
Case study and Implementation of Geometric Efficient Matching Algorithm

for Firewalls

S.Pradeep V. Mahesh Y. Ramesh Kumar

MTech IInd Year Associate Professor Head of the Department

Department of Computer Science and Engineering

Avanthi Institute of Engineering & Technology, Cherukupalli, Andhra Pradesh, India

Abstract

A firewall is a device that controls the flow of

communications across networks of computers by

examining their source, destination and type - and

comparing these with predetermined lists of allowed

and disallowed transactions. Packet matching in

firewalls involves matching on many fields from the

TCP and IP packet header. At least five fields

(protocol number, source and destination IP

addresses, and ports) are involved in the decision

which rule applies to a given packet. With available

bandwidth increasing rapidly, effective matching

algorithms need to be deployed in modern firewalls

to ensure that the firewall does not become a

bottleneck , Since firewalls need to filter all the

traffic crossing the network perimeter, they should be

able to sustain a very high throughput. In this paper

we consider a classical algorithm that we adapted to

the firewall domain. We call the resulting algorithm

“Geometric Efficient Matching”. The Geometric

Efficient Matching algorithm enjoys a logarithmic

matching time performance. However, the

algorithm’s theoretical worst-case space complexity

is O (n4) for a rule-base with n rules. Based on

statistics from real firewall rule-bases, we created a

perimeter rules model that generates random, but

non-uniform, rule bases. We evaluated Geometric

Efficient Matching algorithm via extensive simulation

using the perimeter rules model. Geometric Efficient

Matching algorithm speed is far better than the naive

linear search algorithms, and it is able to increase

the throughput by an order of magnitude.

1. Introduction
A firewall is a part of a computer system or network

that is designed to block unauthorized access while

permitting outward communication. It is a device or

set of devices configured to permit, deny, encrypt,

decrypt, or proxy all computer traffic between

different security domains based upon a set of rules

and other criteria. Firewalls can be implemented in

both hardware and software, or a combination of

both. Firewalls are frequently used to prevent

unauthorized Internet users from accessing private

networks connected to the Internet, especially

intranets. From the fig1 all messages entering or

leaving the intranet pass through the firewall, which

examines each message and blocks those that do not

meet the specified security criteria.

Figure 1: Simple Firewall with Rules

1.1 Types of Firewalls:
The International Standards Organization (ISO) Open

Systems Interconnect (OSI) model for networking

defines seven layers, where each layer provides

services that ``higher-level'' layers depend on. In

order from the bottom, these layers are physical, data

link, network, transport, session, presentation and

application. The important thing to recognize is that

the lower-level the forwarding mechanism, the less

examination the firewall can perform. Generally

speaking, lower-level firewalls are faster, but are

easier to fool into doing the wrong thing. The

different firewalls can be developed based on the

functionality and requirement.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

1www.ijert.org

1.2.1 Packet-filtering firewall
Typically is a router with the capability to filter some

packet content, such as Layer 3 and sometimes Layer

4 information.

1.2.2 Application gateway firewall (proxy firewall)
A firewall that filters information at Layers 3, 4, 5,

and 7 of the OSI reference model. Most of the

firewall control and filtering is done in software.

1.2.3 Address-translation firewall
A firewall that expands the number of IP addresses

available and hides network addressing design.

1.2.4 Host-based (server and personal) firewall

A PC or server with firewall software running on it.

1.2.5 Transparent firewall

A firewall that filters IP traffic between a pair of

bridged interfaces.

1.2.6 Hybrid firewall

A firewall that is a combination of the various

firewalls types.

1.3 Case Study on Network layer and

Application layer Firewalls
For example, an application inspection firewall

combines a stateful firewall with an application

gateway firewall. Conceptually, there are two types

of firewalls: one is Network layer firewalls and

second is Application layer firewalls. They are not as

different as you might think, and latest technologies

are blurring the distinction to the point where it's no

longer clear if either one is ``better'' or ``worse.'' As

always, you need to be careful to pick the type that

meets your needs. It depends on what mechanisms

the firewall uses to pass traffic from one security

zone to another.

