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Abstract 
 

A firewall is a device that controls the flow of 

communications across networks of computers by 

examining their source, destination and type - and 

comparing these with predetermined lists of allowed 

and disallowed transactions. Packet matching in 

firewalls involves matching on many fields from the 

TCP and IP packet header. At least five fields 

(protocol number, source and destination IP 

addresses, and ports) are involved in the decision 

which rule applies to a given packet. With available 

bandwidth increasing rapidly, effective matching 

algorithms need to be deployed in modern firewalls 

to ensure that the firewall does not become a 

bottleneck , Since firewalls need to filter all the 

traffic crossing the network perimeter, they should be 

able to sustain a very high throughput. In this paper 

we consider a classical algorithm that we adapted to 

the firewall domain. We call the resulting algorithm 

“Geometric Efficient Matching”. The Geometric 

Efficient Matching algorithm enjoys a logarithmic 

matching time performance. However, the 

algorithm’s theoretical worst-case space complexity 

is O (n4) for a rule-base with n rules. Based on 

statistics from real firewall rule-bases, we created a 

perimeter rules model that generates random, but 

non-uniform, rule bases. We evaluated Geometric 

Efficient Matching algorithm via extensive simulation 

using the perimeter rules model. Geometric Efficient 

Matching algorithm speed is far better than the naive 

linear search algorithms, and it is able to increase 

the throughput by an order of magnitude. 

 

1. Introduction 
A firewall is a part of a computer system or network 

that is designed to block unauthorized access while 

permitting outward communication. It is a device or 

set of devices configured to permit, deny, encrypt, 

decrypt, or proxy all computer traffic between 

different security domains based upon a set of rules 

and other criteria. Firewalls can be implemented in 

both hardware and software, or a combination of 

both. Firewalls are frequently used to prevent 

unauthorized Internet users from accessing private  

 

 

 

networks connected to the Internet, especially 

intranets. From the fig1 all messages entering or 

leaving the intranet pass through the firewall, which 

examines each message and blocks those that do not 

meet the specified security criteria. 

 

 

 

Figure 1: Simple Firewall with Rules 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1 Types of Firewalls: 
The International Standards Organization (ISO) Open 

Systems Interconnect (OSI) model for networking 

defines seven layers, where each layer provides 

services that ``higher-level'' layers depend on. In 

order from the bottom, these layers are physical, data 

link, network, transport, session, presentation and 

application. The important thing to recognize is that 

the lower-level the forwarding mechanism, the less 

examination the firewall can perform. Generally 

speaking, lower-level firewalls are faster, but are 

easier to fool into doing the wrong thing. The 

different firewalls can be developed based on the 

functionality and requirement.  
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1.2.1 Packet-filtering firewall  
Typically is a router with the capability to filter some 

packet content, such as Layer 3 and sometimes Layer 

4 information. 

 

1.2.2 Application gateway firewall (proxy firewall) 
A firewall that filters information at Layers 3, 4, 5, 

and 7 of the OSI reference model. Most of the 

firewall control and filtering is done in software. 

 

1.2.3 Address-translation firewall  
A firewall that expands the number of IP addresses 

available and hides network addressing design. 

 

1.2.4 Host-based (server and personal) firewall 

A PC or server with firewall software running on it. 

 

1.2.5 Transparent firewall 

A firewall that filters IP traffic between a pair of 

bridged interfaces. 

  

1.2.6 Hybrid firewall 

A firewall that is a combination of the various 

firewalls types.  

 

1.3 Case Study on Network layer and 

Application layer Firewalls 
For example, an application inspection firewall 

combines a stateful firewall with an application 

gateway firewall. Conceptually, there are two types 

of firewalls: one is Network layer firewalls and 

second is Application layer firewalls. They are not as 

different as you might think, and latest technologies 

are blurring the distinction to the point where it's no 

longer clear if either one is ``better'' or ``worse.'' As 

always, you need to be careful to pick the type that 

meets your needs. It depends on what mechanisms 

the firewall uses to pass traffic from one security 

zone to another. 

