
    

Blocker: A Blocker  Of  Signature Free Buffer Overflow Attack  
 

 

L.Raghavendar Raju                          Prof. D. Jamuna                               M.Janardhan Reddy 

Associate Professor, Dept of CSE   Professor & HOD, Dept of CSE   M Tech. Research  Scholar,  

JPNCE – Mahabubnagar, A. P.       JPNCE – Mahabubnagar, A. P.     JPNCE Mahabubnagar,A.P 

 

ABSTRACT 

 

     We propose Sig Free, an online 

signature-free out-of-the-box application-

layer method for blocking code-injection 

buffer overflow attack messages targeting at 

various Internet services such as web 

service. Motivated by the observation that 

buffer overflow attacks typically contain 

executables whereas legitimate client 

requests never contain executables in most 

Internet services, Sig Free blocks attacks by 

detecting the presence of code. Unlike the 

previous code detection algorithms, Sig Free 

uses a new data-flow analysis technique 

called code abstraction that is generic, fast, 

and hard for exploit code to evade. Sig Free 

is signature free, thus it can block new and 

unknown buffer overflow attacks; Sig Free 

is also immunized from most attack-side 

code obfuscation methods. Since Sig Free is 

a transparent deployment to the servers 

being protected, it is good for economical 

Internet-wide deployment with very low 

deployment and maintenance cost. We 

implemented and tested Sig Free; our 

experimental study Shows that the 

dependency-degree-based Sig Free could 

block all types of code-injection attack 

packets (above 750) tested in our 

experiments with very few false positives. 

Moreover, Sig Free causes very small extra 

latency to normal client requests when some 

requests contain exploite code. 

 

Index Terms—Intrusion detection, buffer 

overflow attacks, code-injection attacks. 

 

1. INTRODUCTION 

 

     Throughout the history of cyber security, 

buffer overflow is one of the most serious 

vulnerabilities in computer systems. Buffer 

overflow vulnerability is a root cause for 

most of the cyber attacks such as server 

breaking in, worms, zombies, and bot nets. 

A buffer overflow occurs during program 

execution when a fixed-size buffer has had 

too much data copied into it. This causes the 

data to overwrite into adjacent memory 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

1www.ijert.org



locations, and depending on what is stored 

there, the behavior of the program itself 

might be affected. Although taking a 

broader viewpoint, buffer overflow attacks 

do not always carry binary code in the 

attacking requests (or packets),1 code-

injection buffer overflow attacks such as 

stack smashing probably count for most of 

the buffer overflow attacks that have 

happened in the real world. 

 

      Although tons of research has been done 

to tackle buffer overflow attacks, existing 

defenses are still quite limited in meeting 

four highly desired requirements: (R1) 

simplicity in maintenance; (R2) 

transparency to existing (legacy) server OS, 

application software, and hardware; (R3) 

resiliency to obfuscation; (R4) economical 

Internet-wide deployment. As a result, 

although several very secure solutions have 

been proposed, they are not pervasively 

deployed, and a considerable number of 

buffer overflow attacks continue to succeed 

on a daily basis. 

 

       To see how existing defenses are 

limited in meeting these four requirements, 

let us break down the existing buffer 

overflow defenses into six classes, which we 

will review shortly in Section 2: (1A) 

Finding bugs in source code.(1B) Compiler 

extensions. (1C) OS modifications.(1D) 

Hardware modifications. (1E) Defense-side 

obfuscation.(1F) Capturing code running 

symptoms of buffer overflow attacks . (Note 

that the above list does not include binary-

code-analysis-based defenses, which we will 

address shortly.) We may briefly summarize 

the limitations of these defenses in terms of 

the four requirements as follows: 1) Class 

1B, 1C, 1D,and1E defenses may cause 

substantial changes to existing 

(legacy)server OSes, application software, 

and hardware, thus they are not transparent. 

