
In this paper, we aim at establishing certain finite integral formulas for the
generalized Gauss hypergeometric and confluent hypergeometric functions. Fur-

thermore, the F
(α,β)
p (a, b; c; z)-function occurring in each of our main results can

be reduced, under various special cases, to such simpler functions as the classi-
cal Gauss hypergeometric function 2F1, Gauss confluent hypergeometric function

ϕ
(α,β)
p (b; c; z) function and generalized hypergeometric function pFq. A specimen

of some of these interesting applications of our main integral formulas are pre-
sented briefly.
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In many areas of applied mathematics, various types of special functions become es-
sential tools for scientists and engineers. The continuous development of mathematical
physics, probability theory and other areas has led to new classes of special functions
and their extensions and generalizations (see, for details, [17] and the references cited
therein; see also [16, 18, 19]).
A lot of research work has recently come up on the study and development of the func-
tions, which are more general than the Beta type function β(x, y), popularly known as
generalized Beta type functions. These functions, as a part of the theory of confluent
hypergeometric functions, are important special functions and their closely related ones
are widely used in physics and engineering. Moreover, generalized Beta functions [2, 3]
have played a pivotal role in the advancement of further research and have proved to be
exemplary in nature. The Eulers gamma function Γ(z) is one of the most fundamental
special functions, because of its important role in various fields in the mathematical,
physical, engineering and statistical sciences. Various generalizations of the gamma
function can be found in the literature [1, 5, 7, 9, 21].
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The following extension of the gamma function is introduced by Chaudhry and
Zubair [1]:

Γp (z) =

{ ∫

∞

0
tz−1 exp

(

−t− p

t

)

dt, ℜ (p) > 0; z ∈ C

Γ(z), ℜ(z) > 0
. (1.1)

The extension of Euler’s beta function is considered by Chaudhry et al. [2] in the
following form:

βp (x, y) =

∫ 1

0

tx−1 (1− t)y−1 exp

( −p

t(1− t)

)

dt, ℜ (p) > 0,ℜ (x) > 0,ℜ (y) > 0.

(1.2)
Chaudhry et al. [3] used βp (x, y) to extend the hypergeometric function, known as the
extended Gauss hypergeometric function, as follows:

Fp (a, b; c; z) =
∞
∑

n=0

(a)n
βp (b+n, c−b)

β (b, c−b)

(z)n

n!
, p ≥ 0,ℜ (c) > ℜ (b) > 0, (1.3)

where (a)n denotes the Pochhammer symbol defined as

(a)n =
Γ(a+ n)

Γ(a)
=

{

1, n= 0; a ∈ C/ {0}
a (a+1) (a+2) . . . (a+n−1) , n ∈ N,a ∈ C.

The integral representation of Euler’s type function is

Fp (a, b; c; z) =
1

β (b,c−b)

∫ 1

0

tb−1 (1−t)c−b−1(1−zt)−a exp

( −p

t (1−t)

)

dt, (1.4)

where p ≥ 0 and | arg(1− z)| < π < p;ℜ (c) > ℜ (b) > 0.
Also, the extended confluent hypergeometric function is defined as

ϕp (b; c; z) =
∞
∑

n=0

βp (b+n, c−b)

β (b, c−b)

(z)n

n!
, p ≥ 0, ℜ (c)>ℜ (b)>0. (1.5)

The transformation formulas, recurrence relations, summation and asymptotic formu-
las, differentiation properties, the Mellin transforms and some new representations of
these extended functions can be found in many earlier work [3, 10, 12, 22, 19].

The generalized Euler’s gamma function is defined in [12] as

Γ(α,β)
p (x) =

∫

∞

0

tx−1
1F1

(

α; β;−t− p

t

)

dt, ℜ (α) > 0,ℜ (β) > 0,ℜ (p) > 0,ℜ (x) > 0.

