

Case Study on Incorporating Clustering on

Reduced Training Bug Data for Effective Bug

Triaging

 Dhanya S Ms. Resmy V R
 M.tech, Computer & Information Science Assistant Professor

SIST, Thiruvananthapuram SIST, Thiruvananthapuram

Abstract— Many open source projects for example Eclipse,

Aspectj and Firefox deploy open source bug repositories to

handle or manage the bugs. Users, developers and testers can

report bugs to these repositories. In a bug repository, a bug is

maintained as a bug report, which records title and description

as textual content, and various attributes like status, product,

component, version, etc. One typical bug repository is Bugzilla.

Software companies spend over 45 percent of cost in dealing with

software bugs. An inevitable step of fixing bugs is bug triage,

which aims to correctly assign a developer to a new bug. In

traditional software development, bug triaging was done

manually, which is expensive in terms of time and cost due to the

large number of daily bugs and the lack of expertise for all the

bugs. There are two challenges related to bug data that may

affect the effective use of bug repositories in software

development tasks, namely the large scale and the low quality.

Two typical characteristics of low-quality bugs are noise and

redundancy. Noisy bugs may mislead related developers while

redundant bugs waste the limited time of bug handling. The data

set reduction can be achieved by applying feature selection and

instance selection in bug repositories. Here instances are

considered as bug report and features as word in the report. To

decrease the time cost in manual work, text classification

techniques are applied to conduct automatic bug triage.

Clustering the reduced set of training bug data, would group

similar bug reports. The clustering of similar bugs will enhance

the bug fixing step once a bug has been identified as meaningful.

Index Terms—Bug Triage, Bug Repository, Naïve Bayes.

I. INTRODUCTION

 Data mining for software engineering consists of

collecting software engineering data, extracting some

knowledge from it. It facilitates the usage of this knowledge to

improve the quality of software. In modern software

development, software repositories can be considered as large

scale databases for storing the output of software development

like source code, bugs, emails and other specifications. Data

mining techniques like frequent pattern matching,

classification, clustering etc can be used to mine the software

repositories so as to uncover the hidden and interesting

information and can be applied for solving real world

problems. A typical repository, for storing details of bug is

called bug repository. It plays an important role in handling

software bugs. Large software projects deploy bug repositories

(also called bug tracking systems) to store the bugs and to

assist developers to handle bugs. In a bug repository, a bug is

maintained as a bug report, which records title and description

as textual content, and various attributes like status, product,

component, version, etc. If we take an open source project like

eclipse, an average of 333,371 bugs are reported to bug

repository from 2001 to 2010 from over 34,917 developers and

users. It is a fact that, software companies spend over a 45

percent of cost in dealing with software bugs. Dealing with

bugs implies fixing those bugs.

 An inevitable step of bug fixing is bug triage, which is

a task of assigning correct developer to a new bug. One

problem while handling the repositories is the large variability

in the formats and tools needed, standards, etc. that make the

data gathering process a very labor intensive one. One

example is the mining of textual data to deal with bugs for

classification, clustering, etc.

Some of the repositories such as the BTS, are composed of a

large number of attributes, however, many of those attributes

are missing values that need to be discarded in order to apply

machine learning algorithms.

 The existence of irrelevant and redundant features in

the datasets has a negative impact in most data mining

algorithms, which assume a certain level of balance between

the classes attributes. Also, when dealing with classification,

there could be a problem of overlapping between classes, in

which a region of the data space contains samples from

different values for the class, thereby making the induction of

good predictive models difficult. Understanding the task of bug

triage requires knowledge about open bug repositories,

Bugzilla report and lifecycle of a bug.
 The remaining section of the paper is organized as

follows: Section II describes related works and the summary.

Section III discusses the problem statement. Section IV

describes objective of the proposed work. Section V discusses

the working of proposed system. Section VI tells about the

methodology including algorithms to be implemented. Section

VII describes the general architectural design of the system.

II. RELATED WORK

Davor Čubranić, Gail C. Murphy, “Automatic bug triage

using text categorization” [2004].This paper proposed a

method of applying machine learning techniques to assist in

bug triage by using text categorization to predict the

developer for the bug reported based on the bug’s description.

The data set was divided into a test set and training set by

randomly selecting a percentage of bug reports from the data

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETET - 2016 Conference Proceedings

Volume 4, Issue 17

Special Issue - 2016

1

set for placing into the training set, with the rest going to the

test set.