Moreover, Class 1E defenses generally 

cause processes to be terminated. As a 

result, many businesses do not view these 

changes and the process termination 

overhead as economical deployment. 2) 

Class1F defenses can be very secure, but 

they either suffer from significant runtime 

overhead or need special auditing or 

diagnosis facilities, which are not commonly 

available in commercial services. As a 

result, Class 1F defenses have limited 

transparency and potential for economical 

deployment.3) Class 1A defenses need 

source code, but source Code is unavailable 

to many legacy applications. 

 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

2www.ijert.org



     Besides buffer overflow defenses, worm 

signatures can be generated and used to 

block buffer overflow attack packets. 

Nevertheless, they are also limited in 

meeting the four requirements, since they 

either rely on signatures, which introduce 

maintenance overhead, or are not very 

resilient to attack-side obfuscation. 

 

 

Fig.1. Sig Free is an application layer 

blocker between the protected server and the 

corresponding firewall. 

 

     To overcome the above limitations, in 

this paper, we propose Sig Free, an online 

buffer overflow attack blocker, to protect 

Internet services. The idea of Sig Free is 

motivated by an important observation that 

―the nature of communication to and from 

network services is predominantly or 

exclusively data and not executable code‖ . 

In particular, as summarized in  1)on 

Windows platforms, most web servers (port 

80) accept data only; remote access services 

(ports 111, 137, 138, 139) accept data only; 

Microsoft SQL Servers (port 1434), which 

are used to monitor Microsoft SQL 

Databases, accept data only. 2) On Linux 

platforms, most Apache web servers (port 

80) accept data only; BIND (port 53) 

accepts data only; SNMP (port 161)accepts 

data only; most Mail Transport (port 25) 

accepts data only; Database servers(Oracle, 

MySQL, Postgre SQL)at ports 1521, 3306, 

and 5432 accept data only. 

 

     Since remote exploits are typically binary 

executable code, this observation indicates 

that if we can precisely distinguish (service 

requesting) messages containing binary code 

from those containing no binary code, we 

can protect most Internet services (which 

accept data only) from code injection buffer 

overflow attacks by blocking the messages 

that contain binary code. 

 

      Accordingly, Sig Free (Fig. 1) works as 

follows: Sig Free is an application layer 

blocker that typically stays between a 

service and the corresponding firewall. 

When a service requesting message arrives 

at Sig Free, Sig Free first uses anew 

O(N)algorithm, where N is the byte length 

of the message, to disassemble and distill all 

possible instruction sequences from the 

message’s payload, where every byte in the 

payload is considered as a possible starting 

point of the code embedded (if any). 

However, in this phase, some data bytes 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

3www.ijert.org



may be mistakenly decoded as instructions. 

In phase 2,Sig Free uses a novel technique 

called code abstraction. Code abstraction 

first uses data flow anomaly to prune useless 

instructions in an instruction sequence, then 

compares the number of useful instructions 

(Scheme 2) or dependence degree (Scheme 

3) to a threshold to determine if this 

instruction sequence (distilled in phase 1) 

contains code. Unlike the existing code 

detection algorithms that are based on 

signatures, rules, or control flow detection, 

Sig Free is generic and hard for exploit code 

to evade. 

 

2. RELATED WORK 

 

2.1 Prevention/Detection of Buffer 

Overflows 

 

    Existing prevention/detection techniques 

of buffer overflows can be roughly broken 

down into six classes: 

Class 1A: Finding bugs in source code. 

Buffer overflows are fundamentally due to 

programming bugs. Accordingly, various 

bug-finding tools  have been developed. The 

bug-finding techniques used in these tools, 

which in general belong to static analysis, 

include but are not limited to model 

checking and bugs-as-deviant-behavior. 

Class 1A techniques are designed to handle 

source code only, and they do not ensure 

completeness in bug finding. In contrast, Sig 

Free handles machine code embedded in a 

request (message). 

Class 1B: Compiler extensions.―If the 

source code is available, a developer can add 

buffer overflow detection automatically to a 

program by using a modified compiler‖ [1]. 