1.3.1 Network layer Firewalls

These generally make their decisions based on the

source, destination addresses and ports in individual

IP packets. A simple router is the ``traditional''

network layer firewall, since it is not able to make

particularly sophisticated decisions about what a

packet is actually talking to or where it actually came

from. Modern network layer firewalls have become

increasingly sophisticated, and now maintain internal

information about the state of connections passing

through them, the contents of some of the data

streams, and so on. One thing that's an important

distinction about many network layer firewalls is that

they route traffic directly though them, so to use one

you either need to have a validly assigned IP address

block or to use a ``private internet'' address block .

Network layer firewalls tend to be very fast and tend

to be very transparent to users.

Figure 2: Screened Host Firewall

In Figure 2, a network layer firewall called a

``screened host firewall'' is represented. In a screened

host firewall, access to and from a single host is

controlled by means of a router operating at a

network layer. The single host is a highly-defended

and secured strong-point that (hopefully) can resist

attack.

Figure 3: Screened Subnet

Example Network layer firewall: In figure 3, a

network layer firewall called a ``screened subnet

firewall'' is represented. In a screened subnet firewall,

access to and from a whole network is controlled by

means of a router operating at a network layer. It is

similar to a screened host, except that it is,

effectively, a network of screened hosts.

1.3.2 Application layer Firewalls

These generally are hosts running proxy servers,

which permit no traffic directly between networks,

and which perform elaborate logging and auditing of

traffic passing through them. Since the proxy

applications are software components running on the

firewall, it is a good place to do lots of logging and

access control. Application layer firewalls can be

used as network address translators, since traffic goes

in one ``side'' and out the other, after having passed

through an application that effectively masks the

origin of the initiating connection. Having an

application in the way in some cases may impact

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

2www.ijert.org

performance and may make the firewall less

transparent. Modern application layer firewalls are

often fully transparent. Application layer firewalls

tend to provide more detailed audit reports and tend

to enforce more conservative security models than

network layer firewalls.

Figure 4: Dual Homed Gateway

Example Application layer firewall: In figure 4, an

application layer firewall called a ``dual homed

gateway'' is represented. A dual homed gateway is a

highly secured host that runs proxy software. It has

two network interfaces, one on each network, and

blocks all traffic passing through it. The Future of

firewalls lies someplace between network layer

firewalls and application layer firewalls. It is likely

that network layer firewalls will become increasingly

``aware'' of the information going through them, and

application layer firewalls will become increasingly

``low level'' and transparent. The end result will be a

fast packet-screening system that logs and audits data

as it passes through. Increasingly, firewalls (network

and application layer) incorporate encryption so that

they may protect traffic passing between them over

the Internet. Firewalls with end-to-end encryption can

be used by organizations with multiple points of

Internet connectivity to use the Internet as a ``private

backbone'' without worrying about their data or

passwords being sniffed.

1.4 Different Firewall Techniques:

1.4.1 Packet filters: Looks at each packet entering or

leaving the network and accepts or rejects it based on

user defined rules. Packet filtering is fairly effective

and transparent to users, but it is difficult to

configure. In addition, it is susceptible to IP spoofing.

Packet -filtering firewalls work primarily at the

Network Layer of the OSI model. Firewalls are

generally considered Layer 3 constructs. However,

they permit or deny traffic based on Layer 4

information such as protocol, and source and

destination port numbers. Packet filtering uses ACLs

to determine whether to permit or deny traffic, based

on source and destination IP addresses, protocol,

source and destination port numbers, and packet type.

Packet-filtering firewalls are usually part of a router

firewall.

1.4.2 Application gateway: Applies security

mechanisms to specific applications, such as FTP and

Telnet servers. This is very effective, but can impose

performance degradation.

1.4.3 Circuit-level gateway: Applies security

mechanisms when a TCP or UDP connection is

established. Once the connection has been made,

packets can flow between the hosts without further

checking.

