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Abstract  
 

The Laminated cylindrical shells are being used in 

submarine, underground mines, aerospace 

applications and other civil engineering 

applications. Thin cylindrical shells and panels are 

more prone to fail in buckling rather than material 

failure. In this present study linear and non-linear 

buckling analysis of GFRP cylindrical shells under 

axial compression is carried out using general 

purpose finite element program (ANSYS). Non-

linear buckling analysis involves the determination 

of the equilibrium path (or load-deflection curve) 

upto the limit point load by using the Newton-

Raphson approach. Limit point loads evaluated for 

geometric imperfection magnitudes shows an 

excellent agreement with experimental reults [25]. 

The influence of composite cylindrical shell 

thickness, radius variation on buckling load and 

buckling mode has also investigated. Present study 

finds direct application to investigate the effect of 

geometric imperfections  on other advanced grid-

stiffened structures 

 

. 

1. Introduction  

 
Various fields of engineering such as civil, 

mechanical, aerospace and nuclear engineering 

fields the thin walled cylindrical shells finds wider 

applications as primary structural members. The 

stiffened and unstiffened shells made up of metallic 

and laminated composite materials (large diameter 

to thickness ratio) are extensively used in 

underwater, surface, air and space vehicles as well 

as in construction of pressure vessels, storage 

vessels, storage bins and liquid storage tanks. The 

geometric imperfections due to manufacturing 

processes takes dominant role in decreasing the 

buckling load of cylindrical shells.  Buckling is 

often viewed as the controlling failure mode of 

these structures due to its relatively small thickness 

of these structural members. It is therefore essential 

that the buckling strength of the thin shells along 

with knowledge of its buckling has been the subject 

of many researchers in both analytical and 

experimental investigations. 

 

The researchers [1-10] has been investigated the 

problem of cylindrical shell buckling subjected to 

axial compressive loads using approximate 

analytical methods as well as finite element 

methods. The classical buckling load which is 

calculated theoretically much higher than the actual 

buckling load of the cylindrical shell and a knock-

down factor is introduced to evaluate a better 

approximation based on an extensive experimental 

investigation. The effect of bending stresses and 

pre-buckling deformations investigated by Fischer 

[11], Yamaki and Kodama [12] and emphasized 

that the effect of pre-buckling deformations is not a 

primary reason for the difference between the 

classical prediction and the experimental results. 

According to von Karman and Tsien [13], Donnell 

and Wan [14], Koiter et al. [15], Budiansky and 

Hutchinson [16] the initial geometric imperfections 

are the single dominant factor for contributing the 

discrepancy between theories and experiments on 

cylindrical shell buckling. 

The form geometric imperfections and amplitude 

dependent on fabrication process and quality of 

cylindrical shells according to Arbocz and Hol 

[17]. Buckling of imperfect cylindrical shells thus 

remains a subject of active area of research with 

special emphasis on modeling of the real 

imperfections as well as of boundary conditions 

and load eccentricity if any. The buckling of 

cylindrical shell structures taking dimple as 

geometric imperfection pattern was investigated by 

the Shen and Li [18], and Schneider [19].  Frano 

and Forasassi [20], Prabu et al. [21] investigated 

the buckling behavior of imperfect thin cylindrical 

shells under lateral pressure by taking ovality as 
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imperfection sensitivity and observed that buckling 

load decreases with increase in imperfection 

magnitude. To the best of the author‟s knowledge a 

detailed and generalized approach of qualitative 

study on non-linear buckling and post-buckling 

behavior of cylindrical shells including the 

influence of geometric imperfection has been rarely 

found. Recently, Kobayashi et al. [22] employed a 

stabilization technique by using artificial damping 

to investigate the post-buckling behavior of perfect 

Yamaki cylinder subjected to axial compression 

and these researchers emphasized the difficulty of 

using conventional arc-length method when applied 

for the analysis of imperfect cylindrical shells. 

Spagnoli et al. [23] investigated the buckling 

behavior of laminated composite cylinders and a 

correlation study on theoretical vs. experimental 

end shortening behavior is discussed and a 

summary of knock-down factors as well as FE 

(finite element) reduction factors are reported.  