Three such compilers are Stack Guard [22], 

Pro Police [23], and Return Address 

Defender (RAD) [24]. DIRA [25] is another 

compiler that can detect control hijacking 

attacks, identify the malicious input, and 

repair the compromised program. Class 1B 

techniques require the availability of source 

code. In contrast, Sig Free does not need to 

know any source code. 

Class 1C: OS modifications. Modifying 

some aspects of the operating system may 

prevent buffer overflows such as Pax, 

LibSafe , and e-NeXsh . Class 1Ctechniques 

need to modify the OS. In contrast, Sig Free 

does not need any modification of the OS. 

Class 1D: Hardware modifications. A 

main idea of hardware modification is to 

store all return addresses on the processor. 

In this way, no input can change any return 

address. 

Class 1E: Defense-side obfuscation. 

Address Space Layout Randomization 

(ASLR) is a main component of PaX 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

4www.ijert.org



[26].Address-space randomization, in its 

general form [30], can detect exploitation of 

all memory errors. Instruction set 

randomization [3], [4] can detect all code-

injection attacks, whereas Sig Free cannot 

guarantee detecting all injected code. 

Nevertheless, when these approaches detect 

an attack, the victim process is typically 

terminated. ―Repeated 

attacks will require repeated and expensive 

application restarts, effectively rendering the 

service unavailable‖. 

Class 1F: Capturing code running 

symptoms of buffer overflow attacks. 

Fundamentally, buffer overflows are a code 

running symptom. If such unique symptoms 

can be precisely captured, all buffer 

overflows can be detected. Class 1B, Class 

1C, and Class 1E techniques can capture 

some—but not all—of the running 

symptoms of buffer overflows. For example, 

accessing non executable stack segments 

can be captured by OS modifications; 

compiler modifications can detect return 

address rewriting; and process crash is a 

symptom captured by defense-side 

obfuscation.  

 

 

 

2.2)Worm Detection and Signature 

Generation 
 

    Because buffer overflow is a key target of 

worms when they propagate from one host 

to another, Sig Free is related to worm 

detection. Based on the nature of worm 

infection symptoms, worm detection 

techniques can be broken down into three 

classes: [Class 2A] techniques use such 

macro symptoms as Internet background 

radiation (observed by network telescopes) 

to raise early warnings of Internet-wide 

worm infection [33]. [Class 2B] techniques 

use such local traffic symptoms as content 

invariance, content prevalence, and address 

dispersion to generate worm signatures 

and/or block worms.  

 

2.3) Machine Code Analysis for Security 

Purposes 

      Although source code analysis has been 

extensively studied (see Class 1A), in many 

real-world scenarios, source code is not 

available and the ability to analyze binaries 

is desired. Machine code analysis has three 

main security purposes: (P1) malware 

detection, (P2) to analyze obfuscated 

binaries, and (P3) to identify and analyze the 

code contained in buffer overflow attack . 

 

 

 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

5www.ijert.org



2.4) URI Decoder.  

    The specification for URLs [12] limits the 

allowed characters in a Request-URI to only 

a subset of the ASCII character set. This 

means that the query parameters of a 

request-URI beyond this subset should be 

encoded [12]. Because a malicious payload 

may be embedded in the request-URI as a 

request parameter, the first step of Sig Free 

is to decode the request-URI. 

 

2.5) ASCII Filter.  

    Malicious executable code are normally 

binary strings. In order to guarantee the 

throughput and response time of the 

protected web system, if the query 

parameters of the request-URI and request-

body of a request are both printable ASCII 

ranging from 20-7E in hex, Sig Free allows 

the request to pass (In Section 7.2,we will 

discuss a special type of executable codes 

called alphanumeric shell codes [45] that 

actually use printable ASCII) . 

 

2.6) Instruction sequences distiller (ISD)           

This module distills all possible instruction 

sequences from the query parameters of 

Request-URI and Request-Body (if the 

request as one). 