1.4.4. Proxy server: Intercepts all messages entering

and leaving the network. The proxy server effectively

hides the true network addresses

2. Existing Algorithms
Most modern firewalls are stateful. This means that

after the first packet in a network flow is allowed to

cross the firewall, all subsequent packets belonging

to that flow, and especially the return traffic, is also

allowed through the firewall. This statefulness has

two advantages. First, the administrator does not need

to write explicit rules for return traffic—and such

return-traffic rules are inherently insecure since they

rely on source-port filtering .So stateful firewalls are

fundamentally more secure than simpler, stateless,

packet filters. Second, state lookup algorithms are

typically simpler and faster than rule match

algorithms, so statefulness potentially offers

important performance advantages.

Firewall statefulness is commonly implemented by

two separate search mechanisms: (i) a slow algorithm

that implements the ―first match‖ semantics and

compares a packet to all the rules, and (ii) a fast state

lookup mechanism that checks whether a packet

belongs to an existing open flow. In many firewalls,

the slow algorithm is a naive linear search of the rule-

base, while the state lookup mechanism uses a hash-

table or a search-tree. There are strong indications

that commercial firewalls use linear search for the

slow rule-match as well. Moreover, the standard

advice for improving firewall performance, for all

vendors, is to place the most popular rules near the

top of the rule-base. This advice doesn‘t make much

sense if the firewall rearranges the rules into a

complex search data structure. Note that a stateful

firewall‘s two-part design provides its highest

performance on long TCP connections, for which the

fast state lookup mechanism handles most of the

packets. However, connectionless UDP and ICMP

traffic, and short TCP flows, like those produced in

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

3www.ijert.org

extremely high volume by Distributed Denial of

Service attacks, only activate the ―slow‖ algorithm,

making it a significant bottleneck. Our main result is

that the ―slow‖ algorithm does not need to be slow,

even in a software-only implementation running on a

general-purpose operating system.

Existing algorithms implement the ―longest prefix

match‖ semantics, using several different approaches.

The IPL algorithm, which is based on results, divides

the search space into elementary intervals by

different prefixes for each dimension, and finds the

best (longest) match for each such interval.

The note to be made regarding the existing

algorithms, there is no secure when the packet

sending and time consuming is high.

3 The Algorithm
3.1 Definitions
The firewall packet matching problem finds the first

rule that matches a given packet on one or more

fields from its header. Every rule consists of set of

ranges [li , ri] for i = 1, . . . , d, where each

range corresponds to the i-th field in a packet

header. The field values are in 0 = li , ri = Ui ,

where Ui=232 - 1 for IP addresses, Ui = 65535 for

port numbers, and Ui = 255 for ICMP message

type or code. For notation convenience later on, we

assign each of these fields a number, which is also

listed in the table.

Table 1

• We use =* to denote wildcard: An =* in field i

means any value in [0, Ui].

• We are ignoring the action part of the rule (e.g.,

pass or drop), since we are only interested in the

matching algorithm.

3.2 The Sub-Division of Space
In one dimension, each rule defines one range, which

divides space into at most 3 parts. It is easy to see

that n possibly overlapping rules define a

subdivision of one-dimensional space into at most

(2n - 1) simple ranges. To each simple range we

can assign the number of the winner rule. This is

the first rule which covers the simple range. In d-

dimensions, we pick one of the axes and project

all the rules onto that axis, which gives us a

reduction to the previous one- dimension case, with a

subdivision of the one dimension into at most (2n -

1) simple ranges. The difference is that each simple

range corresponds to a set of rules in (d - 1)

dimensions, called active rules. We continue to

subdivide the (d - 1) dimensional space

recursively. We call each projection onto a new axis

a level of the algorithm, thus for a 4- dimensional

space algorithm we have 4 levels of subdivisions.

The last level is exactly a one-dimensional

case—among all the active rules, only the winner

rule matters. At this point we have a subdivision of d-

dimensional space into simple hyper-rectangles, each

corresponding to single winning rule. we shall see

how to efficiently create this subdivision of d-

dimensional space, and how it translates into an

efficient search structure.

