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ABSTRACT: Let G be a coloring graph with circular

chromatic number (𝐺)= {𝑘/d: 𝐺→𝐺𝑘,d, gcd(k,d)=1 and 

d≤|𝑖−𝑗|≤𝑘−d}, 𝐺𝑘,d  are prime circular cliques. If the two 

circular cliques 𝐺𝑘,d at distance 𝑑 such that some (𝑘′,d
′)-precolouring of the two cliques is non-extendible. In 

this section, we examine extending circular colourings of 

𝐺𝑘,d⋈𝑃𝑛 , 𝑃𝑛 is the path of length 𝑛−1 with vertex set 

{1,2,…,𝑛}. In view of the homomorphism G admits a 

(k,d)-colouring if and only if, there is a homomorphism 

f:𝐺→𝐺𝑘,d. there exist a uniquely extendible 

homomorphisms between circular cliques. 

KEY WORDS: Edge coloring, Vertex coloring, 
Circular chromatic number, Homomorphism, 
Binary cyclic codes.  

I. INTRODUCTION:
Graph coloring theory has a central position in 

discrete mathematics — for its own interest as well as 

for the large variety of applications, dating back to 

the famous four-color problem stated by Guthrie 

in 1852 Zhu[9]. 

Define a(k,d)-colouring of a  graph G is an 

assignment 𝑐:𝑉(𝐺)→{0,1,2,…,𝑘−1} such that for 

𝑢𝑣∈𝐸(𝐺), d≤|𝑐(𝑢)−𝑐(𝑣)|≤𝑘−d, d is any positive 

integer. The circular complete graph or circular 

clique 𝐺𝑘,d has vertices {0,1,…,𝑘−1} and edges 

{𝑖𝑗:d≤|𝑖−𝑗|≤𝑘−d}. Thus 𝐺𝑘,1 is simply the (classical) 

complete graph on 𝑘-vertices. Graph 

coloring is the procedure of assignment of colors to 

each vertex of a graph G such that no 

adjacent vertices get same color.
 The minimum 𝑘 for which 𝐺 admits a 𝑘-coloring is 

called the chromatic number of 𝐺 and denoted by 

(𝐺).  

There are now many papers on colouring 

extensions. The introduction of [3] 

provides a nice overview on coloring. We 

focus on the situation where the precoloured 

vertices 
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induce a collection of cliques.  Let 𝐺 be a graph with 

circular chromatic number (𝐺)=𝑘/d  [8]is isomorphic 

to the circular clique 𝐺𝑘,d. Suppose the vertices 

of 𝑃 have been precoloured with a (𝑘′,d′)-colouring. 

In [2] Albertson and Moore study the problem of 

extending a (𝑘+1)-colouring of a 𝑘-colourable graph 

where the precoloured components are 𝑘-cliques. 

They also study the problem when the precoloured 

components are general subgraphs. In the latter case 

the penalty for having general subgraphs is a larger 

number of colours may be required for the extension. 

In this spirit we now turn attention to extending 

a (𝑘′,d′)-colouring of a (𝑘,d)-colourable graph where 

the precoloured components are circular cliques. 

We now consider extending (classical) 𝑘′-colourings 

where the precoloured components are 𝐺𝑘,d. The 

general problem of extending colourings where the 

precoloured components are not cliques is considered 

in [2]. In our work the assumption that the 

precoloured components are circular cliques  

II. PRELIMINARIES:

DEFINITION 2.1: An undirected graph is a type 
of graph where the edges have no specified direction 

assigned to the them.. 

DEFINITION 2.2:  A binary code is cyclic code if it

is a linear [n, k] code and if for every codeword (c1, 

c2, . . . , cn) ∈ C we also have that (cn, c1, . . . , cn−1) is 

again a codeword in C. 

Binary Cyclic Codes in Extending 
Circular Cliques

 Vertex coloring is a concept in graph

theory that refers to assigning colors to the
vertices of a graph in such a way that no two
adjacent vertices have the same color..