  

1.3.1 Network layer Firewalls 

These generally make their decisions based on the 

source, destination addresses and ports in individual 

IP packets. A simple router is the ``traditional'' 

network layer firewall, since it is not able to make 

particularly sophisticated decisions about what a 

packet is actually talking to or where it actually came 

from. Modern network layer firewalls have become 

increasingly sophisticated, and now maintain internal 

information about the state of connections passing 

through them, the contents of some of the data 

streams, and so on. One thing that's an important 

distinction about many network layer firewalls is that 

they route traffic directly though them, so to use one 

you either need to have a validly assigned IP address 

block or to use a ``private internet'' address block . 

Network layer firewalls tend to be very fast and tend 

to be very transparent to users.    

 

Figure 2: Screened Host Firewall 

 
 

 

In Figure 2, a network layer firewall called a 

``screened host firewall'' is represented. In a screened 

host firewall, access to and from a single host is 

controlled by means of a router operating at a 

network layer. The single host is a highly-defended 

and secured strong-point that (hopefully) can resist 

attack.     

Figure 3: Screened Subnet 

 

Example Network layer firewall: In figure 3, a 

network layer firewall called a ``screened subnet 

firewall'' is represented. In a screened subnet firewall, 

access to and from a whole network is controlled by 

means of a router operating at a network layer. It is 

similar to a screened host, except that it is, 

effectively, a network of screened hosts.  

 

1.3.2 Application layer Firewalls 

These generally are hosts running proxy servers, 

which permit no traffic directly between networks, 

and which perform elaborate logging and auditing of 

traffic passing through them. Since the proxy 

applications are software components running on the 

firewall, it is a good place to do lots of logging and 

access control. Application layer firewalls can be 

used as network address translators, since traffic goes 

in one ``side'' and out the other, after having passed 

through an application that effectively masks the 

origin of the initiating connection. Having an 

application in the way in some cases may impact 
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performance and may make the firewall less 

transparent. Modern application layer firewalls are 

often fully transparent. Application layer firewalls 

tend to provide more detailed audit reports and tend 

to enforce more conservative security models than 

network layer firewalls.    

 

Figure 4: Dual Homed Gateway 

 
 

Example Application layer firewall: In figure 4, an 

application layer firewall called a ``dual homed 

gateway'' is represented. A dual homed gateway is a 

highly secured host that runs proxy software. It has 

two network interfaces, one on each network, and 

blocks all traffic passing through it. The Future of 

firewalls lies someplace between network layer 

firewalls and application layer firewalls. It is likely 

that network layer firewalls will become increasingly 

``aware'' of the information going through them, and 

application layer firewalls will become increasingly 

``low level'' and transparent. The end result will be a 

fast packet-screening system that logs and audits data 

as it passes through. Increasingly, firewalls (network 

and application layer) incorporate encryption so that 

they may protect traffic passing between them over 

the Internet. Firewalls with end-to-end encryption can 

be used by organizations with multiple points of 

Internet connectivity to use the Internet as a ``private 

backbone'' without worrying about their data or 

passwords being sniffed.  

 

1.4 Different Firewall Techniques:  
 

1.4.1 Packet filters: Looks at each packet entering or 

leaving the network and accepts or rejects it based on 

user defined rules. Packet filtering is fairly effective 

and transparent to users, but it is difficult to 

configure. In addition, it is susceptible to IP spoofing. 

Packet -filtering firewalls work primarily at the 

Network Layer of the OSI model. Firewalls are 

generally considered Layer 3 constructs. However, 

they permit or deny traffic based on Layer 4 

information such as protocol, and source and 

destination port numbers. Packet filtering uses ACLs 

to determine whether to permit or deny traffic, based 

on source and destination IP addresses, protocol, 

source and destination port numbers, and packet type. 

Packet-filtering firewalls are usually part of a router 

firewall. 

 

1.4.2 Application gateway: Applies security 

mechanisms to specific applications, such as FTP and 

Telnet servers. This is very effective, but can impose 

performance degradation.   

 

1.4.3 Circuit-level gateway: Applies security 

mechanisms when a TCP or UDP connection is 

established. Once the connection has been made, 

packets can flow between the hosts without further 

checking.   