3.3 Dealing with Protocol Field

Before delving into the details of the search data

structure, we first consider the protocol header field.

The protocol field is different from the other four

fields: very few of the 256 possible values are in use,

and it makes little sense to define a numerical range

of protocol values. This intuition is validated by the

data gathered from real firewalls .The only values we

saw in the protocol field in actual firewall rules were

those of specific protocols, plus the wildcard *, but

never a non-trivial range.

3.4 The Data Structure
The GEM search data structure consists of three

parts. The first part is an array of pointers, one for

each protocol number, along with a cell for the *

protocol. We build the second and third parts of the

search data structure for each protocol separately.

The second part is a protocol database header, which

contains information about the order of data structure

levels. The order in which the fields of packet header

are checked is encoded as a 4-tuple of field numbers,

using the numbering of Table 1. The protocol

database header also contains the pointer to the first

level and the number of simple ranges in that level.

The third part represents the levels of data structure

them- selves. Every level is a set of nodes, where

each node is an array. Each array cell specifies a

simple range, and contains a pointer to the next level

node. In the last level the simple range information

contains the number of the winner rule instead of the

pointer to the next level. See Figure 6 for an

illustration

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

4www.ijert.org

Figure 5: Search Data Structure

The basic cell in our data structure (i.e., an

entry in the sorted array which is a node in the

structure) has a size of 12 bytes: 4 for the value of

the left boundary of the range, 4 for the pointer to the

next level, and 4 for the number of cells in the

next-level node. The nodes at the deepest level are

slightly different, consisting of only 8 bytes: 4 for

the left boundary of the range and 4 for the number of

winner rule. Note that the order of levels is encoded

in the protocol database header, which gives us

convenient control over the field evaluation order.

3.5 The Search Algorithm
The packet header contains the protocol number,

source and destination address and port numbers

fields. First, we check the protocol field and go to the

protocol array of the search .The last two levels of

building the search data structure. At this point the

rules are two-dimensional, e.g., the X axis may

represent the destination IP and the Y axis is the

destination port. We can see three rules, shown as

shaded overlapping rectangles, plus the default rule

in white. The critical points and simple ranges are

projected onto the X axis. Three blocks in rule 1 are

optimized. For example, suppose we have an

incoming TCP packet. Assume that the GEM

protocol header for TCP shows that the order of

levels is 1203. The first level - 1 - denotes the

destination address. We execute a binary search of

the destination address value from packet header

against the values of the array in the first level. The

simple range associated with the found array item

points us to the corresponding node from the second

level. The second level, in our example (2) denotes

the source port number. By binary search on the

second level array we find a new simple range, which

contains the packet source port number. Similarly, we

search for the source address (field 0) and destination

port (field 3). In the last level node we find the

winner rule information. We repeat the search

procedure for protocol *, and get another winner rule.

From the two candidates we choose the one with the

lower rule number.

Figure 6: GEM Data Structure Overview

3.6 The Build Algorithm

The build algorithm is executed once for each

protocol. The input to the build algorithm consists of

the rule- base, plus the field order to use. The order

dictates the contents of each data structure level, and

also, the order in which the header fields will be

tested by the search algorithm. There are 4! = 24

possible orders we can choose from, to check 4

fields. The data structure is built using a geometric

sweep-line algorithm. All four levels of the search

data structure are built in the same manner. We start

with the set of active rules from the previous level.

For the first level all the rules with the specified

protocol (e.g., TCP) are active. We then construct the

set of critical points of this level— these are the

endpoints of the ranges, which are the projections of

the active rules onto the axis that corresponds to

the currently checked field. For example, if the first

field is .1. (Destination IP address), then the critical

points are all the IP addresses that start or end a

destination IP address range in any rule. We sort the

list of critical points in increasing order, and run the

sweep-line over them. Note that there are two

implicit critical points: 0, and the maximal value for

the level. Every critical point corresponds to a start of

one simple range, which in turn relates to a subset of

active rules. For each simple range we calculate its

set of active rules, by choosing all the rules that

overlap the simple range in the current field. For

example, in Fig 5, rules 2, 3 and 4 are relevant for the

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

5www.ijert.org

third simple range on the X axis. With this new set

of active rules we continue to the next level for

each one of the simple ranges. In the deepest level

we only need to list the number of the .winner

rule.: the rule with lowest number among the active

rules associated with the current range.