(1.6)
Recently, Özergin [11] introduced and studied some fundamental properties and char-

acteristics of the generalized Beta type function β
(α,β)
p (x, y) in their Ph.D. Thesis and

defined by (see, e.g., [11, p.32]):

βp
(α,β) (x, y)=

∫ 1

0

tx−1(1−t)y−1
1F1

(

α; β;
−p

t (1−t)

)

dt, (1.7)
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with ℜ (p) ≥ 0,min (ℜ (x) ,ℜ (y) ,ℜ (α) ,ℜ (β)) > 0 and β
(α,β)
0 (x, y) = β (x, y) , where

β (x, y) is a well known Eulers Beta function defined by

β (x, y) =

∫ 1

0

tx−1(1−t)y−1 dt, ((ℜ(x)) > 0, (ℜ(y)) > 0) . (1.8)

Similarly, by appealing to βα,α
p (x, y), Özergin et al. introduced and investigated a

further extension of the following potentially useful generalized Gauss hypergeometric
functions defined as follows (see, e.g., [12, p.4606, Sec.3]; see also [11, p.39, Ch.4]):

Fp
(α,β) (a, b; c; z) =

∞
∑

n=0

(a)n
βp

(α,β) (b+ n, c− b)

β (b, c− b)

zn

n!
, (|z| < 1) , (1.9)

and

1F
(α,,β;p)
1 (b; c; z) =

∞
∑

n=0

βp
(α,β) (b+n, c−b)

β (b, c−b)

zn

n!
, (|z| < 1) , (1.10)

corresponding integral representations are given by [12]:

F (α,β)
p (a, b; c; z) =

1

β (b, c− b)

∫ 1

0

tb−1(1− t)c−b−1
1F1

(

α; β;
−p

t (1− t)

)

(1− zt)−a dt,

(1.11)
for ℜ (p) ≥ 0, and | arg (1− z) | < π < p; ℜ (c) > ℜ (b) > 0.

It is obvious to see that [3]:

F (α,α)
p (a, b; c; z) = Fp (a, b; c; z) , F

(α,β)
0 (a, b; c; z) = 2F1 (a, b; c; z) ;

1F
(α,α;p)
1 (b; c; z) = 1F

p
1 (b; c; z) = ϕp (b; c; z) , 1F

(α,β;0)
1 (b; c; z) = 1F1 (b; c; z) . (1.12)

where the 2F1(.) is a special case of the well-known generalized hypergeometric series

pFq(.) defined by (see, e.g., [19, Sec.1.5]; see also [20]).

pFq

[

α1, ..., αp;
β1, ..., βq;

z

]

=
∞
∑

n=0

(α1)n · · · (αp)n
(β1)n · · · (βq)n

zn

n!
= pFq (α1, . . . , αp; β1, . . . , βq; z) , (1.13)

where z ∈ C, p ≤ q, αi, βj ∈ C, βj 6= 0,−1,−2, . . . , (i = 1, 2, . . . , p, j = 1, 2, . . . , q).

In this section we calculate the F
(α,β)
p (a, b; c; z)-function with some algebraic function.

2 INTEGRALS INVOLVING GENERALIZED GAUSS HYPERGEO-METRIC AND CONFLUENT 
HYPERGEOMETRIC FUNCTION
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Theorem 1 For the generalized Gauss hypergeometric function, we have the following
integral

∫ 1

0

x−ρ (1− x)ρ−σ−1 F (α,β)
p (a, b; c; kx) dx

= β (1− ρ, ρ− σ)
∞
∑

n=0

(a)n (1− ρ)n
(1− σ)n

β
(α,β)
p (b+ n, c− b)

β (b, c− b)

kn

n!
, (2.1)

where, ℜ (p) ≥ 0, and | arg (1− kx) | < π < p; ℜ (c) > ℜ (b) > 0

Proof Making use of relation (1.9), it gives

I1 =

∫ 1

0

x−ρ (1− x)ρ−σ−1
∞
∑

n=0

(a)n
β
(α,β)
p (b+ n, c− b)

β (b, c− b)

(kx)n

n!
dx

=
∞
∑

n=0

(a)n
β
(α,β)
p (b+ n, c− b)

β (b, c− b)

(k)n

n!