 

1.4.4. Proxy server: Intercepts all messages entering 

and leaving the network. The proxy server effectively 

hides the true network addresses 

 

2.  Existing Algorithms 
Most modern firewalls are stateful. This means that 

after the first packet in a network flow is allowed to 

cross the firewall, all subsequent packets belonging 

to that flow, and especially the return traffic, is also 

allowed through the firewall. This statefulness has 

two advantages. First, the administrator does not need 

to write explicit rules for return traffic—and such 

return-traffic rules are inherently insecure since they 

rely on source-port filtering .So stateful firewalls are 

fundamentally more secure than simpler, stateless, 

packet filters. Second, state lookup algorithms are 

typically simpler and faster than rule match 

algorithms, so statefulness potentially offers 

important performance advantages.  

 

Firewall statefulness is commonly implemented by 

two separate search mechanisms: (i) a slow algorithm 

that implements the ―first match‖ semantics and 

compares a packet to all the rules, and (ii) a fast state 

lookup mechanism that checks whether a packet 

belongs to an existing open flow. In many firewalls, 

the slow algorithm is a naive linear search of the rule-

base, while the state lookup mechanism uses a hash-

table or a search-tree. There are strong indications 

that commercial firewalls use linear search for the 

slow rule-match as well. Moreover, the standard 

advice for improving firewall performance, for all 

vendors, is to place the most popular rules near the 

top of the rule-base. This advice doesn‘t make much 

sense if the firewall rearranges the rules into a 

complex search data structure. Note that a stateful 

firewall‘s two-part design provides its highest 

performance on long TCP connections, for which the 

fast state lookup mechanism handles most of the 

packets. However, connectionless UDP and ICMP 

traffic, and short TCP flows, like those produced in 
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extremely high volume by Distributed Denial of 

Service attacks, only activate the ―slow‖ algorithm, 

making it a significant bottleneck. Our main result is 

that the ―slow‖ algorithm does not need to be slow, 

even in a software-only implementation running on a 

general-purpose operating system. 

 

Existing algorithms implement the ―longest prefix 

match‖ semantics, using several different approaches. 

The IPL algorithm, which is based on results, divides 

the search space into elementary intervals by 

different prefixes for each dimension, and finds the 

best (longest) match for each such interval.  

The note to be made regarding the existing 

algorithms, there is no secure when the packet 

sending and time consuming is high. 

 

3 The Algorithm  
3.1   Definitions  
The firewall packet matching problem finds the first 

rule that matches a given packet on one or more 

fields from its header. Every  rule  consists  of  set  of  

ranges  [ li , ri ]    for  i  =  1, . . . , d,  where  each  

range corresponds  to  the  i-th  field  in  a  packet 

header. The  field  values  are  in  0 =  li , ri  = Ui , 

where  Ui=232  - 1 for  IP addresses,  Ui  = 65535 for  

port numbers,  and Ui   = 255  for  ICMP  message 

type  or  code.  For notation convenience later on, we 

assign each of these fields a number, which is also 

listed in the table.  

 

Table 1 

 
 

 

• We use =* to denote wildcard: An =* in field i 

means any value in [0, Ui ].  

• We are  ignoring the  action  part  of the  rule  (e.g.,  

pass or  drop),  since  we  are  only  interested  in  the 

matching algorithm.  

 

3.2 The Sub-Division of Space  
In one dimension, each rule defines one range, which 

divides space into at most 3 parts. It is easy to see  

that  n  possibly  overlapping  rules  define a  

subdivision of  one-dimensional  space  into  at  most  

(2n  - 1) simple ranges.  To  each  simple range  we  

can  assign  the  number  of  the  winner  rule.  This is 

the first rule which covers the simple range. In  d-

dimensions, we  pick  one  of  the  axes  and  project  

all  the  rules  onto that  axis,  which  gives  us  a 

reduction to the previous one- dimension case, with a 

subdivision of the one dimension into  at  most  (2n -  

1) simple ranges.  The difference is that each simple 

range corresponds to a set of rules in (d - 1) 

dimensions, called active rules.  We  continue  to  

subdivide  the  (d  -  1)  dimensional  space  

recursively.  We call each projection onto a new axis 

a level of the algorithm, thus for a 4- dimensional 

space algorithm we have 4 levels of subdivisions.  

The  last  level  is  exactly  a  one-dimensional  

case—among  all  the  active  rules,  only  the winner 

rule matters. At this point we have a subdivision of d-

dimensional space into simple hyper-rectangles, each 

corresponding to single winning rule. we shall see 

how to efficiently create this subdivision of d-

dimensional space, and how it translates into an 

efficient search structure.  