Table 2

3.7 Reducing the Space Usage:
Basic Optimizations

A space complexity of O (n)
 4

 may be theoretically

acceptable since it is polynomial. However, with n

reaching thousands of rules, conserving space is

crucial. Here, we introduce two optimization

heuristics, which significantly reduce GEM‘s space

requirement. The first optimization works on the last

level of the data structure. If we take a closer look at

last-level ranges, we see that occasionally two or

more adjacent ranges point to the same ―winner‖ rule.

This means that we can replace all these ranges with

a single range which is their geometrical union. The

second optimization works on the one-before-last

level of the search data structure. Occasionally, there

exist simple ranges that point to equivalent last level

structures. Instead of storing the same last-level

structure multiple times, we keep a single last-level

structure, and replace the duplicates by pointers to the

main copy. For example, in Fig. 5, ranges 2 and 6 are

equivalent (rules 4-3-4, with boundaries in the same

vertical positions). As part of the simulation study,

we tested the effectiveness of these optimizations.

Our simulations on rule bases of sizes from 500 to

10,000 shows that the optimizations reduce the

search data structure size by 30 to 60 percent on

average, and that the effect grows with rule-base size.

We also tried to apply this optimization method on

the higher levels of our data structure, but found that

this greatly increases the preprocessing time, and

only give minor improvements to the space

complexity. We remark that additional optimization

techniques for GEM-like data structures are known to

perform well in the computational geometry

literature; hence, it would be interesting to test their

effectiveness in the firewall matching domain.

Possibilities include: not using the same field

ordering in every branch of the search tree; switching

to the next branch before completing the search along

an axis; or even replacing the last two levels of

binary search tree with a data structure optimized for

2D queries such as that of [11] or [4].

3.8 Firewall Rule Base Statistics
To get a better understanding of what real- life

firewall rule- bases look like, we gathered statistics

from firewall rule-bases that were analyzed by

the Firewall Analyzer. The statistics are based on

19 rule-bases from enterprise is firewalls collected

during 2001 and 2002. The rule-bases came from a

variety of corporations from the financial,

telecommunications, automotive, and

Pharmaceutical industries. We analyzed a total of

8434 rules. Table 2 shows the distribution of

protocols in the rules we analyzed. The data shows

that 75% of rules from typical firewall rule-bases

match TCP, and a total of 93% match TCP, UDP or

ICMP. Of these the most important is clearly TCP.

Therefore, we concentrate on these protocols in the

rest of paper. In our problem context, these protocols

are the most difficult for evaluation since they imply

a 4dimensional space. The same table shows the

distribution of TCP source and destination port

numbers. We can clearly see that the source port

number is rarely specified: 98% of the rules have a

wildcard =`*` in the source port. This makes sense

because both PIX and FireWall-1 are stateful

firewalls that do not need to perform source-port

filtering to allow return traffic through the firewall

and source port data is generally unreliable because it

is usually under the control of the attacker. On the

other hand, the TCP destination port is usually

specified precisely. The vast majority of rules

specified a single port number, but 4% allowed a

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

6www.ijert.org

range of ports, and the ranges tended to be quite

large. Common ranges are .all high ports. (1024–

65535) and .X11 ports. (6000-6003).The single port

numbers we encountered were distributed among

some 200 numbers, the most popular of which are

shown in Table 2: these correspond to the HTTP,

FTP, Telnet, HTTPS, HTTP- Proxy, and NetBIOS

services.