 In graph theory, Edge coloring of a graph is
an assignment of “colors” to the edges of the

graph so that no two adjacent edges have the

same color
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DEFINITION 2.3: Graph coloring is the procedure 
of assignment of colors to each vertex of a graph 
G such that no adjacent vertices get same color.

DEFINITION 2.4: The chromatic number of a

graph is the minimal number of colours needed to 

colour the vertices in such a way that no two adjacent 

vertices have the same colour. 

III. RESULT AND DISCUSSION:

We find Vertex chromatic number, edges 
chromatic number, Degree and Dimensions of the 
generator matrix.     

A(k,d)-colouring of a  graph G is an 

assignment 𝑐:𝑉(𝐺)→{0,1,2,…,𝑘−1} such that 

for 𝑢𝑣∈𝐸(𝐺), d≤|𝑐(𝑢)−𝑐(𝑣)|≤𝑘−d, d is any positive 

integer. The circular complete graph or circular 

clique 𝐺𝑘,d has vertices {0,1,…,𝑘−1} and 

edges {𝑖𝑗:d≤|𝑖−𝑗|≤𝑘−d}. Thus 𝐺𝑘,1 is simply the 

(classical) complete graph on 𝑘-vertices. The circular 

complete graphs play the role in circular colourings 

as do the complete graphs in classical colourings. 

Adopting the homomorphism point of view, see [4], 

[5], 𝐺 admits a (𝑘,d)-colouring if and only if, there is 

a homomorphism 𝑓:𝐺→𝐺𝑘,d. Recall, a 

homomorphism 𝑓:𝐺→𝐻 is a 

mapping 𝑓:(𝐺)→𝑉(𝐻) such 

that 𝑢𝑣∈𝐸(𝐺) implies 𝑓(𝑢)𝑓(𝑣)∈𝐸(𝐻). We

write 𝐺→𝐻 to indicate the existence of a 

homomorphism. It turns out that 𝐺𝑘,d→𝐺𝑘′,d′ if and 

only if 𝑘/d≤𝑘′/d′. Thus, given a graph 𝐺, if 𝐺→𝐺𝑘,d, 

then 𝐺→𝐺𝑘′,d′ for any 𝑘′/d′≥𝑘/d is surjective. Suppose 

(k≥2d), d is positive integer and k is prime number 

with gcd(k,d)=1, the circular chromatic numbers 

includes all chromatic numbers 𝜒(𝐺)=𝜒𝑐(𝐺) as well as 

odd holes see the below figures. 

The circular chromatic number of a graph 𝐺 is 

defined as  𝜒𝑐(𝐺)=Inf{𝑘/d : 𝐺→𝐺𝑘,d and 

gcd(k,d)=1}. 

In [4], Bondy and Hell show the infimum may 

be replaced by a minimum. The proof depends on 

the fact that optimum colourings must be surjective. 

The surjective mappings play a key role in 

our constructions of non-extendible families. 

Example 3.1.1: The circular chromatic number of a 

graph 𝐺 is defined as 𝜒𝑐(𝐺)=inf{5/1 : 𝐺→𝐺5,1 and 

gcd(5,1)=1}. 

The adjacency matrix of X is

[

1 0 0 0 1
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1]

Vertex coloring graph  Edge coloring graph 

 (Fig 1.1) 

 The polynomial represented by X is k(x)=1+x4 

 In above Figure 1.1, the vertex chromatic number 

(𝐺)= 3 and Edge chromatic number is 3. 

Hence X corresponds to the cyclic code C =<x> . 

Since the degree of the generator polynomial k(x)  is 

4, dimension of the code is 5 and has no error 

correcting codes. (𝐺5/1)=3  

Example 3.1.2: The circular chromatic number of a 

graph 𝐺 is defined as 𝜒𝑐(𝐺)=inf{5/2 : 𝐺→𝐺5,2 and 

gcd(5,2)=1}. 