The model was learned using a Naive Bayes classifier to

automatically assign bug reports to developers. Gaeul Jeong ,

Sunghun Kim, Thomas Zimmermann,” Improving Bug

Triage with Bug Tossing Graphs”, 2009 ACM , This paper

proposed graph model based on Markov chains, which

captures bug tossing history. The authors generated tossing

graphs from training set of bug reports and utilize the graph

for prediction. Using the tossing history in their model

revealed developer networks which can be used to discover

team structures and to find suitable experts for a new task and

it helped to better assign developers to bug reports.

D.Matter, A.Kuhn, and O.Nierstrasz,”Assigning Bug

Reports using a Vocabulary based Exprtise Model of

Developers” (2009). This paper modeled a developer’s

expertise using the vocabulary found in the developer’s

source code. The system recommended potential developers

by extracting information from new bug reports and looking it

up in the vocabulary. Weiqin Zou, Jifeng Xuan, HeJiang

“Toward Training Set Reduction for Bug Triage”,

Computer Software and Applications Conference

(COMPSAC), 2011 IEEE 35th Annual Conference. In this

paper the authors has proposed training set reduction with

both feature selection and instance selection techniques for

bug triage and evaluated the training set reduction on bug data

of Eclipse.

a) SUMMARY OF LITERATURE REVIEW

 The Machine learning techniques for prediction or

recommendation purposes has found that prediction accuracy

depends on the choice of classifier, i.e., a certain classifier

outperforms other classifiers for a specific kind of a problem.

While classifiers and tossing graphs are effective in

improving the prediction accuracy for assignment and

reducing tossing path lengths, their accuracy is threatened by

several issues: outdated training sets, inactive developers, and

imprecise, single-attribute tossing graphs. The classifier

recommends a set of potential developers, and for each

potential developer, a tossing graph – whose edges contain

tossing probabilities among developers is used to predict

possible re-assignees. However, the tossing probability alone

is insufficient for recommending the most competent active

developer. In particular, in open source projects it is difficult

to keep track of active developers and their expertise. To

address this, in addition to tossing probabilities, it is possible

to label tossing graph edges with developer expertise and

tossing graph nodes with developer activity, which help

reduce tossing path lengths significantly. However, large

scale and noisyredundant bug data block the techniques of

automatic bug triage.

III. PROBLEM STATEMENT

 From the above survey it is noticed that there are two

challenges that may affect the bug repositories in software

development task, namely large scale and the low quality.

Two typical characteristics of low quality bugs are noise and

redundancy. Noisy bugs may mislead related developers and

redundant bugs waste the limited time of bug handling. Data

reduction can be done along the bug dimension and the word

dimension. A binary classifier is built to predict the reduction

order, which will increase the speed and accuracy of

classification. Here the attributes selected for prediction are

mostly statistical values, e.g., the number of words or length

of bug reports etc and should be extracted before the bug

triage process. No representative words in the bug data sets

are extracted as attributes

IV. OBJECTIVE

 In this paper, it is intended to improve the prediction

accuracy by selecting more relevant attributes from the bug

dataset. Along with labeling the document with the developer

name, i.e. applying text categorization, it is possible to group

the new bug data based on the similarity to the nearest

training set cluster. The clustering will reveal the structure of

characteristics bugs so that it would be more helpful in fixing

of the bug.

V. PROPOSED SYSTEM

 The paper focuses mainly on accurate and speedy bug

triage process by correctly assigning an expert developer

when a new bug arrives. The system uses a collection of bug

reported over a period of one month from an open bug

repository like Eclipse or Aspectj. Each of the reported bugs

has several attributes value pairs. The main task is to identify

the relevant attributes only. Since bug reports are usually

submitted as free form text along with the predefined fields, it

is a fact that the most relevant information about a particular

bug can be obtained from its title and description. Bug reports

are collected with STATUS field having a value either open

or verified and the resolution field with value as FIXED only.

Bug reports that has FIXED as resolution can be used as the

training data set. The remaining reports are referred to as test

set. Thus the entire collection of bug data set is divided in to

training and test sets.

 The system assumes bug reports as instances and

words in the description and summary as features. Since the

training set consists of redundant and noisy bug data, it is

important to do feature selection as well as instance selection

for selecting relevant features and bug reports respectively.