 

3.3 Dealing with Protocol Field 

Before delving into the details of the search data 

structure, we first consider the protocol header field. 

The protocol field is different from the other four 

fields: very few of the 256 possible values are in use, 

and it makes little sense to define a numerical range 

of protocol values. This intuition is validated by the 

data gathered from real firewalls .The only values we 

saw in the protocol field in actual firewall rules were 

those of specific protocols, plus the wildcard *, but 

never a non-trivial range. 

 

3.4 The Data Structure 
The GEM search data structure consists of three 

parts. The first part is an array of pointers, one for 

each protocol number, along with a cell for the * 

protocol. We build the second and third parts of the 

search data structure for each protocol separately. 

The second part is a protocol database header, which 

contains information about the order of data structure 

levels. The order in which the fields of packet header 

are checked is encoded as a 4-tuple of field numbers, 

using the numbering of Table 1. The protocol 

database header also contains the pointer to the first 

level and the number of simple ranges in that level. 

The third part represents the levels of data structure 

them- selves. Every level is a set of nodes, where 

each node is an array. Each array cell specifies a 

simple range, and contains a pointer to the next level 

node. In the last level the simple range information 

contains the number of the winner rule instead of the 

pointer to the next level. See Figure 6 for an 

illustration 
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Figure 5: Search Data Structure  

 

 
 

The  basic  cell  in  our  data  structure  (i.e.,  an  

entry  in  the sorted array which is a node in the 

structure) has a size of 12 bytes:  4 for the  value of 

the left boundary of the range, 4 for the pointer to the 

next  level, and 4  for  the  number  of  cells  in  the  

next-level  node.  The nodes at the deepest level are 

slightly different, consisting of only 8 bytes:  4 for 

the left boundary of the range and 4 for the number of 

winner rule. Note that the order of levels is encoded 

in the protocol database header, which gives us 

convenient control over the field evaluation order.  

 

3.5 The Search Algorithm 
The packet header contains the protocol number, 

source and destination address and port numbers 

fields. First, we check the protocol field and go to the 

protocol array of the search .The last two levels of 

building the search data structure. At this point the 

rules are two-dimensional, e.g., the X axis may 

represent the destination IP and the Y axis is the 

destination port. We can see three rules, shown as 

shaded overlapping rectangles, plus the default rule 

in white. The critical points and simple ranges are 

projected onto the X axis. Three blocks in rule 1 are 

optimized. For example, suppose we have an 

incoming TCP packet. Assume that the GEM 

protocol header for TCP shows that the order of 

levels is 1203. The first level - 1 - denotes the 

destination address. We execute a binary search of 

the destination address value from packet header 

against the values of the array in the first level. The 

simple range associated with the found array item 

points us to the corresponding node from the second 

level. The second level, in our example (2) denotes 

the source port number. By binary search on the 

second level array we find a new simple range, which 

contains the packet source port number. Similarly, we 

search for the source address (field 0) and destination 

port (field 3). In the last level node we find the 

winner rule information. We repeat the search 

procedure for protocol *, and get another winner rule. 

From the two candidates we choose the one with the 

lower rule number. 

 

Figure 6: GEM Data Structure Overview 

 
 

3.6 The Build Algorithm 

The build algorithm is executed once for each 

protocol. The input to the build algorithm consists of 

the rule- base, plus the field order to use. The order 

dictates the contents of each data structure level, and 

also, the order in which the header fields will be 

tested by the search algorithm.  There are 4!  =  24 

possible orders  we  can  choose  from,  to  check  4  

fields.  The data structure is built using a geometric 

sweep-line algorithm. All four levels of the search 

data structure are built in the same manner. We start 

with the set of active rules from the previous level.  