∫ 1

0

xn−ρ (1− x)ρ−σ−1 dx

=
∞
∑

n=0

(a)n
β
(α,β)
p (b+ n, c− b)

β (b, c− b)

(k)n

n!
β (n− ρ+ 1, ρ− σ)

=
∞
∑

n=0

(a)n
β
(α,β)
p (b+ n, c− b)

β (b, c− b)

(k)n

n!

Γ (n− ρ+ 1) Γ (ρ− σ)

Γ (n− σ + 1)

=
Γ (1− ρ) Γ (ρ− σ)

Γ (1− σ)

∞
∑

n=0

(a)n
β
(α,β)
p (b+ n, c− b)

β (b, c− b)

(k)n

n!

(1− ρ)n
(1− σ)n

= β (1− ρ, ρ− σ)
∞
∑

n=0

(a)n (1− ρ)n
(1− σ)n

β
(α,β)
p (b+ n, c− b)

β (b, c− b)

kn

n!
.

This complete the proof of the Theorem 1.

If we set p = 0 in above result then we obtain the special case of (2.1) in terms of
classical Gauss hypergeometric function as given in the following result:

Corollary 1.1

∫ 1

0

x−ρ (1− x)ρ−σ−1
2F1 (a, b; c; kx) dx = β (1− ρ, ρ− σ) 3F2

(

a, b, 1− ρ
1− σ

; k

)

.

(2.2)

The integral of Gauss Confluent hypergeometric function is given by
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Corollary 1.2

∫ 1

0

x−ρ (1− x)ρ−σ−1 ϕ(α,β)
p (b; c; kx) dx

=
∞
∑

n=0

β (1 + n− ρ, ρ− σ)
β
(α,β)
p (b+ n, c− b)

β (b, c− b)

(k)n

n!
. (2.3)

Moreover, for the generalized hypergeometric function pFq, we have the following corol-
lary:

Corollary 1.3

∫ 1

0

x−ρ (1− x)ρ−σ−1
pFq

[

α1, ..., αp;
β1, ..., βq;

kx

]

dx

= β (1− ρ, ρ− σ) p+1Fq+1

[

α1, ..., αp, 1− ρ
β1, ..., βq, 1− σ

; k

]

(2.4)

for x ∈ C, p ≤ q; αj, βj ∈ C, β 6= 0,−1,−2, ...; i =
(

1, p
)

, j =
(

1, q
)

.

Theorem 2
∫

∞

1

x−ρ (x− 1)σ−1 F (α,β)
p (a, b; c; kx) dx

= β (σ, ρ− σ)
∞
∑

n=0

(a)n (ρ)−n

(ρ− σ)
−n

β
(α,β)
p (b+ n, c− b)

β (b, c− b)

kn

n!
. (2.5)

Proof

I2 =

∫

∞

1

x−ρ (x− 1)σ−1
∞
∑

n=0

(a)n
β
(α,β)
p (b+ n, c− b)

β (b, c− b)

(kx)n

n!
dx

=
∞
∑

n=0

(a)n
β
(α,β)
p (b+ n, c− b)

β (b, c− b)

(k)n

n!

∫

∞

1

x−ρ+n (x− 1)σ−1 dx.

Let x = 1 + t, then we arrive at

I2 =
∞
∑

n=0

(a)n
β
(α,β)
p (b+ n, c− b)

β (b, c− b)

(k)n

n!

∫

∞

0

tσ−1 (1 + t)−ρ+n dt,

using the formula

Γ (α) Γ (β) = Γ (α + β)

∫

∞

0

xα−1 (1 + x)−(α+β) dx, (2.6)

then we have

I2 =
∞
∑

n=0

(a)n
β
(α,β)
p (b+ n, c− b)

β (b, c− b)

(k)n

n!

Γ (σ) Γ (ρ− σ − n)

Γ (ρ− n)
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= β (σ, ρ− σ)
∞
∑

n=0

(a)n
β
(α,β)
p (b+ n, c− b)

β (b, c− b)

(k)n

n!

(ρ)
−n

(ρ− σ)
−n

.

This complete the proof of the Theorem 2.

We can also obtain special cases of Theorem 2 as done in Theorem 1.