For that, the main content bearing attributes like summary and

description are extracted and are represented as a text matrix

(Bug X Word). Then the words and the frequency of

occurrence of those words in the textual contents are

identified. The words are then compared against a stop list to

find the irrelevant words. A predefined set of stop words are

available in SMART database. The identified stop words are

thus removed reduced the number of words in the summary

and description by almost 30%, facilitating a fast and accurate

triaging. Still, the report might contain irrelevant words. So,

to remove such words rank or index the words according to

relevance by using a feature selection algorithm named CHI

square. The system also performs a clustering on the entire set

of training bug data, in order to group similar bug reports .The

clustering of similar bugs will enhance the bug fixing step

once a bug has been identified as meaningful. The clustering

also reveals a structure within in each cluster based on the

similarity matrix. My thesis work mainly focus on automatic

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETET - 2016 Conference Proceedings

Volume 4, Issue 17

Special Issue - 2016

2

bug triage using machine learning approach. Here the system

adopts a probabilistic text classification algorithm called

Naive Byes algorithm to classify a new bug to an already

defined label, particularly a developer name. When a new

bug arrives, the system generates a score to each developer

based on the text similarity. And assign the newly reported

bug to a developer having highest score.

Fig 2.1 Block diagram specifying working of the system

VI. METHODOLOGY

Bug Triaging is an inevitable step in bug fixing which

involves the task of assigning correct developer to a new bug

there by facilitating a speedy bug triaging. The data

preparation requires a continuous set of bugs from an open

bug repository of large open source project like Eclipse or

Mozilla over a period of time. From the entire dataset select

those bug reports which have their status either FIXED or

DUPLICATE, since bug triage aims to predict the developers

who can fix the bugs. The data set reduction can be achieved

by applying feature selection and instance selection in bug

repositories. Here instances are considered as bug report and

features as word in the report. Feature selection can be

implemented using χ2 statistics (CHI).

 Generate developer list & word list

 Converting to a 2-D text matrix

 Generate word set for each developer

 Training set Reduction

 Clustering

 Assigning a developer

i. Data Collection and Preparation

 Collect continuous bug reports from an open bug

repository (Bugzilla, JIRA) etc, for any open source project

like Eclipse, Mozilla, Aspectj etc over a period of say one or

two months. For each bug report extract details of bug report.

Choose bug reports with status either FIXED or DUPLICATE

as Training set. The remaining bug reports are considered as

test data set. The bug reports could be in XML, CSV or

ARFF format.

ii. Generate Developer List

 From the training set generate corresponding label, i.e,

developer names. Thus for each bug reported we have a

developer also.

iii. Pre-Processing

 Extract the most relevant attribute like summary and

description of the bug report. Usually these attributes are

textual contents bearing relevant information about the bug.

Thus the textual contents needed some sort of pre processing

which includes tokenization and stop word removal.

 Tokenization is a process in which it simply

segregates all the words, numbers, and their characters from a

given document. These identified words, numbers, and other

characters are termed as tokens. Along with token generation

this process also computes the frequency of occurrence of all

these tokens present in the input documents. Stop words are

those words of no relevance. A stored list of stop words is

available in a data base called SMART. The tokens thus
generated are compared against the stop list and identified

similar words are removed from the document. T his process

reduces the size of document by 30%.

 Consider an example: Please add org.aspectj:aspectjrt

alias to your package. Currently all packages which require

org.aspectj:aspectjrt need to be patched.

a) Tokenize+stopword removal

Please:1 add:1 org:2 aspectj:2 aspectjrt:2 alias:1

package:2 currently:1 all:1 require:1 need:1 patched:1

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETET - 2016 Conference Proceedings

Volume 4, Issue 17

Special Issue - 2016

3

iv. Converting To 2-D Text Matrix (Bug X Word)

 After preprocessing, we have a reduced set of words

corresponding to each bug report. The next step is to build a

two-dimensional text matrix

Words

Bugs
Fig 3.1 Text Matrix

v. Generate Word Set for Each Developer

 There could be a developer who had fixed similar

bugs. So identify such bugs and extract or group the words of

bugs for that developer. Like this generate word set for each

developer in the training set.

vi. Training Set Reduction

a) Feature Selection
 Even after the stop word elimination, the document

might contain some other non- relevant words. Feature

selection uses a statistical method called Chi-Square (CHI) to

rank the words in the document according to their relevance.

Also, remove bug reports having Status DUPLICATE to

reduce the size of training set.

 a1) Feature Selection using CHI Square

 CHI is a statistical method used to test the independence

of two events, say occurrence of terms & occurrence of class.