 

2.7) Instruction sequences analyzer (ISA).    

Using all the instruction sequences distilled 

from the instruction sequences distiller as 

the inputs, this module analyzes these 

instruction sequences to determine whether 

one of them is a program. 

 

3. DISCUSSION 

 

3.1 Robustness to Obfuscation 
 

    Most malware detection schemes include 

a two-stage analysis. The first stage is 

disassembling binary code, and the second 

stage is analyzing the disassembly results. 

There are obfuscation techniques to attack 

each stage and attackers may use them to 

evade detection. Sig Free is robust to most 

of these obfuscation techniques. Obfuscation 

in the first stage. Junk byte insertion is one 

of the simplest obfuscation against 

disassembly. Here, junk bytes are inserted at 

locations that are not reachable at runtime. 

This insertion however can mislead a linear 

sweep algorithm but cannot mislead a 

recursive traversal algorithm, on which our 

algorithm bases. 

 

3.2 Limitations 

    Sig Free also has several limitations. First, 

Sig Free cannot fully handle the branch-

function-based obfuscation, as indicated in 

Table 1. Branch function is a function f(x) 

that, whenever called from x, causes control 

to be transferred to the corresponding 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

6www.ijert.org



location f(x). By replacing unconditional 

branches in a program with calls to the 

branch function, attackers can obscure the 

flow of control in the program. We note that 

there are no general solutions for handling 

branch function at the present state of the 

art. Second, Sig Free cannot fully handle 

self-modifying code. Self-modifying code is 

a piece of code that dynamically modifies 

itself at runtime and could make Sig Free 

mistakenly exclude all its instruction 

sequences. Third, the executable shell codes 

could be written in alphanumeric form . 

Such shell codes will be treated as printable 

ASCII data and thus bypass our analyzer. By 

turning off the ASCII filter, Scheme 2 and 

Scheme 3 can successfully detect 

alphanumeric shell codes; however, it will 

increase computational overhead. It 

therefore requires a slight tradeoff between 

tight security and system performance. 

Fourth, Sig Free does not detect attacks such 

as return-to-libc attacks that just corrupt 

control flow or data without injecting code. 

However, these attacks can be handled by 

some simple methods. For example, return-

to-libc attacks can be defeated by mapping 

the addresses of shared libraries so that the 

addresses contain null bytes. 

 

3.3 Application-Specific Encryption 

Handling 
 

    The proxy-based Sig Free could not 

handle encrypted or encoded data directly. A 

particular example is SSL-enabled web 

server. Enhancing security between web 

clients and web servers by encrypting HTTP 

messages, SSL also causes the difficulty for 

out-of-box malicious code detectors. To 

support SSL functionality, an SSL proxy 

such as Stunnel may be deployed to securely 

tunnel the traffic between clients and web 

servers. In this case, we may simply install 

Sig Free in the machine where the SSL 

proxy is located. It handles the web requests 

in clear text that have been decrypted by the 

SSL proxy. On the other hand, in some web 

server applications, SSL is implemented as a 

server module In this case, Sig Free will 

need to be implemented as a server 

module(though not shown in Fig. 13), 

located between the SSL module and the 

WWW server. We notice that most popular 

web servers allow us to write a server 

module to process requests and specify the 

order of server modules. Detailed study will 

be reported in our future work. 

 

 

 

 

 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

7www.ijert.org



3.4 Applicability 

 

    So far, we only discussed using Sig Free 

to protect web servers. It is worth 

mentioning that our tool is also widely 

applicable to many programs that are 

vulnerable to bufferOver flow attacks. For 

example, the proxy-based Sig Free can be 

used to protect all internet services that do 

not permit executable binaries to be carried 

in requests. Sig Free should not directly be 

used to protect some Internet services that 

do accept binary code such as FTP servers; 

otherwise, Sig Free will generate many false 

positives. To apply Sig Free for protecting 

these Internet services, other mechanisms 

such as white listing need to be used.  