 

    Present study makes an attempt to accurately 

evaluate the limit point load of a composite 

(GFRP), imperfect cylindrical shell [22] by means 

of linear as well as non-linear buckling analysis 

approaches by using general purpose finite element 

software (ANSYS) [24]. A generalized procedure 

is established here which can be extended to any 

other modes of buckling and to any given choice of 

imperfection shapes can be modeled more 

accurately 

 

2. Finite element formulation  
 

An eight-noded isoparametric element is used with 

six degrees of freedom viz. u, v, w, θx, θy and θz at 

each node. The finite element discrimination 

process for geometrically non-linear analysis yields 

a set of simultaneous equations: 

 

 

 
Where [K] is stiffness matrix, U is unknown 

degrees of freedom and 
aF  is vector of applied 

forces. By using von-Karman strain–displacement 

relations geometric non-linearity is considered 

where the moderately large rotations and 

displacements of the order of characteristic 

dimension of the problem are allowed. The 

stiffness matrix [K] itself is function of the 

unknown degrees of freedom for the non-linear 

analysis, which leads to system of non-linear 

equations. An iterative process of solving the non-

linear equations and these can be written as 

(ANSYS version 13.0). 

 

 

 

 

T

iK  is Tangent Matrix, i  representing the current 

equilibrium iteration and 
nr

iF vector of restoring 

loads corresponding to the element internal loads. 

Eq. (2) presents a generalized system of 

simultaneous non-linear equations which needs to 

be solved for evaluating the equilibrium path of the 

thin cylindrical shell structure subjected to axial 

compressive load. The non-linear buckling load can 

be evaluated by performing either non-linear 

buckling or post-buckling analysis. Following 

summary explains a detailed procedure involved in 

these analysis. 

 

(1) For the sake of simplicity the 

fundamental buckled mode shape 

has been chosen as the shape of 

imperfection after linear buckling 

analysis has been performed. 

Magnitude of imperfection is 

referred with reference to the 

thickness parameter of the 

cylindrical shell. It must be noted 

that the shape of imperfection can be 

given in the form of linear 

combination of buckled mode shapes 

or random imperfection or 

experimentally measured 

imperfection shape also can be 

imparted. 

(2) To trace the equilibrium path (Figure 

1) a non-linear analysis (non-linear 

buckling) has been performed by 

applying initial geometric 

imperfection. Non-linear buckling 

involves the application of Newton-

Raphson method to solve Eq. 1 
(3) Load-deflection curve obtained 

using the Newton-Rapson method 

represents the primary path  

 

 3. Results and Discussion 

 
The geometry and material properties of the 

composite (E-glass/Epoxy) cylindrical shell 

subjected to axial load are outlined as follows 

(Table 1):   

Radius of the composite cylindrical shell =70mm 

Thickness of the cylindrical shell = 0.5mm 

Length of the cylindrical shell       =   280mm 
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2
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i

a

i

T

i FFUK

31 iii UUU

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T



 
Figure: 1 General Buckling phenomenon and 

geometry of cylindrical shell. 

Table 1 

S.No. 

Material properties  (E-glass/Epoxy) 

property 
directio

n 
value 

1 
Longitudinal modulus 

(GPa)                         
E11 36 

2 Transverse modulus(GPa)                         E22 5.8 

3 Transverse modulus(GPa)                         E33 5.8 

4 Shear modulus (GPa)                         G12   3.2 

5 Poisson‟s ratio                         12 0.3 

 

3.1 Mesh convergence study 
Fig. 2 shows the mesh convergence study obtained 

from the linear buckling analysis (eigen buckling) 

and an optimum element size of 10mm is used for 

linear and nonlinear analysis results presented in 

this study 

 
Figure 2: Mesh convergence study 

 

3.2 Eigen Value Buckling Analysis  

 

 The buckling strength of perfect cylindrical shell 

found using block lancoczos iteration scheme to 

extract to the load factors or eigen values. The first 

step in the parametric study consists of eigen value 

analyses for the above cylindrical shell 

configuration. This type of analysis has several 

limitations in shell buckling problems but can still 

provide some useful information, first as a 

preliminary assessment on buckling strength and, 

second, as a guide in selecting appropriate 

imperfection modes for non-linear analysis. The 

second step consists of incremental non-linear 

analysis including initial imperfection profiles. The 

eigenvectors pertaining to the lowest eigen value 

are used in order to create „critical imperfection‟ 

profiles. 

The mechanical properties of the Glass Fiber 

Reinforced Plastic (GFRP) [25] material are shown 

in Table 1. 0.25mm ply thickness and +45°/-45° 

ply orientation of the laminate is considered in 

linear and non-linear analysis. 

 

3.3 Non-linear Buckling analysis 

  
Non-linear analysis is accurate approach and the 

finite element analysis has capability of analyzing 

the actual structures with geometric imperfections. 

In this analysis both geometric and material non 

linearity‟s can be taken, because of  thin shell 

structures are subjected to large deformations and 

also at some of imperfection locations on the 

structures the stresses may exceed elastic limit due 

to imperfections present in that locations. Newton-

Raphson iteration scheme is used to solve system 

of equations in non linear equations. Nonlinear 

analysis is carried out by modeling first eigen 

buckled mode shapes as geometric irregularities on 

the non linear   geometric model. 