In order to rank the terms use the equation χ2=

∑ ∑
(Necet−Eecet)2

Eecet
et∈{0,1},ec∈{0,1} where et = 1 (vocabulary contains term t)

ec= 1(word is in class c). If N is the observed frequency of words and E is the expected

frequency of words then, E = N*P(t)*P(c). Also, E11 = N ∗
(N11+N10)

N
∗

(N11+N01)

N
 , which gives the expected frequency of t and c

occuring together.

 Arithmetically, we can write

𝜒2(𝑉, 𝑡, 𝑐)

=
(𝑁11 + 𝑁10 + 𝑁01 + 𝑁00) ∗ (𝑁11𝑁00 − 𝑁10𝑁01

2)

(𝑁11 + 𝑁01)(𝑁11 + 𝑁10)(𝑁10 + 𝑁00)(𝑁01 + 𝑁00)

b) Algorithm for Feature Selection

Chi-square (curr_class,training set,no: of desired features)

 For i=1 to no: of words

 For j=1 to no: of training data

 If jth bug belong to curr_class then

 Observed freq (Oij)= Oij+ freq of word i in jth bug

 End if

 Create contingency table for ith word

 Compute expected freq (Eij)

 𝜒2=∑ ∑
(𝑂𝑖𝑗−𝐸𝑖𝑗)2

𝐸𝑖𝑗

1
𝑗=1

2
𝑖=1

 End for

 Sort 𝜒2 values

 Best feature=feature with highest 𝜒2 value

vii. Text Categorization

 In text classification, we are given a description d ∈

X of a document, where X is the document space; and a fixed

set of classes C = {c 1, c2, . . . , cJ}. Classes are also called

categories or labels. Typically, the document space X is

some type of high-dimensional space, and the classes are

human defined for the needs of an application. We are given

a training set D of labeled documents <d,c>, where <d, c> ∈

X × C. Using a learning method or learning algorithm, we

then wish to learn a Classifier or classification function g that

maps documents to classes: g : X → C. This type of learning

is called supervised learning because a supervisor (the human

who defines the classes and labels training documents) serves

as a teacher directing the learning process.

a) Naive Bayes Text Classification

 The first supervised learning method introduced

is multinomial Naïve Bayes or multinomial NB model, a

probabilistic learning method. The probability of a document

d being in class c is computed as P(c|d)=
P(d|c)P(c)

𝑃(𝑑)
 or simply

P(d|c)*P(c),since P(d) is negligible, it can be neglected. Here

in this work, text categorization relies on Bag of Words

representation of bug reports. To find the most likely class

i.e. developer suitable for fixing the bug, use the

equation, 𝐶𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐∈𝐶𝑃(𝑑|𝑐)𝑃(𝑐)

 Assuming the conditional independence between the terms (𝑡1, … . , 𝑡𝑛) and developer

(c), we have 𝑃(𝑡1, … . , 𝑡𝑛|𝑐) = 𝑃(𝑡1|𝑐)𝑃(𝑡2|𝑐) … … 𝑃(𝑡𝑛|𝑐). Also, to

find the best developer using Naïve Bayes, 𝐶𝑁𝐵, find the maximum prior

probability for each of the posterior probability of terms in

bug report using the equation,

𝐶𝑁𝐵=argmax 𝑃(𝑐𝑗𝑐∈𝐶)П 𝑃(𝑡𝑗𝑡∈𝑉 |𝑐).

a1) Learning the Multinomial Naïve Bayes Model

 The Prior Probability can be estimated using

𝑃(𝑐) =
𝑁𝑐

𝑁
 , where Nc=number of documents labeled as c, N =

total number of documents

Conditional probability can be defined as the fraction of times

word appears among all words in bug reports of class

developer(c). It can be computed using

𝑃(𝑡𝑘|c) =
𝐶𝑜𝑢𝑛𝑡(𝑡𝑘, 𝑐)

∑ 𝑐𝑜𝑢𝑛𝑡(𝑤, 𝑐)𝑡∈𝑉

The best class can be found using 𝐶𝑀𝐴𝑃 =
𝑎𝑟𝑔𝑚𝑎𝑥𝑐∈𝐶𝑃(𝑡1,𝑡2,….)|c).P(c)

w

1

w2 w3 .

.

. . .

.

.

. . .

.

.

. . .