For the first level all the rules with the specified 

protocol (e.g., TCP) are active. We then construct the 

set of critical points of this level— these are the 

endpoints of the ranges, which are the  projections  of  

the  active  rules  onto  the  axis  that  corresponds  to  

the  currently  checked  field. For example, if the first 

field is .1. (Destination IP address), then the critical 

points are all the IP addresses that start or end a 

destination IP address  range in any rule. We sort the 

list of critical points in increasing order, and run the 

sweep-line over   them.  Note that there are two 

implicit critical points:  0, and the maximal value for 

the level. Every critical point corresponds to a start of 

one simple range, which in turn relates to a subset of 

active rules. For each simple range  we  calculate  its 

set of  active  rules, by  choosing  all  the  rules  that  

overlap  the simple  range  in the current field. For 

example, in Fig 5, rules 2, 3 and 4 are relevant for the 
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third simple range on the X axis. With this new set  

of  active  rules  we  continue  to the  next  level  for  

each  one of the simple ranges. In  the  deepest  level  

we  only  need  to list the  number of  the .winner  

rule.:  the  rule  with lowest number among the active  

rules associated with the current range.  

 

Table 2 

 
 

 

 
 

3.7 Reducing the Space Usage:  
Basic Optimizations 

 

A space complexity of O (n)
 4

 may be theoretically 

acceptable since it is polynomial. However, with n 

reaching thousands of rules, conserving space is 

crucial. Here, we introduce two optimization 

heuristics, which significantly reduce GEM‘s space 

requirement. The first optimization works on the last 

level of the data structure. If we take a closer look at 

last-level ranges, we see that occasionally two or 

more adjacent ranges point to the same ―winner‖ rule. 

This means that we can replace all these ranges with 

a single range which is their geometrical union. The 

second optimization works on the one-before-last 

level of the search data structure. Occasionally, there 

exist simple ranges that point to equivalent last level 

structures. Instead of storing the same last-level 

structure multiple times, we keep a single last-level 

structure, and replace the duplicates by pointers to the 

main copy. For example, in Fig. 5, ranges 2 and 6 are 

equivalent (rules 4-3-4, with boundaries in the same 

vertical positions). As part of the simulation study, 

we tested the effectiveness of these optimizations. 

Our simulations on rule bases of sizes from 500 to 

10,000 shows that the optimizations reduce the 

search data structure size by 30 to 60 percent on 

average, and that the effect grows with rule-base size. 

We also tried to apply this optimization method on 

the higher levels of our data structure, but found that 

this greatly increases the preprocessing time, and 

only give minor improvements to the space 

complexity. We remark that additional optimization 

techniques for GEM-like data structures are known to 

perform well in the computational geometry 

literature; hence, it would be interesting to test their 

effectiveness in the firewall matching domain. 

Possibilities include: not using the same field 

ordering in every branch of the search tree; switching 

to the next branch before completing the search along 

an axis; or even replacing the last two levels of 

binary search tree with a data structure optimized for 

2D queries such as that of [11] or [4]. 

 

3.8 Firewall Rule Base Statistics 
To get a better understanding of what  real- life  

firewall rule-  bases look  like,  we gathered  statistics 

from  firewall  rule-bases  that  were  analyzed  by  

the  Firewall  Analyzer.  The statistics are based on 

19 rule-bases from enterprise is firewalls collected 

during 2001 and 2002. The rule-bases  came  from  a  

variety  of  corporations  from  the  financial,  

telecommunications,  automotive,  and 

Pharmaceutical industries. We analyzed a total of 

8434 rules. Table 2 shows the distribution of 

protocols in the rules we analyzed. The data shows 

that 75% of rules from typical firewall rule-bases 

match TCP, and a total of 93% match TCP, UDP or 

ICMP. Of these the most important is clearly TCP. 

Therefore, we concentrate on these protocols in the 

rest of paper.  In our problem context, these protocols 

are the most difficult for evaluation since they imply 

a 4dimensional space. The same table shows the 

distribution of TCP source and destination port 

numbers. We can clearly see that the source port 

number is rarely specified:  98% of the rules have   a 

wildcard =`*` in the source port. This makes sense 

because both PIX and FireWall-1 are stateful 

firewalls that do not need to perform source-port 

filtering to allow return traffic through the firewall 

and source port data is generally unreliable because it 

is usually under the control of the attacker. On  the  

other  hand,  the  TCP  destination  port  is  usually  

specified  precisely. The vast majority of rules 

specified a single port number, but 4% allowed a 
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range of ports, and the ranges tended to be quite 

large. Common ranges are .all high ports. (1024–

65535) and .X11 ports. (6000-6003).The single port 

numbers we  encountered were distributed  among 

some 200 numbers,  the  most  popular  of  which  are  

shown  in Table  2: these correspond to the HTTP, 

FTP, Telnet, HTTPS, HTTP- Proxy, and NetBIOS  

services.  