4 The Simulation Study
4.1 The Random Rules Simulation
As the first step of our performance evaluation

of GEM we implemented and tested it in

isolation. The GEM builds and search algorithms

were implemented in Microsoft Visual Studio. The

simulations were per formed on a 2.20 GHz Intel

Dual with PC with 1 GB of RAM running the

Windows XP Service Pack 2 Operating system. We

started by testing GEM using uniformly-generated

rules: for every rule, each endpoint of each of the 4

fields (IP address ranges and port ranges) was

selected uniformly at random from its domain. We

built the GEM data structure for increasing numbers

of such rules and then used the resulting

structure to match randomly generated packets. We

omit the details for lack of space, and instead refer

the reader to. On one hand, these early simulations

showed us that the search itself was indeed very fast:

a single packet match took around 1µsec, since it

only required 4 executions of a binary search in

memory. On the other hand, we learned that the data

structure size grew rapidly—and that the order of

fields had little or no effect on this size. The

problem was that since the ranges in the rules were

chosen uniformly, almost every pair of ranges (in

ever y dimension) had a non-empty intersection.

All these intersections produced a very fragmented

space subdivision, and effectively exhibited the worst

-case behavior in the data structure size. We

concluded that a more realistic rule model is needed

4.2 The Perimeter Rules Model
Real firewall rule-bases have a large degree of

structure. Thus, we hypothesized that realistic rule-

bases rarely cause worst-case behavior for the GEM

algorithm. Furthermore, we wanted to test the effects

of the field order on the performance of GEM on

such rule-bases. For this purpose, we built the

Perimeter firewall rules model, and simulated the

behavior of GEM on rule-bases generated in this

model.

4.2.1 The Modeled Topology

The model assumes a perimeter firewall with two

―sides‖: a protected network on the inside, and the

Internet on the outside. The inside network consists

of 10 class B networks, and the Internet consists of

all other IP addresses. Thus, the internal network

contains 10 - 65,536 possible IP addresses. In reality,

organizations that actually own 10 class B networks

are quite rare. However, we used this assumption for

two reasons:

1. Many organizations use private IP addresses

internally, and export them via network address

translation (NAT) on outbound traffic. Such

organizations often use large subnets liberally, e.g.,

assign a 172.x.*.* class B subnet to each department.

2. Having a large internal subnet stresses the GEM

algorithm since we pick random ranges from the

internal ranges.

4.2.2 The Rules
The Perimeter rules model produces rules of two

types: Inbound rules that allow traffic from the

Internet into the protected network, and outbound

rules that allow traffic from the protected network out

to the Internet. Each rule in the rule-base is

constructed randomly according to the distribution

detailed in Table 3 for its type (Inbound or

Outbound). Inbound rules. When we are modeling

rules for inbound traffic, the source IP addresses are

rarely specified in the rules, and 95 percent of the

rules have ―*‖ as their source address. The remaining

five percent have a range in their source address

field, chosen uniformly at random from the Internet‘s

IP addresses. The destination addresses for inbound

rules are always internal, belonging to the 10 internal

class B subnets. Forty-five percent of the rules have a

randomly chosen individual internal IP address as a

destination, modeling server machines. Another 15

percent have a small random range: a range which

completely lies inside one of the internal class C

networks. These ranges model clusters of servers and

small classless subnets such as ‘/27‘s and ‘/28‘s.

Then, 30 percent of the rules have a complete class C

as a destination. Finally, 10 percent allow access to a

full class B. Note that inbound rules produce many

―collisions‖ in the destination field. For example,

consider the 30 percent of rules with a full class C

destination. Essentially, the same is true for collisions

of a single-internal-IP-destination and an internal

class C subnet, since every internal IP address has

exactly a 1:2,560 chance of falling inside a particular

internal class C. Outbound rules. When we are

modeling the outbound rules, 90 percent of the rules

have a destination IP address of ―*‖ Ten percent of

the rules have either a specific address or a range in

the destination field, modeling a rule that restricts or

allows access to some particular server or network.

The source addresses for outbound rules are selected

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

7www.ijert.org

from the internal addresses with the frequencies

shown in Table 3.

Table 3

Services. The service field in the rules is selected

similarly for both Inbound and Outbound rules. The

service is selected uniformly at random from a

collection of 100 services, whose definitions were

taken from real firewall rule-bases (recall Table 2).

