

CARMM: Context-Adaptable Reflective Middleware over Mobile

Environment

Khaing Lae Lae Soe

Faculty of Information and Communication

Technology

University of Technology (Yatanarpon

Cyber City)

Pyin Oo Lwin, Myanmar

Thiri Haymar Kyaw

Faculty of Information and Communication

Technology

University of Technology (Yatanarpon

Cyber City)

Pyin Oo Lwin, Myanmar

Abstract

Today people widely use mobile devices as versatile tools

for their everyday works. End users desire their mobile

applications to use more effectively and efficiently with

the maximize use of their resources in mobile

environment. In this paper, we propose CARMM

(Context-Adaptable Reflective Middleware over Mobile

environment) to adapt application behavior over

changing mobile device’s resources such as processor

usage, battery, memory and available bandwidth.

CARMM is a reflective middleware that respond suitable

application version based on client device’s

characteristics. Previous reflective middleware solutions

adapt application behavior based on user’s preferred

Quality of Service (QoS). In our proposed system,

application must be learned to make response the best

output regardless of user’s preference. Multiple linear

regression is used to learn application and stored

obtained rules in application profiles. The system can

keep the balance of resource utilization in mobile devices

and appropriate service for users.

1. Introduction

Common Object Request Broker Architecture

(CORBA), the Distributed Component Object

Model (DCOM), and Java Remote Method

Invocation (RMI) are early stage middlewares that

abstract the low-level TCP/IP communication

details and replace the communication interface

with a local procedure call or function invocation.

However, traditional middleware is limited in its

ability to support adaptation and its limiting

capability in mobile computing environment due to

its overhead.

 On the other hand, message-oriented and

transaction-oriented middleware are also not

suitable for mobile setting because the former

requires large amount of memory and the latter

wants high computational load [1]. These

middlewares hide implementation details in

middleware layer and cannot be seen from both

end-users and developers. Hiding implementation

details means that all the complexity is managed

internally by the middleware layer; middleware is

in charge of taking decisions on behalf of the

application, without letting the application

influence this choice [1].

To guarantee the best quality of service,

computationally heavy weight system with large

amount of code and data is needed. Heavyweight

systems cannot however run efficiently on a mobile

device as it cannot afford such a computational

load. Variations in resource availability, network

connectivity, and hardware and software platforms

impact greatly the performance of user

applications. It is desirable for the applications to

adapt their behaviors to resource limitations and

variations. Hence, the adaptation task is best

coordinated by a middleware that is able to cater

for individual application’s need on a fair ground,

while maintaining optimal system performance.

There are two types of adaptation provided by

adaptive middleware: static and dynamic. Static

adaptation can occur during compile or startup

time, and dynamic adaptation occurs only after

startup time. Reflection is employed to formulate

dynamic context adaptation. Therefore context-

aware reflective middleware can monitor real-time

contextual information and adapt the application

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, Januaryr- 2013

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

behaviors to the context changes. Thus, it provides

a powerful reconfiguration approach to build

adaptive applications [2].

Reflection generates significant advantages over

lively mobile situation, i.e., change in context (such

as the device location), change in network

conditions (such as variation in bandwidth and

latency) and change in available resources (such as

device’s battery and memory level) [3].

Computational reflection enables middleware to

inspect the application specification, reason about,

and adapt itself at run time. This process is called

absorption whereas application can alter

middleware behavior, known as reification.

Middleware takes place conflicts to decide which

policy is taken up to deliver the service. In our

proposed system, mobile application must be first

learned to produce appropriate rules for each its

version. Our design utilize machine learning

approach of multiple linear regression to be

resolved these conflicts. Although learning stage

makes computational overhead for middleware, it

is offline operation and it brings about lightweight

calculation by storing predefined rules in its profile.

The rest of the paper is organized as follows.

Section 2 expresses related work and the concept of

reflective middleware is explained in Section 3.

Section 4 presents our proposed system and Section

5 describes how to learn rules in middleware with

locally weighted regression. Section 6 is about our

case study application. Finally, we conclude this

paper in Section 7.

2. Related Work

Mobile middleware research has focused on

addressing the key problems, namely:

unpredictable network connections, poor network

Quality of Service (QoS), ad-hoc interaction, and

limited end-system resources [3]. The concept of

reflection was first introduced by Smith in 1982 [4]

as a principle that allows a program to access,

reason about and alter its own interpretation in the

procedural programming language. After ten years

later, reflection has been applied to the field of

operating systems [5] and after that in distributed

systems [6]. The principle of Reflection has often

been used to allow dynamic reconfiguration of

middleware and has proven useful to offer context-

awareness [1].