 

4 The Simulation Study 
4.1    The Random Rules Simulation  
As  the  first  step  of  our  performance  evaluation  

of  GEM  we  implemented  and  tested  it  in  

isolation. The GEM builds and search algorithms 

were implemented in Microsoft Visual Studio. The 

simulations were per formed on a 2.20 GHz Intel 

Dual with PC with 1 GB of RAM running the 

Windows XP Service Pack 2 Operating system. We 

started by testing GEM using uniformly-generated 

rules: for every rule, each endpoint of each of the 4 

fields (IP address ranges and port ranges) was 

selected uniformly at random from its domain. We 

built the GEM data structure for  increasing numbers  

of  such  rules  and  then  used  the  resulting  

structure to  match randomly generated packets. We 

omit the details for lack of space, and instead refer 

the reader to. On one hand, these early simulations 

showed us that the search itself was indeed very fast: 

a single packet match took around 1µsec, since it 

only required 4 executions of a binary search in 

memory. On the other  hand, we learned that the data 

structure size grew rapidly—and  that  the  order  of  

fields  had little  or  no effect  on this size. The 

problem was that since the ranges in the rules were 

chosen uniformly, almost  every  pair  of  ranges  (in  

ever y  dimension)   had  a  non-empty  intersection.  

All these intersections produced a very fragmented 

space subdivision, and effectively exhibited the worst 

-case behavior in the data structure size.  We 

concluded that a more realistic rule model is needed 

 

4.2 The Perimeter Rules Model 
Real firewall rule-bases have a large degree of 

structure. Thus, we hypothesized that realistic rule-

bases rarely cause worst-case behavior for the GEM 

algorithm. Furthermore, we wanted to test the effects 

of the field order on the performance of GEM on 

such rule-bases. For this purpose, we built the 

Perimeter firewall rules model, and simulated the 

behavior of GEM on rule-bases generated in this 

model. 

 

4.2.1 The Modeled Topology 

The model assumes a perimeter firewall with two 

―sides‖: a protected network on the inside, and the 

Internet on the outside. The inside network consists 

of 10 class B networks, and the Internet consists of 

all other IP addresses. Thus, the internal network 

contains 10 - 65,536 possible IP addresses. In reality, 

organizations that actually own 10 class B networks 

are quite rare. However, we used this assumption for 

two reasons: 

1. Many organizations use private IP addresses 

internally, and export them via network address 

translation (NAT) on outbound traffic. Such 

organizations often use large subnets liberally, e.g., 

assign a 172.x.*.* class B subnet to each department. 

2. Having a large internal subnet stresses the GEM 

algorithm since we pick random ranges from the 

internal ranges. 

 

4.2.2 The Rules 
The Perimeter rules model produces rules of two 

types: Inbound rules that allow traffic from the 

Internet into the protected network, and outbound 

rules that allow traffic from the protected network out 

to the Internet. Each rule in the rule-base is 

constructed randomly according to the distribution 

detailed in Table 3 for its type (Inbound or 

Outbound). Inbound rules. When we are modeling 

rules for inbound traffic, the source IP addresses are 

rarely specified in the rules, and 95 percent of the 

rules have ―*‖ as their source address. The remaining 

five percent have a range in their source address 

field, chosen uniformly at random from the Internet‘s 

IP addresses. The destination addresses for inbound 

rules are always internal, belonging to the 10 internal 

class B subnets. Forty-five percent of the rules have a 

randomly chosen individual internal IP address as a 

destination, modeling server machines. Another 15 

percent have a small random range: a range which 

completely lies inside one of the internal class C 

networks. These ranges model clusters of servers and 

small classless subnets such as ‘/27‘s and ‘/28‘s. 

Then, 30 percent of the rules have a complete class C 

as a destination. Finally, 10 percent allow access to a 

full class B. Note that inbound rules produce many 

―collisions‖ in the destination field. For example, 

consider the 30 percent of rules with a full class C 

destination. Essentially, the same is true for collisions 

of a single-internal-IP-destination and an internal 

class C subnet, since every internal IP address has 

exactly a 1:2,560 chance of falling inside a particular 

internal class C. Outbound rules. When we are 

modeling the outbound rules, 90 percent of the rules 

have a destination IP address of ―*‖ Ten percent of 

the rules have either a specific address or a range in 

the destination field, modeling a rule that restricts or 

allows access to some particular server or network. 