Most of these services have individual destination

port numbers; however, a few include port ranges,

and one service is the ―*‖ service. We allow a small

rate of growth in the number of services by adding

two percent of randomly generated services, where

the destination port is randomly picked from 0 to

65,535.

One concern we had was that, occasionally, the

model generated a rule of the form ―from * to *, with

service ‗*‘. When such a rule shows up in the rule-

base, it acts as the default rule, and all subsequent

rules become redundant, because of the ―first match‖

semantics. This effectively shortens the rule-base,

and prevents us from simulating GEM‘s behavior on

large rule-bases. Thus, our model checks for, and

discards, such randomly generated catchall rules. The

rule-bases generated by the model are still much less

structured than actual firewall rule-bases. In real

firewall rule-bases, the number of internal servers is

usually rather small, and they have many rules that

refer to them. Also, it is considered insecure to allow

many TCP services into large parts of the internal

networks. Both considerations would cause more

repetitions in IP addresses, and hence, reduce the

number of simple ranges, which would lead to

smaller search data structures. Therefore, we believe

our Perimeter model stresses the GEM algorithm

more than real firewall rule-bases would.

Figure 7: Finding the Best field order

4.3 Selecting the Best Field Order
Our first goal in the Perimeter model is to determine

if any efficiency can be achieved by selecting the

GEM data structure field order. Preliminary

simulations showed us that the order of fields had a

very strong impact on the size of the data structure in

the Perimeter model (several orders of magnitude

between best and worst choices). The variance was so

large that we were unable to simulate the worst

choices on large rule-bases, since the data structure

grew to hundreds of megabytes and took up to 20

minutes to build.

The rationale is that the usage patterns in the different

fields are non uniform (as we saw in Figure 7), so

some choices of fields in the high levels of the

hierarchy cause large amount of subdivisions in the

lower levels (many ranges are created). Therefore, we

used a three-stage process to identify the best order.

In the first stage, we generated small (500 rules) rule-

bases, and built the data structure for each of the 4! =

24 possible orders. This simulation showed that 16

orders were clearly much worse than others, so we

dropped them and continued to 2,000-rule sets with

the remaining eight orders. Here, we found that the

best four orders were better than the rest. The top

four candidates were evaluated on 5,000-rule sets,

which identified the best and second-best orders. The

process of finding the best order for the ―Perimeter‖

model is shown in Fig. 7. Moreover, a closer look

shows that the position of field ―2‖ (source port)

among the best eight orders is less significant: there

are really only two orders (310 and 301) with the ―2‖

field inserted in all four possible positions. This is

reasonable because the source port in the Perimeter

model is almost always ―*‖ so its position in the

order has a limited impact. Therefore, for all

subsequent tests, we somewhat arbitrarily used the

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

8www.ijert.org

―natural‖ order of 3210 (destination port, source port,

destination IP address, source IP address).

5 Conclusions

We conclude that the GEM algorithm is an efficient

and practical algorithm for firewall packet matching.

We implemented it successfully, and tested its

packet-matching speeds on live traffic with realistic

large rule-bases. GEM‘s matching speed is far better

than the naive linear search, and it is able to increase

the throughput of IP tables by an order of magnitude.

On rule-bases generated according to realistic

statistics, GEM‘s pace complexity is well within the

capabilities of modern hardware. As for GEM itself,

we would like to explore the algorithm‘s behavior

when using more than four fields, e.g., matching on

the TCP flags, metadata, interfaces, etc.

6 References

[1]Dmitry Rovniagin and Avishai Wool, The

Geometric Efficient Matching Algorithm for

Firewalls, IEEE TRANSACTIONS ON

DEPENDABLE AND SECURE COMPUTING,

January- 2011

[2] F. Baboescu, S. Singh, and G. Varghese,

―Packet classification for core routers: Is there an

alternative to cams,‖ in Proc. IEEE

INFOCOM, 2003.

[3] F. Baboescu and G. Varghese ―Scalable packet

classification, in Proc. ACM SIGCOMM, 2001, pp.