 

   In addition to protecting servers, Sig Free 

can also provide file system real-time 

protection. Buffer overflow vulnerabilities 

Have been found in some famous 

applications such as Adobe Acrobat and 

Adobe Reader , Microsoft JPEGProcessing , 

and Win Amp. 

 

4. CONCLUSION 

 

     We have proposed Sig Free, an online 

signature-free out-of the-box blocker that 

can filter code-injection buffer overflow 

attack messages, one of the most serious 

cyber security threats. Sig Free does not 

require any signatures, thus it can block new 

unknown attacks. Sig Free is immunized 

from most attack-side code obfuscation 

methods and good for economical Internet-

wide deployment with little maintenance 

cost and low performance overhead. 

 

5. ACKNOWLEDGEMENT  

 

    The authors express their deep gratitude 

to the Principal and the Management 

members of JPNCE for their encouragement 

and extensive support in preparing and 

publishing of this paper. 
 

6. REFERENCES 

 

[1] B.A.Kuperman,C.E.Brodley, H. 

Ozdoganoglu, T.N. Vijaykumar,and A. 

Jalote, ―Detecting and Prevention of Stack 

Buffer Overflow Attacks,‖ Comm. ACM, 

vol. 48, no. 11, 2005. 

[2] J. Pincus and B. Baker, ―Beyond Stack 

Smashing: Recent Advances in Exploiting 

Buffer Overruns,‖ IEEE Security and 

Privacy, vol. 2,no. 4, 2004. 

[3] G. Kc, A. Keromytis, and V. Prevelakis, 

―Countering Code-Injection Attacks with 

Instruction-Set Randomization,‖ Proc. 10th 

ACM Conf. Computer and Comm. Security 

(CCS ’03), Oct. 2003. 
 

[4] E. Barrantes, D. Ackley, T. Palmer, D. 

Stefanovic, and D. Zovi, ―Randomized 

Instruction Set Emulation to Disrupt Binary 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

8www.ijert.org



Code Injection Attacks,‖ Proc. 10th ACM 

Conf. Computer and Comm. Security (CCS 

’03), Oct. 2003. 

[5] J. Newsome and D. Song, ―Dynamic 

Taint Analysis for Automatic Detection, 

Analysis, and Signature Generation of 

Exploits on Commodity Software,‖ Proc. 

12th Ann.  Network and Distributed System 

Security Symp. (NDSS), 2005. 

[6] M. Costa, J. Crowcroft, M. Castro, A. 

Rowstron, L. Zhou, L. Zhang,and P. 

Barham, ―Vigilante: End-to-End 

Containment of Internet Worms,‖ Proc. 

20thACMSymp. Operating Systems 

Principles (SOSP),2005. 

[7] Z. Liang and R. Shekar, ―Fast and 

Automated Generation of Attack Signatures: 

A Basis for Building Self-Protecting 

Servers,‖ Proc.12th ACM Conf. Computer 

and Comm. Security (CCS), 2005. 

[8] J. Xu, P. Ning, C. Kil, Y. Zhai, and C. 

Bookholt,―AutomaticDiagnosisandResponse 

toMemory Corruption Vulnerabilities,‖Proc. 

12th ACM Conf. Computer and Comm. 

Security (CCS), 2005. 

[9] S. Singh, C. Estan, G. Varghese, and S. 

Savage, ―The EarlybirdSystem for Real-

Time Detection of Unknown Worms,‖ 

technical report, Univ. of California, San 

Diego, 2003. 

[10] H.-A. Kim and B. Karp, ―Autograph: 

Toward Automated,Distributed Worm 

Signature Detection,‖ Proc. 13th USENIX 

Security Symp. (Security), 2004. 

[11] J. Newsome, B. Karp, and D. Song, 

―Polygraph: AutomaticSignature Generation 

for Polymorphic Worms,‖ Proc. IEEE 

Symp.Security and Privacy (S&P), 2005. 