The adjacency matrix of X is 

[

0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0]

Vertex coloring graph  Edge coloring graph 

 (Fig 1.2) 

The polynomial represented by X is k(x)=x2+x3 
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In above Figure 1.2, the vertex chromatic number 

(𝐺)=5  and Edge chromatic number is 5. 

Hence X corresponds to the cyclic code C =<x> . 

Since the degree of the generator polynomial k(x)  is 

3, dimension of the code is 5 and has no error 

correcting codes. (𝐺5/2)=5  

Example 3.1.3: The circular chromatic number of a 

graph 𝐺 is defined as 𝜒𝑐(𝐺)=inf{5/3 : 𝐺→𝐺5,3 and 

gcd(5,3)=1 }.  

 The adjacency matrix of X is 

[

0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0]

                            

Vertex coloring graph  Edge coloring graph 

(Fig 1.3) 

The polynomial represented by X is k(x)= x2+x3 

In above Figure 1.3, the vertex chromatic number 

(𝐺)= 5 and Edge chromatic number is 5. 

Hence X corresponds to the cyclic code C =<x> . 
Since the degree of the generator polynomial k(x)  is 

3, dimension of the code is 5 and has no error 

correcting codes. (𝐺5/3)=5 

 (𝐺)=inf{ 5/1, 5/2 and 5/3} is 5/1=3 

Example 3.2.1: The circular chromatic number of a 

graph 𝐺 is defined as 𝜒𝑐(𝐺)=inf{7/1: 𝐺→𝐺7,1 and 

gcd(7,1)=1 }. 

The adjacency matrix of X is 

[

0 1 0 0 0 0 1
1 0 1 0 0 0 0
0 1 0 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 1
1 0 0 0 0 1 0]

Vertex coloring graph 
 . 

   Edge coloring graph

The polynomialrepresented by X is k(x)= x+x6 

In above Figure 1.4, the vertex chromatic number 

(𝐺)=3 and Edge chromatic number is 3. 

Hence X corresponds to the cyclic code C =<x> . 

Since the degree of the generator polynomial k(x)  is 

6, dimension of the code is 7 and has no error 

correcting codes. (𝐺7/1)=3 

Example 3.2.2: The circular chromatic number of a 

graph 𝐺 is defined as 𝜒𝑐(𝐺)=inf{7/2: 𝐺→𝐺7,2 and 

gcd(7,2)=1 }.   

The adjacency matrix of X is 

[

0 0 1 0 0 1 0
0 0 0 1 0 0 1
1 0 0 0 1 0 0
0 1 0 0 0 1 0
0 0 1 0 0 0 1
1 0 0 1 0 0 0
0 1 0 0 1 0 0]

 Vertex coloring graph  Edge coloring graph 

 (Fig 1.5) 

The polynomial represented by X is k(x)= x2+x5 

In above Figure 1.3, the vertex chromatic number 

(𝐺)= 4 and Edge chromatic number is 7. 

Hence X corresponds to the cyclic code C =<x> . 

Since the degree of the generator polynomial k(x)  is 

5, dimension of the code is 7 and has no error 

correcting codes. (𝐺7/2)=4 

Example 3.2.3: The circular chromatic number of a 

graph 𝐺 is defined as 𝜒𝑐(𝐺)=inf{7/3: 𝐺→𝐺7,3 and 

gcd(7,3)=1 }.   

The adjacency matrix of X is 

 (Fig 1.4) 
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[

0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1
1 0 0 0 0 0 1
1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0]

Vertex coloring graph   Edge coloring graph  

The polynomial represented by X is k(x)= x3+x4 

In above Figure 1.3, the vertex chromatic number 

(𝐺)= 4 and Edge chromatic number is 7. 

Hence X corresponds to the cyclic code C =<x> . 