199–210.

[4] N. Bar-Yosef and A. Wool, ―Remote

algorithmic complexity attacks against randomized

hash tables,in Proc. International Conference on

Security and Cryptography (SECRYPT), Barcelona,

Spain, Jul. 2007, pp. 117–124.

[5] W. R. Cheswick, S. M. Bellovin, and A. Rubin,

Firewalls and

Internet Security: Repelling the Wily Hacker, 2nd ed.

Addison- Wesley, 2003.

[6] M. Christiansen and E. Fleury, ―Using interval

decision diagrams for packet filtering,‖ 2002,

http://www.cs.auc.dk/_fleury/publications.html.

[7] E. Cohen and C. Lund, ―Packet classification in

large ISPs: Design and evaluation of decision tree

classifiers,‖ in Proc. ACM SIGMETRICS. New

York, NY, USA: ACM Press, 2005, pp. 73–84.

[8] S. Crosby and D. Wallach, ―Denial of service

via algorithmic complexity attacks,‖ in Proceedings

of the 12th USENIX Security

Symposium, August 2003, pp. 29–44.

[9] M. de Berg, M. van Kreveld, and M. Overmars,

Computational Geometry: Algorithms and

Applications, 2nd ed. Springer-Verlag, 2000.

[10] D. P. Dobkin and R. J. Lipton,

―Multidimensioal searching problems,‖ SIAM J.

Comput., vol. 5, no. 2, pp. 181–186, 1976.

[11] D. Eppstein and S. Muthukrishnan, ―Internet

packet filter management and rectangle geometry,‖

in ACM-SIAM Symp. On Discrete Algorithms

(SODA), 2001, pp. 827–835.

[12] A. Feldmann and S. Muthukrishnan,

―Tradeoffs for packet classification,‖ in Proc. IEEE

INFOCOM, 2000, pp. 1193–1202.

[13] W. Feller, An Introduction to Probability Theory

and Its Applications, 3rd ed. New York: John Wiley

& Sons, 1967, vol. 1.

[14] ―Firewall Wizards,‖ Electronic mailing list,

1997–2009,archived at

https://listserv.icsalabs.com/pipermail/firewall-

wizards/.

[15] P. Gupta and N. McKeown, ―Algorithms for

packet classification,‖ IEEE Network, vol. 15, no. 2,

pp. 24–32, 2001.

[16] ——, ―Packet classification on multiple

fields,‖ in Proc. ACM

SIGCOMM, 1999, pp. 147–160.

[17] D. Hartmeier, ―Design and performance of the

OpenBSD stateful packet filter (pf),‖ in Proc.

FREENIX Track: 2002 USENIX Annual Technical

[18] R. Jain, The Art of Computer Systems

Performance Analysis John Wiley & Sons, 1991.

[19] S. Kandula, D. Katabi, M. Jacob, and A. Berger,

―Botz-4-sale:

Surviving organized DDOS attacks that mimic flash

crowds,‖ in NSDI, 2005.

[20] T. V. Lakshman and D. Stiliadis, ―High-speed

policy-based packet forwarding using efficient multi-

dimensional range matching,‖ in Proc. ACM

SIGCOMM, 1998, pp. 203–214.

[21] M. Kasi Viswanadh , An Efficient & Robust

Packet Matching Algorithm

for Firewall - International Conference on Computing

and Control Engineering (ICCCE 2012), 12 & 13

April, 2012

[22] M. Kasi Viswanadh , An Efficient & Robust

Packet Matching Algorithm

for Firewall - International Conference on Computing

and Control Engineering (ICCCE 2012), 12 & 13

April, 2012

[23] CISCO Firewall Material

[24] Dmitry Rovniagin, Avishai Wool

, THE GEOMETRIC EFFICIENT MATCHING

ALGORITHM FOR FIREWALLS EXTENDED

ABSTRACT

School of Electrical Engineering,

Tel Aviv University, Ramat Aviv 69978, Israel.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

9www.ijert.org