[12] R. Chinchani and E.V.D. Berg, ―A Fast 

Static Analysis Approachto Detect Exploit 

Code inside Network Flows,‖ Proc. Eighth 

Int’lSymp. Recent Advances in Intrusion 

Detection (RAID), 2005. 

[13] T. Toth and C. Kruegel, ―Accurate 

Buffer Overflow Detection viaAbstract 

Payload Execution,‖ Proc. Fifth Int’l Symp. 

RecentAdvances in Intrusion Detection 

(RAID), 2002. 

[14] C. Kruegel, E. Kirda, D. Mutz, W. 

Robertson, and G. Vigna,―Polymorphic 

Worm Detection Using Structural 

Information of Executables,‖ Proc. Eighth 

Int’l Symp. Recent Advances in Intrusion 

Detection (RAID), 2005. 

[15] The Meta sploit Project, 

http://www.metasploit.com, 2007. 

[16]JempiscodesAPolymorphicShellcodeGe

nerator,http://www.shellcode.com.ar/en/proy

ectos.html, 2007. 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

9www.ijert.org



[17] S. Macaulay, Admmutate: Polymorphic 

ShellcodeEngine,http://www.ktwo.ca 

/security.html, 2007. 

[18]T.Detristan, T. Ulenspiegel, Y. Malcom, 

and M.S.V. Underduk, Polymorphic Shell 

codeEngineUsingSpectrumAnalysis,http://w

ww.phrack.org/show.php?p=61&a=9, 2007. 

[19] D. Wagner, J.S. Foster, E.A. Brewer, 

and A. Aiken, ―A First Step towards 

Automated Detection of Buffer Overrun 

Vulnerabilities,‖ Proc. Seventh Ann. 

Network and Distributed System Security 

Symp.(NDSS ’00), Feb. 2000. 

[20] D. Evans and D. Larochelle, 

―Improving Security Using Extensible 

Lightweight Static Analysis,‖ IEEE 

Software, vol. 19, no. 1, 2002. 

[21] H. Chen, D. Dean, and D. Wagner, 

―Model Checking One Million Lines of C 

Code,‖ Proc. 11th Ann. Network and 

Distributed System Security Symp. (NDSS), 

2004. 

[22] C. Cowan, C. Pu, D. Maier, H. Hinton, 

J. Walpole, P. Bakke,S. Beattie, A. Grier, P. 

Wagle, and Q. Zhang, ―Stack guard: 

Automatic Adaptive Detection and 

Prevention of Buffer-Overflow Attacks,‖ 

Proc. Seventh USENIX Security 

Symp.(Security ’98), Jan. 1998. 

[23] GCC Extension for Protecting 

Applications from Stack-Smashing Attacks, 

http://www.research.ibm.com/trl/projects/se

curity/ssp, 2007. 

 

Mr.L. Raghavendar Raju, 

Working as Associate Professor 

in CSE Dept. Jaya prakash Narayan College 

of Engineering, Mahabubnagar. His areas of 

Interest are in Mobile Adhoc Networks, 

Data Mining, Networking and guided M. 

Tech and B. Tech Students IEEE Projects. 

 

 

Prof.D.Jamuna, Working as 

Professor & Head of CSE 

Dept. Jayaprakash Narayan College of 

Engineering, Mahabubnagar, M.Tech(SE) 

from School of Information Technology, 

JNTUH, Hyderabad. BE(CSE) from 

Vijayanagara Engineering College, Bellary. 

Experience 15 Years in Teaching 

Profession. Her areas of Interest are in 

Wireless Sensor Networks, Data Mining, 

Networking and guided M. Tech and B. 

Tech Students IEEE Projects. She is a 

Member of CSI. 

 

M.JanardhanReddy,IIYear- 

M. Tech(CSE) Research Scholar 

at CSE Dept. Jayaprakash 

NarayanCollegeofEngineering, 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

10www.ijert.org



Mahabubnaar His areas of Interest are in 

Networking, Web Technologies, and 

Distributed System. 

 

 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

11www.ijert.org


