_lookup?title=Graphs%20and%20Homomorphisms&publication_year=2004&author=P.%20Hell&author=J.%20Ne%C5%A1et%C5%99il)

[2]. M.O. Albertson, E.H. Moore, Extending graph [colo](https://www.sciencedirect.com/science/article/pii/S0012365X11000562#bbr000015)rings, J. Combin. Theory Ser. B, 77 (1999), pp. 83-95 View PDF View article in Scopus PDF [View article in Scopus](https://www.sciencedirect.com/science/article/pii/S0095895699919135) [Google Scholar](https://scholar.google.com/scholar_lookup?title=Extending%20graph%20colorings&publication_year=1999&author=M.O.%20Albertson&author=E.H.%20Moore)

[3]. M.O. Albertson, D.B. West, Extending [prec](https://www.sciencedirect.com/science/article/pii/S0012365X11000562#bbr000015)olorings to circular colorings, J. Combin. Theory Ser. B, 96 (2006) P.p 472-48[1View PDF](https://www.sciencedirect.com/science/article/pii/S0095895605001474/pdf?md5=ea2bfc07ce2480a6a3c742438727f0b7&pid=1-s2.0-S0095895605001474-main.pdf) [article in](https://www.sciencedirect.com/science/article/pii/S0095895605001474) [Scopus](https://www.scopus.com/inward/record.url?eid=2-s2.0-33747201599&partnerID=10&rel=R3.0.0) [Google Scholar](https://scholar.google.com/scholar_lookup?title=Extending%20precolorings%20to%20circular%20colorings&publication_year=2006&author=M.O.%20Albertson&author=D.B.%20West)

[4]. J.A. Bondy, P. Hell, A note on the star chromatic [num](https://www.sciencedirect.com/science/article/pii/S0012365X11000562#bbr000020)ber, J. Graph Theory, 14 (1990), pp. 479-482 View at publisher Cross Ref in Scopus Google Scholar

[5]. M.O. Albertson, You can't paint yourself into a corner, J. Combin. Theory Ser. B, 73 (1998), pp. 18[9-19](https://www.sciencedirect.com/science/article/pii/S0012365X11000562#bbr000025)[4](https://scholar.google.com/scholar_lookup?title=You%20cant%20paint%20yourself%20into%20a%20corner&publication_year=1998&author=M.O.%20Albertson) [View PDF](https://www.sciencedirect.com/science/article/pii/S0095895698918275/pdf?md5=f1b360eb6c0d4ca3182794eaa7b723f5&pid=1-s2.0-S0095895698918275-main.pdf) [View article](https://www.sciencedirect.com/science/article/pii/S0095895698918275) [in Scopus](https://www.sciencedirect.com/science/article/pii/S0095895698918275) Google Scholar

[6]. C. Thomassen Color-critical graphs on a fixed surface, J. Combin. Theory Ser. B, 70 (1997), pp. 67[-10](https://www.sciencedirect.com/science/article/pii/S0012365X11000562#bbr000030)[0 V](https://scholar.google.com/scholar_lookup?title=Color-critical%20graphs%20on%20a%20fixed%20surface&publication_year=1997&author=C.%20Thomassen)[iew PDF](https://www.sciencedirect.com/science/article/pii/S0095895696917220/pdf?md5=2db5fb817ddd12a5d3e2db39969bc816&pid=1-s2.0-S0095895696917220-main.pdf) [View article](https://www.sciencedirect.com/science/article/pii/S0095895696917220) [in Scopus](https://www.sciencedirect.com/science/article/pii/S0095895696917220) Google Scholar

[7]. D.B. West, Introduction to Graph Theory(2nd edition), Prentice Hall Inc., Upper Saddle River, NJ [\(200](https://www.sciencedirect.com/science/article/pii/S0012365X11000562#bbr000035)1)

Google Sholar

[8]. [Dr.D.Bharath](https://scholar.google.com/scholar_lookup?title=Introduction%20to%20Graph%20Theory&publication_year=2001&author=D.B.%20West)i, K.Ranga Devi, Introduced **Binary cyclic codes in circular cliques**, IJRASET, Vo[lume](https://www.sciencedirect.com/science/article/pii/S0012365X11000562#bbr000035) 12, ISSN NO: 2321-9653, issueVI June 2024

[9] X. Zhu. Circular chromatic number: a survey. Discrete Mathematics, 229:371–410, 2001.