DynamicTAO and OpenORB are reflective

middlewares that comprise components enabling

on-the-fly reconfiguration [7]. Middlewares that

exercise both reflection and context-awareness are

CARISMA and ReMMoC. CARISMA is a mobile

computing middleware which exploits the principle

of reflection to enhance the construction of

adaptive and context-aware mobile applications.

CARISMA proposes how context changes should

be handled using policies. The conflicts of policies

are resolved using a microeconomic approach that

relies on a particular type of sealed-bid auction to

resolve the service policy confliction at execution

time [8].

The ReMMoC project examines the use of

reflection to accommodate heterogeneity

requirements imposed by both applications and

underlying device platforms. It can dynamically

adapt its underlying behaviour between different

concrete middleware implementations [9]. Other

implementation MARCHES separates adaptation

concerns from other constructions of the

application and leads to simplification for

application development, low-overhead and good

robustness for mobile computing devices [2].

MUSIC enables the self-adaptation of mobile and

ubiquitous applications in the presence of Service-

Oriented Architectures (SOA). It focuses on

changes in the service provider landscape in order

to plug in interchangeably components and services

providing the functionalities defined by the

component framework [10].

All previous reflective middlewares acquire

user’s preferences to achieve desired quality of

applications. No reflective middleware solution

exists that makes automatically adaptation of

application according to available resources.

However, FSAM, context-aware mobile computing

middleware, formulate the service adaptation

process by using fuzzy linguistic variables and

membership degrees to define the context situations

and the rules for adopting the policies of

implementing a service [11].

On the other hand, logistic regression has been

already used for gird computing [12] and we

wishes to use this method because it can handle

continuous input streams very well and current

prediction is done by local functions which are

using only a subset of the data. We use locally

weighted learning to find out the mapping between

input context and output quality. After that multiple

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, Januaryr- 2013

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

linear regression is employed to predict suitable

application version based on current contexts of

client’s mobile device.

3. Reflective Middleware

“Reflection is the integral ability for a program

to observe or change its own code as well as all

aspects of its programming language - even at

runtime” [16]. Reflective middleware moves

reflection to the middleware level. For this purpose,

a reflective system maintains a representation of

itself that is causally connected to the underlying

system that it describes. This is known as CCSR

(Causally Connected Self Representation). The

CCSR is often referred to as the meta level, and the

system itself the base level. System and

application code can use meta-interfaces to inspect

internal configuration of the middleware

reconfigure it to adapt to changes in the

environment [3].

Context-aware reflective middleware actively

measures the application interested contexts and

adapts to them automatically and predicatively to

meet the adaptability demands of distributed

applications [2].

Making some aspects of the internal

representation of the middleware explicit and hence

accessible from the application, through a process

is called reification. The process where some

aspects of the application are altered or overridden

is called absorption. In middleware platforms, two

(complementary) styles of reflection have been

used, namely structural and behavioural reflection.

Structural reflection is concerned with the

underlying structure of objects or components, e.g.,

in terms of interfaces supported, another way, the

ability to adapt the structure of an object (e.g., to

add new behaviour at run-time). Meta-data or

context can be viewed as a form of structural

reflection, providing additional (meta) information

about the underlying system, e.g. physical location,

current battery levels or performance of the

network.

Behavioural reflection is concerned with

activity in the underlying system, e.g., in terms of

the arrival and dispatching of invocations. Typical

mechanisms provided include the use of

interceptors or dynamic proxies that support the

reification of the process of invocation and the

subsequent insertion of pre or post- actions [3],

[13].

4. Proposed System

The increasing use of mobile devices, such as

mobile phones and personal digital assistants, has

caused designers to find out many ways for end-

users to use mobile applications that exploit

flexible and convenient methods or techniques.

These devices have scare resources and exposed

to variation of context. Context is the set of

environmental states and settings that either

determines an application’s behavior or in which an

application event occurs and is interesting to the

user [17]. Contexts such as location, devices status,

and bandwidth and network state frequently

changes in mobile world. Therefore, mobile

applications must be adaptable to these changing

contexts.

To adjust these dynamic contexts, middleware

platforms for mobile computing must be capable of

both deployment-time configurability and run-time

reconfigurability. In consequence, a reflective

middleware is proposed for service adaptation in

order to response to erratic execution contexts. In

reflecting middleware behavior according to

contexts, it can be seen few solutions for self-

adapting although there are some attempts to

preferred QoS of users. Therefore, end-users or

application developers always specify their desired

specification of applications.