.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETET - 2016 Conference Proceedings

Volume 4, Issue 17

Special Issue - 2016

4

b) Algorithm for Classifying a New Bug

 Input: A new vocabulary v (words in description of new

bug)

 A fixed set of classes C = {c1, c2 ...cJ}

 A training set of labeled set (v1, c1)... (vm,cm)

 Output: a learned classifier γ: vc

 Method:

 Extract vocabulary from training bug dataset

 For each Assigned-To attribute in the training set

 i. Find prior probability (p) for each term in the

vocabulary

 ii. Find conditional probability cp=p + cp

 Return maximum value of cp and assign class label

viii. Cluster the Data Set

 Cluster the bug reports in the training dataset. For

clustering I would like to use the k-means clustering

algorithm

a) K means Algorithm

 1. Specify the no: of clusters

 2. Randomly select k reports and place one of

them in each cluster

 3. Place the remaining reports in the clusters

based on similarity between other

reports and the selected ones in each cluster

 4. Compute centroid for each cluster

 5. Again find similarity between centroids and

the reports

 6. Re-compute the centroid and replace the

reports and reassign based on similarity

 7. Repeat the process until similar reports falls

in one cluster

ix. Prediction of New Bug

 When a new bug arrives, using text categorization, label

the report with a correct developer and find a closest group

using the K-means clustering algorithm to put the new bug in

that cluster.

VII. SYSTEM ARCHITECTURE

 General architectural design focuses on the components

or elements of structured system and unifies them in to a

coherent and functional unit. In the proposed work, first a

training bug data set is created from the available bug dataset,

which contains predefined labels (developer name)for each

existing bug in the repository suggesting the developers who

are capable of fixing those bugs. Thus the remaining data set

can be termed as test set. The bugs with status as unresolved

or new in the test set could be assigned to a developer based

on these predefined labels.

3.3 Working of the System

 The thesis work is based on machine learning approach.

The initial task is to get the data from an open bug repository

like Bugzilla and divide the entire dataset into training and

test set. The training set consists of all the bug data with the

status resolution FIXED. All the remaining data constitute

test data. Since the relevant information about the bug reports

are maintained as textual contents (summary and description),

apply the general pre-processing techniques like stop word

removal, tokenization etc. Also, generate developer names

from the training set and represent each developer with a set

of word in the bug reports they had handled. The main

problem addressed here is the reduction of noisy and

redundant bug data. This could be achieved by selecting

relevant features (words) and relevant instances (bug reports).

 When a new bug arrives, perform all pre-processing on

the summary and description and represent the bug as feature

vectors. Then apply the text categorization method like Naive

Bayesian in order to label the new bug with a correct

developer. This could be made possible by learning the

already labeled trained data using a classifier. The next step

is to cluster the training bug data set based on their similarity.

It is possible to group the bug reports based on reporter,

priority developer who has handled similar bugs etc which

will feature out the structure of each cluster.

VII. CONCLUSION

 The paper is based on machine learning approach. The

initial task is to get the data from an open bug repository like

Bugzilla and divide the entire dataset into training and test set.

The training set consists of all the bug data with the status

resolution FIXED. All the remaining data constitute test data.

Since the relevant information about the bug reports are

maintained as textual contents (summary and description),

apply the general pre-processing techniques like stop word

removal, tokenization etc. Also, generate developer names

from the training set and represent each developer with a set

of word in the bug reports they had handled. The main

problem addressed here is the reduction of noisy and

redundant bug data. This could be achieved by selecting

relevant features (words) and relevant instances (bug reports).

 When a new bug arrives, perform all pre-processing on

the summary and description and represent the bug as feature

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETET - 2016 Conference Proceedings

Volume 4, Issue 17

Special Issue - 2016

5

vectors. Then apply the text categorization method like Naive

Bayesian in order to label the new bug with a correct

developer. This could be made possible by learning the

already labeled trained data using a classifier. The next step

is to cluster the training bug data set based on their similarity.

It is possible to group the bug reports based on reporter,

priority developer who has handled similar bugs etc which

will feature out the structure of each cluster.

REFERENCES

[1] Jifeng Xuan, He Jiang, Member, IEEE, Yan Hu, Zhilei Ren, Weiqin

Zou,Zhongxuan Luo, and Xindong Wu,Fellow, IEEE, “Towards

Effective Bug Triage with Software Data Reduction Techniques”,

IEEE TRANSACTIONS ON KNOWLEDE AND ENGINEERING,
Vol 27[2015].