The source addresses for outbound rules are selected 
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from the internal addresses with the frequencies 

shown in Table 3. 

 

Table 3 

 

 

 
 

 

Services. The service field in the rules is selected 

similarly for both Inbound and Outbound rules. The 

service is selected uniformly at random from a 

collection of 100 services, whose definitions were 

taken from real firewall rule-bases (recall Table 2). 

Most of these services have individual destination 

port numbers; however, a few include port ranges, 

and one service is the ―*‖ service. We allow a small 

rate of growth in the number of services by adding 

two percent of randomly generated services, where 

the destination port is randomly picked from 0 to 

65,535. 

 

One concern we had was that, occasionally, the 

model generated a rule of the form ―from * to *, with 

service ‗*‘. When such a rule shows up in the rule-

base, it acts as the default rule, and all subsequent 

rules become redundant, because of the ―first match‖ 

semantics. This effectively shortens the rule-base, 

and prevents us from simulating GEM‘s behavior on 

large rule-bases. Thus, our model checks for, and 

discards, such randomly generated catchall rules. The 

rule-bases generated by the model are still much less 

structured than actual firewall rule-bases. In real 

firewall rule-bases, the number of internal servers is 

usually rather small, and they have many rules that 

refer to them. Also, it is considered insecure to allow 

many TCP services into large parts of the internal 

networks. Both considerations would cause more 

repetitions in IP addresses, and hence, reduce the 

number of simple ranges, which would lead to 

smaller search data structures. Therefore, we believe 

our Perimeter model stresses the GEM algorithm 

more than real firewall rule-bases would. 

 

Figure 7: Finding the Best field order 

 

 
 

 

4.3 Selecting the Best Field Order 
Our first goal in the Perimeter model is to determine 

if any efficiency can be achieved by selecting the 

GEM data structure field order. Preliminary 

simulations showed us that the order of fields had a 

very strong impact on the size of the data structure in 

the Perimeter model (several orders of magnitude 

between best and worst choices). The variance was so 

large that we were unable to simulate the worst 

choices on large rule-bases, since the data structure 

grew to hundreds of megabytes and took up to 20 

minutes to build. 

 

The rationale is that the usage patterns in the different 

fields are non uniform (as we saw in Figure 7), so 

some choices of fields in the high levels of the 

hierarchy cause large amount of subdivisions in the 

lower levels (many ranges are created). Therefore, we 

used a three-stage process to identify the best order. 

In the first stage, we generated small (500 rules) rule-

bases, and built the data structure for each of the 4! = 

24 possible orders. This simulation showed that 16 

orders were clearly much worse than others, so we 

dropped them and continued to 2,000-rule sets with 

the remaining eight orders. Here, we found that the 

best four orders were better than the rest. The top 

four candidates were evaluated on 5,000-rule sets, 

which identified the best and second-best orders. The 

process of finding the best order for the ―Perimeter‖ 

model is shown in Fig. 7. Moreover, a closer look 

shows that the position of field ―2‖ (source port) 

among the best eight orders is less significant: there 

are really only two orders (310 and 301) with the ―2‖ 

field inserted in all four possible positions. This is 

reasonable because the source port in the Perimeter 

model is almost always ―*‖ so its position in the 

order has a limited impact. Therefore, for all 

subsequent tests, we somewhat arbitrarily used the 
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―natural‖ order of 3210 (destination port, source port, 

destination IP address, source IP address). 

 

5 Conclusions 

We conclude that the GEM algorithm is an efficient 

and practical algorithm for firewall packet matching. 

We implemented it successfully, and tested its 

packet-matching speeds on live traffic with realistic 

large rule-bases. GEM‘s matching speed is far better 

than the naive linear search, and it is able to increase 

the throughput of IP tables by an order of magnitude. 

On rule-bases generated according to realistic 

statistics, GEM‘s pace complexity is well within the 

capabilities of modern hardware. As for GEM itself, 

we would like to explore the algorithm‘s behavior 

when using more than four fields, e.g., matching on 

the TCP flags, metadata, interfaces, etc.  
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