Theorem 3
∫

∞

0

e−kxxρ−1Fp
(α,β) (a, b; c; lx) dx

=
∞
∑

n=0

Γ (ρ)

kρ
(a)n (ρ)n

βp
(α,β) (b+ n, c− b)

n!β (b, c− b)

(

l

k

)n

, k 6= 0. (2.7)

Proof Using (1.11) and (1− lxt)−a =
∑

∞

n=0
(a)n
n!

(lxt)n, we have

I3 =
1

β (b, c− b)

∫

∞

0

∫ 1

0

tb−1 (1− t)c−b−1 e−kxxρ−1
1F1

(

α; β;
−p

t(1− t)

)

×
∞
∑

n=0

(a)n
n!

(lxt)n dx dt, (2.8)

=
1

β (b, c− b)

∞
∑

n=0

(a)n
ln

n!

∫

∞

0

∫ 1

0

tb+n−1 (1− t)c−b−1 e−kxxρ+n−1
1F1

(

α; β;
−p

t(1− t)

)

dx dt

=
∞
∑

n=0

(a)n l
n

β (b, c− b)n!

∫

∞

0

e−kxxρ+n−1dx

∫ 1

0

tb+n−1 (1− t)c−b−1
1F1

(

α; β;
−p

t(1− t)

)

dt

=
∞
∑

n=0

(a)n l
n

β (b, c− b)n!

∫

∞

0

e−kxxρ+n−1 β(α,β)
p (b+ n, c− b) , dx

because,
1

k

∫

∞

0

e−σ
(σ

k

)ρ+n−1

dσ =
1

kρ+n

∫

∞

0

e−σ (σ)ρ+n−1 dσ

then we have

I3 =
∞
∑

n=0

(a)n(ρ)nΓ (ρ)

kρ n!

β
(α,β)
p (b+ n, c− b)

β (b, c− b)

(

l

k

)n

.

This complete the proof of Theorem 3.

If we set p = 0 in (2.7) then we obtain the following corollary:

Corollary 3.1

∫

∞

0

e−kxxρ−1
2F1 (a, b; c; lx) dx =

Γ(ρ)

kρ 3F2

(

a, b; ρ
c

;
l

k

)

, k 6= 0. (2.9)
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The integral of Gauss Confluent hypergeometric function is given by the following result:

Corollary 3.2
∫

∞

0

e−kxxρ−1 ϕ(α,β)
p (b; c; lx) dx

=
∞
∑

n=0

Γ (ρ+ n)

kρ n!

β
(α,β)
p (b+ n, c− b)

β (b, c− b)

(

l

k

)n

, k 6= 0. (2.10)

This result is in complete agreement with the result given in [6, p.98].

Next, for the generalized hypergeometric function pFq, we have the following corol-
lary:

Corollary 3.3 For x ∈ C, p ≤ q;αj, βj ∈ C, β 6= 0,−1,−2, ...;
(

i = (1, p); j = (1, q)
)

,
we have

∫

∞

0

e−kxxρ−1
pFq

[

α1, ..., αp;
β1, ..., βq;

lx

]

dx =
Γ(ρ)

kρ p+1Fq

[

α1, ..., αp, ρ
β1, ..., βq

;
l

k

]

, k 6= 0.

(2.11)

Theorem 4
∫

∞

0

xρ−1 (x+ β)−σ F (δ,η)
p (a, b; c; kx) dx

= β (ρ, σ − ρ) βρ+n−σ

∞
∑

n=0

(a)n (ρ)n (σ − ρ)
−n

β
(δ,η)
p (b+ n, c− b)

β (b, c− b)

kn

n!
. (2.12)

Proof

I4 =

∫

∞

0

xρ−1 (x+ β)−σ
∞
∑

n=0

(a)n
β
(δ,η)
p (b+ n, c− b)

β (b, c− b)

(kx)n

n!
dx

=
∞
∑

n=0

(a)n
β
(δ,η)
p (b+ n, c− b)

β (b, c− b)

(k)n

n!

∫

∞

0

xρ+n−1 (x+ β)−σ dx.