Figure 3 shows the comparison of non-linear 

buckling load and the experimental results [25] for 

the GFRP laminated composite cylindrical shell. It 

is clearly observed that the load obtained in 

nonlinear analysis in present study and the 

experimental results carried out by the referenced. 

Author [25] shows good agreement in predicting 

the primary equilibrium path as well as in 

predicting the limit point load of the laminated 

composite cylindrical shell. 

 

 

Table.2 

Experimental Results (25) 
Non Linear Buckling Load 

(Present Study) 

sample End 

shortening 

(m) 

Axial 

load 

(N) 

Imperfection 

magnitude 

(w/t) 

End 

shortenin

g(m) 

Axial 

load(N) 

1 
0.00347 

 
4806.8 

 
ξ =0.689 

0.00330 5083.5 

2 0.00327 4577.2 ξ =0.690 
0.00331 5083.5 

3 0.00350 4846.8 ξ =0.699 
0.00317 5010.3 

4 0.00327 4718.7 ξ =0.70 
0.00328 4937.8 

 

Nonlinear analysis is carried out by modeling eigen 

buckled mode shapes as geometric irregularities on 

the non linear perfect geometric model. Fig. 3 

shows the results obtained from the non-linear 

buckling analysis for various imperfection 

magnitudes (ξ=w*/t, w* is the maximum 
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imperfection amplitude, t is the thickness of the 

cylindrical shell) considered in this study.  Trend 

analysis of the same is carried out to assess the non 

linear buckling load for L/d ratio is equal to 

2.0(where L and d are the length and diameter of 

the cylindrical shell respectively) 

It is observed that the limit point buckling load 

decreases as the imperfection magnitude increases 

from zero to 0.70 of thickness.  Figure 4. shows the 

linear and non-linear buckled mode shapes for      

l/d =2.0. It is also observed from the non-linear 

buckling analysis that the buckling load increases 

as the l/d ratio of the cylindrical shell decreases 

 
Figure 3. Imperfection sensitivity study 

. 

 
                   (a) Linear buckled mode shape 

 

 

 
 

                (b) Non-linear buckled mode shape 

 

Figure 4.Buckled mode shapes (L/D =2.0) 

 

           
 

          a)  m =4, n = 0                b) m = 5, n = 10 

 

Figure 5. Mode shapes for L/t = 560, r =700mm 

 

 

3.4 Effect of radius 

 
The influence of radius on buckling load and 

buckling modes is investigated, keeping L/t ratio 

constant. This nonlinear buckling analyses is 

performed for varying radii from 700 to 70 mm, 

keeping length to thickness ratio (L/t) constant 

equal to 560. Results of these analyses are shown in 

Table 3. The effect of cylinder radius on some 

significant buckling mode shapes is also shown in 

Figures 5 and 6. 

 

 

 

         
                                             

 

a)  m =13, n = 0       b) m = 13, n = 9 

 

Figure 6. Mode shapes for L/t = 560, r =350mm 

 

 

Table.3 

L/t Radius(m)  

Imperfection 

magnitude 

(ξ=w*/t) 

Non-Linear 

Buckling 

Load (N) 

560 R = 0.07 ξ =0.70 4937.83 

560 R = 0.35 ξ =0.70 7832.09 

560 R = 0.70 ξ =0.70 8178.13 

 

 

4. Conclusions 

 
Non-linear buckling analysis of composite thin 

cylindrical shells subjected to axial compressive 

load is briefly investigated for first mode eigen 
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imperfection amplitude. These approaches can be 

directly extended to any other mode of interest. For 

the sake of simplicity the shape of imperfection is 

chosen as the shape of the fundamental buckled 

mode shape. Non-linear buckling analysis uses 

Newton-Raphson approach to predict the primary 

equilibrium paths. Limit point loads obtained from 

this approach shows an excellent agreement with 

experimental results carried out earlier (25). This 

method finds direct application to investigate the 

effect of geometric imperfections  on other 

advanced grid-stiffened structures. 

 

The below are the conclusions derived from the 

present study carried out on the composite thin 

cylindrical shells under axial compression with 

different types of imperfect patterns taken to 

investigate the buckling load 

 

1.  The nonlinear buckling load with 

imperfection mag of tnitude of the order 

0.7 of thickness agreed with the 

experimental buckling load. 

2. As the magnitude of geometric 

imperfections increases  the buckling load  

of cylindrical shell decreases  

3. When the maximum amplitude of the 

imperfection is 1 of thickness the eigen 

buckling mode gives lowest bulking load. 

4. As the l/d ratio  of the composite 

cylindrical shell increases nonlinear 

buckling load decreases 

For constant L/t ratio the nonlinear buckling load 

increases as the radius of the cylinder increases 
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