Since the degree of the generator polynomial k(x)  is 

4, dimension of the code is 7 and has no error 

correcting codes. (𝐺7/3)=4 

 (𝐺)=inf{ 7/1, 7/2 and 7/3} is 7/1=3 

Example 3.3.1:The circular chromatic number of a 

graph 𝐺 is defined as 𝜒𝑐(𝐺)=inf{11/1: 𝐺→𝐺11,1 and 

gcd(11,1)=1 }.   

The adjacency matrix of X is 

[

0 1 0 0 0 0 0 0 0 0 1
1 0 1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 1 0 1
1 0 0 0 0 0 0 0 0 1 0]

Vertex coloring graph   Edge coloring graph 

 (Fig 1.7) 

The polynomial represented by X is k(x)=x+x10 

In above Figure 1.7, the vertex chromatic number 

(𝐺)= 3 and Edge chromatic number is 3. 

Hence X corresponds to the cyclic code C =<x> . 
Since the degree of the generator polynomial k(x)  is 

10, dimension of the code is 11 and has no error 

correcting codes. (𝐺11/1)=3 

Example 3.3.2:The circular chromatic number of a 

graph 𝐺 is defined as 𝜒𝑐(𝐺)=inf{11/2 : 𝐺→𝐺11,2  and 

 gcd(11,2)=1 }. 

The adjacency matrix of X is 

[

0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 1
1 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 1
1 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 1 0 0]

. 

Vertex coloring graph  Edge coloringraph 

 (Fig 1.8) 

The polynomial represented by X is k(x)=x2 +x9 

In above Figure 1.8, the vertex chromatic number 

(𝐺)= 4 and Edge chromatic number is 6. 

Hence X corresponds to the cyclic code C =<x> . 

Since the degree of the generator polynomial k(x)  is 

9, dimension of the code is 11 and has no error 

correcting codes. (𝐺11/2)=4 

Example 3.3.3:The circular chromatic number of a 

graph 𝐺 is defined as 𝜒𝑐(𝐺)=inf{11/3 : 𝐺→𝐺11,3 and  

gcd(11,3)=1 }.  

The adjacency matrix of X is 

(Fig 1.6)  
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[

0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0]

Vertex coloring graph  Edge coloring graph 

 (Fig 1.9) 

The polynomial represented by X is k(x)= x3 +x7 

In above Figure 1.9, the vertex chromatic number 

(𝐺)= 4, edge chromatic number is 6. 

 Hence X corresponds to the cyclic code C =<x> . 

Since the degree of the generator polynomial k(x)  is 

7, dimension of the code is 11 and has no error 

correcting codes. (𝐺11/3)=4 

Example3.3.4:The circular chromatic number of a 

graph 𝐺 is defined as 𝜒𝑐(𝐺)=inf{11/4 : 𝐺→𝐺11,4 and  

gcd(11,4)=1} 

The adjacency matrix of X is 

[

0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 1 0 0 1
1 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 1
1 0 0 1 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0]

Vertex coloring graph  Edge coloring graph 

 (Fig 1.10) 

The polynomial represented by X is k(x)= x4 +x7 

In above Figure 1.10, the vertex chromatic number 

(𝐺)= 4 and Edge chromatic number is 6. 

Hence X corresponds to the cyclic code C =<x> . 

Since the degree of the generator polynomial k(x)  is 

7, dimension of the code is 11 and has no error 

correcting codes. (𝐺11/4)=4 

Example 3.3.5:The circular chromatic number of a 

graph defined as 𝜒𝑐(𝐺)=inf{11/5 : 𝐺→𝐺11,5 and 

 gcd(11,5)=1} 
The adjacency matrix of X is 

[

0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0]

 . 

Vertex coloring graph  Edge coloring graph 

 (Fig 1.11) 

The polynomial represented by X is k(x)= x5 +x6 

In above Figure 1.11, the vertex chromatic number 

(𝐺)= 4 and Edge 

chromatic number is 6. 