Let x = βt, then we arrive at

I4 =
∞
∑

n=0

(a)n
β
(δ,η)
p (b+ n, c− b)

β (b, c− b)

(k)n

n!
βρ−σ+n

∫

∞

0

tρ+n−1 (1 + t)−σ dt,

using the relation (2.6), then we have

I4 =
∞
∑

n=0

(a)n
β
(δ,η)
p (b+ n, c− b)

β (b, c− b)

(k)n

n!
βρ+n−σΓ (σ + n) Γ (σ − ρ− n)

Γ (σ)

= β (ρ, σ − ρ)
∞
∑

n=0

βρ+n−σ (a)n (ρ)n (σ − ρ)
−n

β
(δ,η)
p (b+ n, c− b)

β (b, c− b)

(k)n

n!
,

then we easily get the R.H.S. of (2.12). This complete the proof of the Theorem 4.
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Theorem 5

∫ 1

−1

(1− x)ρ (1 + x)σ F (α,β)
p (a, b; c; kx) dx

= 2ρ+σ+1β (ρ+ 1, σ + 1)
∞
∑

n=0

(a)n β
(α,β)
p (b+ n, c− b)

β (b, c− b)
F (−n, ρ+ 1, ρ+ σ + 2; 2)

kn

n!
.

(2.13)

Proof

I5 =

∫ 1

−1

(1− x)ρ (1 + x)σ
∞
∑

n=0

(a)n
β
(α,β)
p (b+ n, c− b)

β (b, c− b)

(kx)n

n!
dx

=
∞
∑

n=0

(a)n
β
(α,β)
p (b+ n, c− b)

β (b, c− b)

(k)n

n!

∫ 1

−1

(1− x)ρ (1 + x)σ xn dx.

Now, by putting 1−x
2

= t ⇒ dx = −2 dt, and using the integral representation of Gauss
hypergeometric series

F (a, b; c; x) =
Γ (c)

Γ (b) Γ (c− b)

∫ 1

0

tb−1 (1− t)c−b−1 (1− tx)−a dt, (2.14)

then we arrive at the following result after a little simplification:

I5 = 2ρ+σ+1Γ (ρ+ 1) Γ (σ + 1)

Γ (ρ+ σ + 2)

∞
∑

n=0

(a)n β
(α,β)
p (b+ n, c− b)

β (b, c− b)

(k)n

n!

× F (−n, ρ+ 1, ρ+ σ + 2; 2) ,

then we obtain the desired result in (2.13). This completes the proof.

The next theorem considers the behavior of the generalized Gauss hypergeometric func-
tion using the gamma function.

Theorem 6

lim
γ→−l

(Γ (γ))−1 Fp
(α,β) (a, b; γ; x) =

xl+1

Γ (a) Γ (b) Γ (−b− l)

×
∞
∑

r=0

(a+ l + r)!

(l + r + 1)!
βp

(α,β) (b+ l + r + 1,−b− l) xr. (2.15)

Proof Making use of (1.9), we have

I6 =
∞
∑

n=0

(a)n
β
(α,β)
p (b+ n, γ − b)

β (b, γ − b)

xn

n!
lim
γ→−l

1

Γ(γ)
,
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by using (1.7), we obtain

I6 =
∞
∑

n=0

(a)n
Γ(b)

∫ 1

0

tb+n−1 (1− t)−b−1
1F1

(

α; β;
−p

t (1− t)

)

xn

n!

(1− t)−l

Γ (−l − b)
dt,

by setting n = l + r + 1 and using (1.7), it yields

=
(x)l+1

Γ (b) Γ (−l − b)

∞
∑

r=0

(a)l+r+1

(l + r + 1)!
β(α,β)
p (b+ l + r + 1,−b− l) xr,

then we arrive at the desired result in (2.14).

The special cases of (2.15) for the generalized Gauss hypergeometric function and con-
fluent hypergeometric function are given in the following corollaries:

Corollary 6.1

lim
γ→−l

(Γ (γ))−1
2F1 (a, b; γ; x) = xl+1

(a)l+1 (b)l+1

(l + 1)!
2F1

[

a+ l + 1, b+ l + 1
l + 2

; x

]

. (2.16)

Corollary 6.2

lim
γ→−l

(Γ (γ))−1 ϕ(α,β)
p (b; γ; x) =

xl+1

Γ (−l)

∞
∑

r=0

1

Γ (l + r + 2)

β
(α,β)
p (b+ l + r + 1,−b− l)

β (b,−l − b)

xr

r!
.

