
Central Authentication for Api Consumers on 

Multiple Api Gateways 

Vishal Vikas Javalkar  

IT Dept.,Cencora Dallas, US

Abstract – Application Programming Interface (APIs) unlocks 

access to a business’s critical data and processes which allows 

organizations to more efficiently reuse capabilities, share assets, 

and innovate with partners. Typically, organizations have 

hundreds of applications and unlocking and sharing data from 

these applications is critical capability for organizations. It allows 

organizations to make the best use of its data assets and ensure 

business processes run efficiently and seamlessly. API are created 

out of these applications to allow integration with other internal or 

external applications and often API Gateways are used to govern, 

manage and protect these APIs. Large organizations end up using 

multiple API Gateways depending on where the application 

workloads are running either on-premises, cloud , hybrid and 

depending on geographies due to data residency and processing 

laws. Each API Gateway comes with its own local identity 

management component to authenticate the API consumer, with 

multiple API gateways it can easily lead to an inconsistent adoption 

of API authentication standards, policies, and duplication of API 

consumers identities. This further leads to weakened security, 

additional maintenance overhead, and lack of visibility and central 

governance of APIs and API consumers. This paper recommends 

and outlines an approach for organizations to effectively address 

this challenge. 

Keywords—API Gateway, Application Programming Interface 

(API), API Management, API Authentication 

I. INTRODUCTION

APIs unlock critical business data therefore its imperative to 

securely manage, administer the access and systematically 

govern the API consumers. API Gateway allows organizations 

to manage and govern the API and its API consumers. There are 

many API Management products out in the market, however 

large organizations end up having multiple API Management 

gateways depending where the applications and applications 

workload are running, this could be on on-premises, cloud , 

hybrid and even depending on geographies due to data residency 

and processing laws. Enabling APIs through various API 

Gateways and using its own local Identity Management leads to 

duplication of consumers, non-standardized authentication 

methods and lack of central governance and visibility. This 

paper recommends an approach on how to effectively introduce 

and manage central authentication to multiple API Gateways in 

an organization.  

A. Approach for Central Authentication for API Gateways

There are different methods to authenticate API consumers

on API Gateways while consuming  an API. Below are some

of the popular methods.

1. Basic Authentication Basic and Bearer authentication

scemes are widely used API authentication methods. They

both use HTTP headers to authenticate API users, and they

can be used in combination with API Keys for added

security.

HTTP Basic Authentication: API consumers send API

requests with a username and password in an HTTP header.

API providers then validate the credentials to authenticate

API users. This simple API authentication method lacks

security, as API requests can be intercepted easily.

HTTP Bearer Authentication: API consumers send API

requests with a unique API access token in an HTTP

header. API providers then validate the API access token to

authenticate API users. This API authentication method is

more secure than Basic, as API requests cannot be

intercepted easily.

2. API Key API key-based authentication involves sending an

API key along with a request. An API key is a unique

identifier that is issued by the API provider to authorized

users or applications and is used to identify and track API

usage.

To use an API that requires key-based authentication, the

user or application includes the API key as a parameter in

the request, typically as a query parameter or in a header.

The API provider verifies the key and then allows or denies

access to the API based on the user’s permissions.

3. OAuth 2.0 OAuth 2.0 is the industry-standard protocol for

authorization. OAuth 2.0 focuses on client developer

simplicity while providing specific authorization flows for

web applications, desktop applications, mobile phones, and

living room devices. This specification and its extensions

are being developed within the IETF OAuth Working

Group.

OAuth 2.0 is an authorization framework that allows users

or applications to access resources from an API without

giving the API access to their credentials, such as a

username and password. It is widely used to grant third-

party applications access to resources on behalf of a user,

without requiring the user to disclose their credentials to

the third party.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS010026
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 01 January 2024

www.ijert.org
www.ijert.org


 

 

 

OAuth 2.0 is widely used by social media platforms, cloud 

service providers, and other web applications to provide a 

secure and standardized way of granting access to 

resources. It provides security advantages over traditional 

authentication schemes, including the ability to revoke 

access to a specific application or user, the ability to grant 

limited access to specific resources, and the ability to 

delegate authentication to a trusted third party. 

4. JWT Based Authentication JWTs (JSON Web Tokens) are 

a compact and URL-safe means of representing claims to 

be transferred between parties. JWTs consist of three parts 

separated by dots: a header, a payload, and a signature. The 

header specifies the algorithm used to sign the token, the 

payload contains the claims, and the signature is used to 

verify the integrity of the token. 

JSON Web Token (JWT) is an open standard (RFC 7519) 

that defines a compact and self-contained way for securely 

transmitting information between parties as a JSON object. 

This information can be verified and trusted because it is 

digitally signed. JWTs can be signed using a secret (with 

the HMAC algorithm) or a public/private key pair 

using RSA or ECDSA. 

JWTs are often used for authentication and authorization in 

web applications. When a user logs in, the server generates 

a JWT that contains information about the user, such as the 

user ID and permissions. The JWT is then signed using a 

secret key that only the server knows. The server sends the 

JWT to the client, which can then use it to access protected 

resources on the server. When the client sends a request to 

the server, it includes the  

JWT in an authorization header. The server verifies the 

signature of the JWT using the secret key, and if the 

signature is valid, it extracts the claims and uses them to 

authorize the request. 

JWTs are widely used in REST APIs, as they allow the 

stateless transmission of authentication and authorization 

data between the client and the server. They are also 

portable since they can be easily shared between different 

services and systems. 