[2] Anjali, Sandeep Kumar Singh ,Department of Computer Science and

Engineering, Jaypee Institute of Information Technology, “Bug
Triaging: Profile Oriented Developer Recommendation”,

International Journal of Innovative Research in Advanced

Engineering (IJIRAE) ,Volume 2 Issue 1 [2015].
[3] W. Zou, Y. Hu, J. Xuan, and H. Jiang, “Towards training set

reduction for bug triage,” in Proc. 35th Annu. IEEE Int. Comput.

Soft.Appl. Conf.[2011].
[4] P.Bhattacharya and I.Neamtiy, ”Fine Grained incremental learning

and multi feature tossing graphs to improve bug triaging”, Proc.

IEEE Intl. Conf. Software Maintainence, [2010]
[5] D. Matter, A. Kuhn, and O. Nierstrasz, “Assigning bug reports using

a vocabulary-based expertise model of developers,” Proc. IEEE

Working Conf. Mining Software Repositories, IEEE Computer
Society[2010].

[6] K. Gao, T. M. Khoshgoftaar, and A. Napolitano, “Impact of data

sampling on stability of feature selection for software measurement
data,” in Proc. 23rd IEEE Int. Conf. Tools Artif. Intell[2011]

[7] C. Sun, D. Lo, S. C. Khoo, and J. Jiang, “Towards more accurate

retrieval of duplicate bug reports,” in Proc. 26th IEEE/ACM Int.
Conf. Automated Softw. Eng[2011].

[8] Veena Jadhav et al, “Prediction by Using Cos-triage Algorithm”,

(IJCSIT) International Journal of Computer Science and Information
Technologies,[2014].

[9] J.W. Park, M.W.Lee, J.Kim, S.Won Hwang and S.Kim,

”Costriage:A cost aware triage algorithm for bug reporting
systems”, in AAAI[2011].

[10] J. W. Park, M. W. Lee, J. Kim, S. W. Hwang, and S. Kim,

“Costriage: A cost-aware triage algorithm for bug reporting
systems”, in Proc. 25th Conf. Artif. Intell[2011].

[11] G.Jeong, S.Kim and T.Zimmermann,”Improving Bug Triag with

Tossing Graph”, Proc.Joint Meeting European Software Engineering
Conf. & ACM SIGSOFT Symp [2009].

[12] A. E. Hassan, “The road ahead for mining software repositories,”in

Proc. Front. Softw. Maintenance,[2008].
[13] Katja Kevic, Sebastian C. M üller, Thomas Fritz, and Harald C. Gall

,Department of Informatics University of Zurich, Switzerland,

“Collaborative Bug Triaging using Textual Similarities and Change
Set Analysis”.

[14] J.Anvik, “Automating bug report assignment”, Proc.Intl. Conf.

Software Engineering (ICSE 06), ACM [2006].
[15] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?”,

Proc. Intl. Conf. Software Engineering (ICSE 06), ACM [2006].

[16] D.Čubranić and G. C. Murphy, “Automatic bug triage using text
classification”, In Proceedings of Software Engineering and

Knowledge Engineering [2004].

[17] Pamela Bhattacharya, Iulian Neamtiu, Christian R. Shelton, “The
Journal of Systems and Software 85, “Automated, highly-accurate,

bug assignment using machine learning and tossing graphs” [2012]

[18] Y. Yang, “An evaluation of statistical approaches to text
categorization”, Information Retrieval,[1999].

[19] Y. Yang and J. Pedersen, “A comparative study on feature selection
in text categorization,” in Proc. Int. Conf. Mach. Learn.[1997].

[20] K P Soman,Shyam Diwakar,V Ajay, “Insight into Data Mining

Theory and Practice”.
[21] Charu C Aggarwal, IBM T. J. Watson Research Centre Yorktown

Heights, NY charu@us.ibm.com, ChengXiang Zhai University of

Illinois at Urbana-Champaign Urbana , “A Survey Of Text
Classification & Clustering Algorithms” , (chapter 4) .

[22] Data Ronen Feldman Bar-Ilan University, Israel James Sanger ABS

Ventures,Waltham,Massachusetts“TheTextMiningHandbook:Advanc
ed Approaches in Analyzing Unstructured Data”.

[23] Jiawei Han, Micheline Kamber, Jin Pei, “Data Mining Concepts and

Techniques”-3rd Edition
[24] Bugzilla, http://www.bugzilla.org/

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETET - 2016 Conference Proceedings

Volume 4, Issue 17

Special Issue - 2016

6