(2.17)

The Jacobi polynomial P
(α,β)
n (x) [13, p. 254] is defined as following:

P (α,β)
n (x) =

(1 + α)n
n!

2F1

[

−n, 1 + α + β + n;
1 + α;

1− x

2

]

, (3.1)

where 2F1 is the classical hypergeometric functions; when α = β = 0, then the polyno-
mial in (3.1) becomes the Legendre polynomial [13, p. 157].
We also have

P (α,β)
n (1) =

(1 + α)n
n!

.

Theorem 7 Integral formula involving Gauss hypergeometric function multiplied with
Jacobi polynomials is given by

∫ 1

−1

xλ (1− x)α (1 + x)µ P (α,β)
n (x) F (δ,η)

p (a, b; c; kx) dx

=
(−1)n 2α+µ+1 β (µ+ 1, n+ α + 1)

n! (µ+ β + 1)n

∞
∑

r=0

(a)r β
(δ,η)
p (b+ r, c− b)

β (b, c− b)

kr

r!

× 3F2

[

−λ− r, µ+ β + 1, µ+ 1;
µ+ β + n+ 1, µ+ α + n+ 2;

1

]

. (3.2)
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Proof By using (1.9), we have

I7 =

∫ 1

−1

xλ (1− x)α (1 + x)µ P (α,β)
n (x)

∞
∑

r=0

(a)r
β
(δ,η)
p (b+ r, c− b)

β (b, c− b)

(kx)r

r!
dx

=
∞
∑

r=0

(a)r β
(δ,η)
p (b+ r, c− b)

β (b, c− b)

(k)r

r!

∫ 1

−1

xλ+r (1− x)α (1 + x)µ P (α,β)
n (x) dx

Next, we use the following formula:
∫ 1

−1

xλ (1− x)α (1 + x)µ P (α,β)
n (x) dx = (−1)n

2α+µ+1Γ (µ+ 1) Γ (n+ α + 1) Γ (µ+ β + 1)

n! Γ (µ+ β + n+ 1) Γ (µ+ α + n+ 2)

× 3F2

[

−λ, µ+ β + 1, µ+ 1;
µ+ β + n+ 1, µ+ α + n+ 2;

1

]

, (3.3)

where α > −1 and β > −1. Also, 3F2 is the special case of generalized hypergeometric
series.
Then we arrive at

I7 =
∞
∑

r=0

(a)r β
(δ,η)
p (b+ r, c− b)

β (b, c− b)

(k)r

r!

(−1)n 2α+µ+1Γ (µ+ 1) Γ (n+ α + 1) Γ (µ+ β + 1)

n! Γ (µ+ β + n+ 1) Γ (µ+ α + n+ 2)

× 3F2

[

−λ− r, µ+ β + 1, µ+ 1;
µ+ β + n+ 1, µ+ α + n+ 2;

1

]

,

by a little simplification, then we arrive at the desired result in (3.2). This completes
the proof.

The Legendre functions are the solution of Legendre’s differential equation [4, sec.3.1]

(

1− z2
) d2f

dz2
− 2z

df

dz
+
[

ν (ν + 1)− µ2
(

1− z2
)

−1
]

f = 0, (4.1)

where z, µ, ν are unrestricted.