JWTs are widely used and most suitable for REST APIs. It 

is recommended to use JWT based authentication over the 

other methods. 

Although all API Gateway provides a way to generate JWT 

token often their capabilities are limited and are designed 

to work as a central API Identify and Access Solution, 

hence its critical to create a capability dedicated for API 

Access & Identity Management. A centralized API Access 

& Identify Management solution will allow organizations 

to govern and manage the consumer identities centrally 

where the access is controlled based on the tokens which 

are short lived, provides role based granular access and can 

be used to easily provision or revoke access to any API. 

 

 

 

 

 

 

   

 

B. Reference Architecture for Central Authentication of API 

Consumers on API Gateways 

Below diagram depicts the reference architecture for central 

API Authentication for API Consumer on API Gateway. It 

describes various components and entities involved to 

achieve a central API Authentication capability in an 

organization. 

 

 

Components or Entities involved in the reference architecture  

1) API Consumers API consumers are the applications 

which will consuming the API which are exposed by the API 

Gateway and Backed Services or applications. API Consumers 

can be either external application of parterns , customers , 

vendors or it could internal applications with the organization. 

2) API Gateway: API Gateway are the specialized API 

Management solutions which are designed to publish, manage 

and govern the APIs. It acts as proxy to your actual backend 

APIs. This provides a way to secure and systematically 

document and discover APIs. 

3) Central Identity for Access Management : Central 

Identify for Access Management will act as a centralized 

solution for API Authentication & authorization where are the 

API consumers are registered and are centrally governed and 

managed.There will be a trust established between API 

Gateways and the Central API Authentication Servers. This will 

allow centralized access management of all the API consumers. 

There are additional advantages of having such architecture. 

a. Central Governance, Visibility & Access Management of 

API 

b. Role based Authorization of API 

c. Short lived tokens for enhanced security 

d. Security Standards Compliance 

e. Rule based API access 

f. Easy provisioning and de-provisioning of API access 

 

 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS010026
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 01 January 2024

https://tools.ietf.org/html/rfc7519
www.ijert.org
www.ijert.org


 

 

4) Central API Catalog : If your organization is using 

multiple API Gateways it become difficult to discover and reuse 

APIs hence considering a solution where all the APIs 

irrespective which API Gateways there are exposed from are 

listed on the Central API Catalog. 

5) Backend APIs and Backend Applications : These are 

your API which unlock your data or opens up business 

processes for integrations. 

6) Partners ,Customers , Any External User, Employees or 

any Internal Users : These are the developers either internal or 

external who wish to consume API from the API Gateways.  

7) External and Internal Firewalls : Ensure your API 

Gateways and backed APIs are behind the External and Internal 

Firewalls respectively for enhanced security. Also ensure all the 

communication is on HTTPS (TLS 1.2+) to data over 

transmission. 

API Consumer Authentication Flow using Central 

Authentication Server and API Gateway: 

Step 1: API Consumer (External /Internal) requests access to 

Central ID server for the JWT access token. Central ID server 

issues a JWT token to the API consumer. 

Step 2: API Consumer passes the token to API Gateway, where 

API Gateway validates the authenticity of token and the 

authorization with the Central ID.  

Step 3: Central ID validates the authenticity and authorization 

of the consumer. 

Step 4: Upon successful validation API Gateway allows access 

to backend APIs. 

Step 5: Backend APIs performs any of CRUD operation on the 

backend application or execute any other function with API. 

This process allows a standardized and secure way to access 

API and backed application data. Thereby enhancing reuse, 

avoiding consumer application identify duplication and brings 

in central governance and visibility to all the API consumers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

II. CONCLUSION 

The white paper discusses the challenge of managing 

authentication for API consumers on multiple API gateways 

within an organization. It highlights the need for central 

authentication to ensure consistent adoption of authentication & 

authorization standards, reduce security risks, and improve 

governance and visibility. 

The paper describes various authentication methods such as 

Basic Authentication, API Key, OAuth 2.0, and JWT Based 

Authentication. It recommends that JWT-based authentication 

is the most suitable option due to its portability and ability to 

provide role-based granular access. 

To implement central authentication, the paper presents a 

reference architecture consisting of several components: 

API Consumers: Applications that consume APIs exposed by 

the API gateway. 

API Gateway: Specialized solutions used to publish, manage, 

and govern APIs. 

Central Identity for Access Management: A centralized solution 

for registering and governing API consumers' identities. 

Central API Catalog: A catalog listing all APIs regardless of the 

API gateway they are exposed from. 

Backend APIs and Applications: The APIs that unlock data or 

enable integrations with business processes. 

Partners, Customers, External/Internal Users: Developers who 

wish to consume APIs from the API gateways. 

External/Internal Firewalls: Security measures to protect the 

API gateways and backend APIs. 

The paper also outlines an authentication flow using a central 

authentication server and an API gateway. The steps include 

requesting a JWT access token from the central ID server, 

validating the token at the API gateway, validating consumer 

authenticity and authorization at the central ID server, and 

granting access to backend APIs upon successful validation. 

Overall, this white paper provides insights into implementing 

central authentication for API consumers on multiple API 

gateways within an organization. 

 

 

 

 

REFERENCES 

 
[1] Authentication  

https://en.wikipedia.org/wiki/Authentication  
[2] OAuth 2  

https://oauth.net/2/  

[3] JWT Authentication 
 https://jwt.io/introduction  

[4]    API Authentication methods 

https://blog.hubspot.com/website/api-authentication  
 

 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS010026
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 01 January 2024

www.ijert.org
www.ijert.org