The proposed middleware architecture allows the

best possible quality of application based on

available contexts. The overview architecture of the

system is depicted in Figure 1. The system has five

attributes to decide QoS of application_ network

bandwidth, network latency, processor speed,

memory and battery status. Mobile application is

trained to the system to output suitable version of

application to the user by applying these five

attributes. For each attribute, the dependency of

application on it is calculated by using Eq. (2).

After evaluating every attributes, the most

appropriate quality of application is determined by

exploiting Eq. (1). Policies are defined after that.

These steps take place in learning phases of server

and are offline processes. In responding client

requests, the server gives suitable version of

application based on currently contexts of client

(i.e. resources available of clients) with the

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, Januaryr- 2013

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

utilization of pre-stored polices. If the contexts of

client’s device change after running the application,

it notify to the server and the server adapts the

running application according to the changing

contexts.

We will implement a prototype of our reflective

middleware on android platform and Restaurant

Finder application will be put into service as case

study. eXtensible Markup Language (XML) is used

to encode application profiles. XML is flexible

meta-languages that can improve interactions

between middleware and applications and its

signification can be easily manipulated and

understandable by both machines and humans.

Figure 1. Overview of CARMM

5. Learn Rules with Locally Weighted

Regression

Although there are many contexts that can affect

mobile device behavior, in this place, we select

network bandwidth, latency, processor speed,

memory and battery level as contexts of our

applications. These contexts are available for the

system as parameters of locally weighted

regression. As more than one context is required to

predict QoS of application, we use multiple linear

regression to approximate the appropriate quality.

 (1)

where is called the constant term and to

 are the coefficients relating to each context c. ei

is the error term. is the importance of on the

application. Based on these function, we can

estimate the expected quality of the application.

Multiple linear regression is the linear combination

of explainatory variables [14].

In above equation, For each c, it should have its

own function f(c) to calculate its solely influence

on application. Each parameter is inputted to the

learning stage to discover the relationship of

desired output and this parameter using simple

linear function. Simple linear regression analysis

brings into play to predict the value of the

dependent variable y, given the value of the

explanatory variable, x. In this model, we can write

down the following form:

 (2)

where β0 the intercept and β1 is the slope of the

line. For example, the higher the bandwidth, the

higher the quality of image (i.e. the higher the

value of xi, the higher value of will be

obtained).

In spite of concerning all resource usages such as

battery, CPU loading, bandwidth and memory,

some context are more important for some

applications. For example, email application is

more interesting in higher bandwidth rather than

larger memory space. So the weights of these

contexts are different and application must assign

relevant weight or score for better result.

Server makes decision by matching calculated

results of contexts and predefined rule. As an

example,

Training weights of contexts are here:

weight for Bandwidth = 3, weight for CPU = 2,

weight for Memory =1

c1 = bandwidth, c2 = CPU and c3 = Memory

The result is 1*c1+2*c2+3*c3=x.

And in our Restaurant Finder application, there

are three versions, says v1, v2 and v3. If x is in the

range of predefined policy 1, version1 (v1) is sent

to user.

p1 = predefined range of policy1 (such as 0-20)

p2 = predefined range of policy2

p3 = predefined range of policy3

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, Januaryr- 2013

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

The procedure is as follow:

The range values of p1, p2 and p3 are categorized

using locally weighted logistic regression as a

classifier.

6. Case Study Application

In our Restaurant Finder application, users can

find the restaurant he desire by the name of

restaurant. The server can respond location of the

restaurant with map view and some information of

it. Server store application of three versions - full-

colour map, gray- colour map and description texts

only without photo as shown in Figure 2. When

user invokes service from the server, it sends

response the version convenient with the current

context of the user’s mobile phone. The server

makes decision which policy should be adopted by

matching predefined rules and acquired contexts’

calculation. In Figure 2(a), the server give the result

of good quality map in the time of client’s

resources maximize. However, in figure 2(b), the

facility of application is not great because the

client’ contexts degrade. Figure 2(c) is the poorest

result returned from server because of exhausting

one or more resources of device.

As contexts change quite frequently, application

must be fixed its own profile for all the time of

changing contexts. Middleware must be provided

an initial profile to be allowed the application to

dynamic access. Applications can read their own

profiles (introspection of middleware behaviour),

and dynamically modify the meta-data that is

encoded in the profile (adaptation of middleware

behaviour) [8]. For example, in deciding to display

map of restaurant, an application may alter the use

of the ‘FullColour’ policy when it is assigned the

time where bandwidth is high to ‘GrayColour’

policy when available bandwidth is considerable

slow.