 Hence X corresponds to the cyclic code C =<x> . 

Since the degree of the generator polynomial k(x)  is 

6, dimension of the code is 11 and has no error 

correcting codes.  (𝐺11/5)=4 

𝜒c(𝐺)= inf{11/1, 11/2, 11/3, 11/4 and 11/5} is 

11/1=3 

. 

We observe that the above graphs , the two circular 
cliques 𝐺𝑘,d at distance 𝑑 such that some (𝑘′,d′)-
precolouring of the two cliques (Vertex chromatic 
number and Edge chromatic

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS090082
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 13 Issue 9, September 2024

www.ijert.org
www.ijert.org


number d ≥ 𝟐) are non-extendible. And the 

dimensions of generator matrix are same. Also the 

circular chromatic numbers are   

 𝜒𝑐(𝐺)= inf{ 5/1, 5/2 and 5/3} is 5/1=3

 𝜒𝑐(𝐺)=inf{ 7/1, 7/2 and 7/3} is 7/1=3

 (𝐺)= inf{11/1, 11/2, 11/3, 11/4 and 11/5} is

11/1=3.

HOMOMORPHISM OF A CIRCULAR 
GRAPHS: 
 A k-coloring, for some integer k, is an 

assignment of one of k colors to each vertex of a 

graph G such that the endpoints of each edge get 

different colors. The k-colorings of G correspond 

exactly to homomorphisms from G to the complete 

graph Kk.[3] Indeed, the vertices of Kk correspond to 

the k colors, and two colors are adjacent as vertices 

of Kk if and only if they are different. Hence a 

function defines a homomorphism to Kk if and only if 

it maps adjacent vertices of G to different colors (i.e., 

it is a k-coloring). In particular, G is k-colorable if 
and only if it is Kk-colorable.[3] 

If there are two 

homomorphisms G → H and H → Kk, then their 

composition G → Kk is also a homomorphism.[1] In 

other words, if a graph H can be colored 

with k colors, and there is a homomorphism 

from G to H, then G can also be k-colored. 

Therefore, G → H implies χ(G) ≤ χ(H), 

where χ denotes the chromatic number of a graph (the 

least k for which it is k-colorable).[4] 

DIRECT PRODUCT GRAPHS: The direct product 

PREPOSITION3.3: Let 𝜑:𝐺→𝐻 be a 

homomorphism and let 𝑣∈V(𝐺). The 

homomorphism 𝜑 is uniquely extendible at 𝑣 if 

whenever 𝑔:𝐺→𝐻 is a homomorphism 

with g(𝑢)=𝜑(𝑢) for all 𝑢≠𝑣, then 𝑔(𝑣)=𝜑(𝑣). If 𝜑 is 

uniquely extendible at 𝑣 for all 𝑣∈V(𝐺), we simply 

say 𝜑 is uniquely extendible[1]. 

PREPOSITION 3.4: Let 𝐺 and 𝐻 be graphs. 

The extension product 𝐺 X 𝐻 has as its vertex set 

 𝑉(𝐺)×𝑉(𝐻)  with (𝑔1,h1)(𝑔2,h2) an edge 

if 𝑔1𝑔2∈𝐸(𝐺) and either h1h2∈𝐸(𝐻) or h1=h2. The 

direct  product of 𝐺 with a reflexive copy (a loop on 

each vertex) of 𝐻. 

Proof: The direct product of G and H is the graph, 

denoted as G×H, whose vertex is V (G)×V (H), and 

for which vertices (g, h) and(g′, h′) are adjacent 

precisely if gg′∈E(G) and hh′∈E(H).  

 Thus, V (G×H) = {(g, h) : g∈V (G) and h∈V 

(H)}, 

  E(G×H) = {(g, h)(g′, h′) : gg′∈E(G) and 

hh′∈E(H)}. 