If we substitute f = (z2 − 1)
1

2µ ν, then (4.1) becomes

(

1− z2
) d2ν

dz2
− 2 (µ+ 1) z

dν

dz
+ [ν (µ− ν) (µ+ ν + 1)] = 0, (4.2)

and with δ = 1
2
− 1

2
z as the independent variable the above differential equation becomes

as following:

δ (1− δ)
d2ν

dδ2
+ (µ+ 1) (1− 2δ)

dν

dδ
+ [ν (ν − µ) (µ+ ν + 1)] = 0. (4.3)
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The solution of (4.1) in the form of Gauss hypergeometric type equation with a =
µ− ν, b = µ+ ν + 1 and c = µ+ 1, as follows.

f = P µ
ν (z) =

1

Γ (1− µ)

(

z + 1

z − 1

)
1

2µ

F

[

−ν, ν + 1; 1− µ;
1

2
− 1

2
z

]

, |1− z| < 2,

(4.4)
where P µ

ν (z) is known as the Legendre function of the first kind [4].
Next, we derive the integrals with Legendre function.

Theorem 8 Integral formula involving Gauss hypergeometric function multiplied with
Legendre function is given as following:

∫ 1

0

xσ−1
(

1− x2
)

µ

2 P µ
ν (x) F (α,β)

p (a, b; c; kx) dx

=
(−1)µ 2−σ−µ

√
πΓ (1 + µ+ ν)

Γ (1− µ+ ν)

∞
∑

n=0

(a)n β
(α,β)
p (b+ n, c− b)

β (b, c− b)

kn

n!

× 2−nΓ (σ + n)

Γ
(

1
2
+ σ+n

2
+ µ

2
− ν

2

)

Γ
(

1 + σ+n
2

+ µ

2
+ ν

2

) . (4.5)

Proof

I8 =

∫ 1

0

xσ−1
(

1− x2
)

µ

2 P µ
ν (x)

∞
∑

n=0

(a)n β
(α,β)
p (b+ n, c− b)

β (b, c− b)

(kx)n

n!
dx

Next, using the formula [4, sec. 3.12] for ℜ (σ) > 0, µ ∈ N.
∫ 1

0

xσ−1
(

1− x2
)

µ

2 P µ
ν (x) dx =

(−1)µ 2−σ−µ
√
π Γ (σ) Γ (1 + µ+ ν)

Γ (1− µ+ ν) Γ
(

1
2
+ σ

2
+ µ

2
− ν

2

)

Γ
(

1 + σ
2
+ µ

2
+ ν

2

) ,

(4.6)
then we obtain

I8 =
∞
∑

n=0

(a)n β
(α,β)
p (b+ n, c− b)

β (b, c− b)

(k)n

n!

(−1)µ 2−σ−µ−n
√
πΓ (σ + n) Γ (1 + µ+ ν)

Γ (1− µ+ ν) Γ
(

1
2
+ σ+n

2
+ µ

2
− ν

2

)

Γ
(

1 + σ+n
2

+ µ

2
+ ν

2

) .

This completes the proof.

The Bessel Maitland function (also known as Wright generalized Bessel function) de-
fined as following [8]:

Jµ
ν (z) = φ (µ, ν + 1 : z) =

∞
∑

n=0

1

Γ (µn+ ν + 1)

(−z)n

n!
. (5.1)
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Theorem 9

∫

∞

0

xρ Jµ
ν (x) F (α,β)

p (a, b; c; kx) dx

=
∞
∑

n=0

(a)n β
(α,β)
p (b+ n, c− b)

β (b, c− b)

Γ (ρ+ n+ 1)

Γ (1 + ν − µ− µ (ρ+ n))

kn

n!
. (5.2)

Proof

I9 =
∞
∑

n=0

(a)n β
(α,β)
p (b+ n, c− b)

β (b, c− b)

kn

n!

∫

∞

0

xρ+n Jµ
ν (x) dx,

Next, using the following formula [15]:

∫

∞

0

xρ Jµ
ν (x) dx =

Γ (ρ+ 1)

Γ (1 + ν − µ− µρ)
(ℜ (ρ) > −1, 0 < µ < 1) , (5.3)

then we arrive at the desired result in (5.2). This completes the proof.

6 CONCLUDING REMARKS

We have obtained some new integrals involving Gauss hypergeometric and Confluent hypergeometric function. The 

results obtained here are basic in nature and are likely to find useful applications in the study of simple and multiple 

variable hypergeometric se-ries which in turn are useful in statistical mechanics, electrical networks and probability 

theory. Some important results are also given as special cases of our main results.
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