Figure 2. Map results returned from the

server

7. Conclusion

Due to the increasing popularity of mobile

devices, end users desire their mobile applications

to use more effectively and efficiently with the

maximize use of their resources in mobile

environment. Moreover, they want to experience

stable and flexible applications. CARMM attempts

to balance user’s needs and resource constraints by

using reflection and locally weighted regression. In

addition, the system provides some other desirable

properties, including simplicity, competitive

accuracy, capability of extrapolating, and

confidence interval because it utilizes logistic

regression.

If (min(p1)<x<max(p1))

v1 is sent to client’s device.

Else If (min(p2)<x<max(p2))

v2 is sent to client’s device.

Else

v3 is sent to client’s device.

(a) Good result (b) Moderate result

(c) Poor result

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, Januaryr- 2013

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

References

[1] C.Mascolo, L. Capra, W. Emmerich, “Mobile

Computing Middleware”, Advanced lectures on

networking, pp. 20-58 Springer-Verlag New York,

Inc., 2002.

[2] S.Liu, L.Cheng,“A context-aware reflective

middleware framework for distributed real-time and

embedded systems”, Journal of Systems and

Software, Volume 84, Issue 2, pp. 205-218,

February 2011.

[3] P. Grace , G. Blair, “Reflective Middleware” , In

Handbook of Mobile Middleware, A. Corradi and P.

Bellavista eds. (invited book chapter), CRC Press,

2006.

[4] B. Smith. “Reflection and Semantics in a

Procedural Programming Language”, Phd thesis,

MIT, Jan. 1982.

[5] Y. Yokote, “The Apertos reflective operating

system: The concept and its implementation”, In

Proceedings of OOPSLA’92, pp. 414-434. ACM

Press, 1992.

[6] J. McAffer, “Meta-level architecture support for

distributed objects”, In Proceedings of

Reflection’96, pp. 39-62, San Francisco, 1996.

[7] F. Kon, F. Costa, “The Case for Reflective

Middleware”, Magazine of Communications of the

ACM – Adaptive middleware, Volume 45 Issue 6,

pp. 33-38, June 2002.

[8] L. Capra, “Reflective Mobile Middleware for

Context-Aware Applications”, PhD thesis,

University of London, 2003.

[9] P. Grace, “Overcoming Middleware Heterogeneity

in Mobile Computing Applications”, PhD thesis,

Lancaster University, 2004.

[10] R. Rouvoy, P. Barone, Y. Ding, F. Eliassen,

S.Hallsteinsen, J. Lorenzo, A. Mamelli, and

U.Scholz, “MUSIC: Middleware Support for Self-

Adaptation in Ubiquitous and Service-Oriented

Environments”, B.H.C. Cheng et al. (Eds.): Self-

Adaptive Systems, LNCS 5525, pp. 164–182, 2009.

[11] J. Cao, N. Xing, A.T.S Chan, Y. Feng, B. Jin,

“Service Adaptation Using Fuzzy Theory in

Context-aware Mobile Computing Middleware*”,

Proceedings of the 11th IEEE International

Conference on Embedded and Real-Time

Computing Systems and Applications (RTCSA’05),

2005.

[12] J. Khan, F. Shafiq, M.K. Khan, “A Statistical

Approach for the Assessment of QOS and

Performance in Grid Computing Environment”,

International Journal of Computer Applications

(0975 – 8887) Volume 19– No.3, April 2011.

[13] L. Capra, G.S. Blair, C.Mascolo, W. Emmerich,

P.Grace, “Exploiting Reflection in Mobile

Computing Middleware”, Mobile Computing and

Communications Review, Volume 6, Number 4.

[14] CCSR: The Cathie Marsh Centre for Census and

Survey Research,

http://www.ccsr.ac.uk/publications/ teaching/

mlr.pdf, LastAccess-(9-1-2013).

[15] J. Malenfant, M. Jacques, F.-N. Demers, “A

Tutorial on Behavioral Reflection and its

Implementation”, Reflection 96’ Conference

Proceedings, 1996.

[16] G. Chen, D.Kotz, “A Survey of Context-Aware

Mobile Computing Research”, Darmouth Computer

Science Technical Report TR2000-381.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, Januaryr- 2013

ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

IJ
E
R
T