   Other names for the direct product that have 

appeared in the literature are tensor product, 

Kronecker product, cardinal product, relational 

product, cross product, conjunction, weak direct 
product, or categorical product.  

A product G×H has a loop at (g, h)if and only if both 

G and H have loops at g and h, respectively.  

     Moreover, if G has no loop at g, then the Hlayer 

H(g,h) is disconnected; whereas if G has a loop at g, 

then H(g,h) is isomorphic to H.  

     Suppose (g, h) and (g′, h′) are vertices of a direct 

product G×H and n is an integer for which G has a g, 

g′- walk of length n and H has an h, h′- walk of length 

n. Then G×H has a walk of length n from (g, h) to (g′,
h′). The smallest such n (if it exists) equals d((g, h),

(g′, h′)). If no such n exists, then d((g, h), (g′, h′)) =

∞.

Example 3.4.1:Let 𝐺 and 𝐻 be graphs.The extension 

product 𝜑:𝐺2,2→ P2×P2  has as its vertex set 

 𝑉(𝐺2)×𝑉(𝐻2)  with (𝑔1,h1)(𝑔2,h2) an edge 

if 𝑔1𝑔2∈𝐸(𝐺) and either h1h2∈𝐸(𝐻) or h1=h2. 

 Vertex and Edge coloring graphs of G2 and G3 

Let 𝜑:𝐺2,2→ P2×P2 the generatoer of a matrix 

is  [
1 1
1 1

] 

 P2×P2 – Vertex and Edge graphs 

 (Fig 1.12) 

The polynomial represented by X is k(x)=1+x 

G × H of graphs G and H is the graph with the vertex set 
V (G) × V (H), two vertices (x, y) and (v, w) being 
adjacent in G × H if and only if xv ∈ E(G) and yw ∈ 
E(H).
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In above Figure 1.12, the vertex chromatic number 

(𝐺)= 𝜑:𝐺2,2→ P2×P2 is 4, edge chromatic number is 2. 

Hence X corresponds to the cyclic code C =<x> . 

Since the degree of the generator polynomial k(x)  is 

1, dimension of the code is 2 and has no error 

correcting codes. 

Example 3.4.2:Let 𝐺 and 𝐻 be graphs.The extension 

product P2×P3  has as its vertex set  𝑉(𝐺2)×𝑉(𝐻3) 

 with (𝑔1,h1)(𝑔2,h2) an edge if 𝑔1𝑔2∈𝐸(𝐺) and 

either h1h2∈𝐸(𝐻) or h1=h2.  

Let 𝜑:𝐺2,3→ P2×P3 , the generator of a matrix 

is  [
1 1 1
1 1 1

] 

P2×P3 – Vertex and Edge graphs 

(Fig 1.13) 

The polynomial represented by X is k(x)=1 + x+x2 

In above Figure 1.13, the vertex chromatic number 

(𝐺)= 𝜑:𝐺2,3→ P2×P3  is 4, edge chromatic number is 

4. 

Hence X corresponds to the cyclic code C =<x> . 

Since the degree of the generator polynomial k(x)  is 

2, dimension of the code is 2 and has no error 

correcting codes. 

Example 3.4.3 :Let 𝐺 and 𝐻 be graphs.The extension 

product 𝜑:𝐺2,5→ P2×P5  has as its vertex set 

 𝑉(𝐺2)×𝑉(𝐻5)  with (𝑔1,h1)(𝑔2,h2) an edge 

if 𝑔1𝑔2∈𝐸(𝐺) and either h1h2∈𝐸(𝐻) or h1=h2.  

Let 𝜑:𝐺2,5→ P2×P5,  the generator of a matrix 

is  [
1 1 1 1 1
1 1 1 1 1

] 

 P2×P5 – Vertex and Edge graphs 

 (Fig 1.14) 

The polynomial represented by X is k(x)= 1 + x + 

x2+x3+x4 

In above Figure 1.14, the vertex chromatic number 

(𝐺)= 𝜑:𝐺2,5→ P2×P5  is 4, edge chromatic number is 

6. 

 Hence X corresponds to the cyclic code C =<x> . 

Since the degree of the generator polynomial k(x)  is 

4, dimension of the code is 2 and has no error 

correcting codes. 

Example 3.4.4:Let 𝐺 and 𝐻 be graphs.The extension 

product 𝜑:𝐺2,7→ P2×P7  has as its vertex set 

 𝑉(𝐺2)×𝑉(𝐻7)  with (𝑔1,h1)(𝑔2,h2) an edge 

if 𝑔1𝑔2∈𝐸(𝐺) and either h1h2∈𝐸(𝐻) or h1=h2.  

Let 𝜑:𝐺2,7→ P2×P7,  the generator of a matrix 

is  [
1 1 1 1 1 1 1
1 1 1 1 1 1 1

] 

 P2×P7 – Vertex and Edge graphs 

     (Fig 1.15) 

The polynomial represented by X is k(x)= 1 + x + 

x2+x3+x4+x5+x6 

In above Figure 1.15, the vertex chromatic number 

(𝐺)= 𝜑:𝐺2,7→ P2×P7  is 4, edge chromatic number is 

6. 

Hence X corresponds to the cyclic code C =<x> . 

Since the degree of the generator polynomial k(x)  is 

6, dimension of the code is 2 and has no error 

correcting codes. 

We observe that from the graphs , the product of two  
circular cliques 𝐺𝑘,d at distance 𝑑 such that some (𝑘′,d
′)-precolouring of the two cliques( Vertex chromatic 
number and Edge chromatic number d ≥ 𝟐) are non-
extendible. And the dimensions  of generator matrix 
are same.  
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 𝜒(𝐺)= 𝜑:𝐺2,2→ P2×P2 is 4

 𝜒(𝐺)= 𝜑:𝐺2,3→ P2×P3  is 4

 𝜒(𝐺)= 𝜑:𝐺2,5→ P2×P5  is 4

 𝜒(𝐺)= 𝜑:𝐺2,7→ P2×P7  is 4

IV.CONCLUSION:
  We finish the paper with an extension result 

for (𝑘,d)-colourings of 𝐺𝑘,d cliques in 𝑘-colourable 

graphs.  

1. In above figures, the two circular cliques 𝐺𝑘,d at 
distance 𝑑 such that some ( 𝑘′,d′)-precolouring of the 
two cliques( Vertex chromatic number and Edge 
chromatic number) are non-extendible. And  the 
dimensions of generator matrix are same. The circular 
chromatic numbers are always same.

 𝜒𝑐(𝐺)= inf{ 5/1, 5/2 and 5/3} is 5/1=3

 𝜒𝑐(𝐺)=inf{ 7/1, 7/2 and 7/3} is 7/1=3

 (𝐺)= inf{11/1, 11/2, 11/3, 11/4 and 11/5} is 
11/1=3, etc.

2. 𝜑:𝐺k,d→Pn , if 𝜑 is uniquely extendible at 𝑣 for all 
𝑣∈𝑉(𝐺), we simply say 𝜑 is uniquely extendible. The 
product of two circular cliques 𝐺𝑘,d at distance 𝑑 such 
that some (𝑘′,d′)-precolouring of the two

cliques( Vertex chromatic number and Edge 
chromatic number d ≥ 2) are non-extendible. And the 
dimensions of generator matrix are same, but degree 
of the polynomials is increasing.

 𝜒𝑐(𝐺)= 𝜑:𝐺2,2→ P2×P2 is 4

 𝜒𝑐(𝐺)= 𝜑:𝐺2,3→ P2×P3  is 4

 𝜒𝑐(𝐺)= 𝜑:𝐺2,5→ P2×P5  is 4

 𝜒c(𝐺)= 𝜑:𝐺2,7→ P2×P7  is 4
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